Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.031
Filtrar
1.
Pharmacol Rep ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954373

RESUMEN

Ischemic stroke is a leading cause of adult disability and death worldwide. The primary treatment for cerebral ischemia patients is to restore blood supply to the ischemic region as quickly as possible. However, in most cases, more severe tissue damage occurs, which is known as cerebral ischemia/reperfusion (I/R) injury. The pathological mechanisms of brain I/R injury include mitochondrial dysfunction, oxidative stress, excitotoxicity, calcium overload, neuroinflammation, programmed cell death and others. Propofol (2,6-diisopropylphenol), a short-acting intravenous anesthetic, possesses not only sedative and hypnotic effects but also immunomodulatory and neuroprotective effects. Numerous studies have reported the protective properties of propofol during brain I/R injury. In this review, we summarize the potential protective mechanisms of propofol to provide insights for its better clinical application in alleviating cerebral I/R injury.

2.
FASEB J ; 38(13): e23769, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38958951

RESUMEN

Renal ischemia-reperfusion injury (IRI) is an integral process in renal transplantation, which results in compromised graft survival. Macrophages play an important role in both the early inflammatory period and late fibrotic period in response to IRI. In this study, we investigated whether scutellarin (SCU) could protect against renal IRI by regulating macrophage polarization. Mice were given SCU (5-50 mg/kg) by gavage 1 h earlier, followed by a unilateral renal IRI. Renal function and pathological injury were assessed 24 h after reperfusion. The results showed that administration of 50 mg/kg SCU significantly improved renal function and renal pathology in IRI mice. In addition, SCU alleviated IRI-induced apoptosis. Meanwhile, it reduced macrophage infiltration and inhibited pro-inflammatory macrophage polarization. Moreover, in RAW 264.7 cells and primary bone marrow-derived macrophages (BMDMs) exposed to SCU, we found that 150 µM SCU inhibited these cells to polarize to an inflammatory phenotype induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, SCU has no influence on anti-inflammatory macrophage polarization in vivo and in vitro induced by in interleukin-4 (IL-4). Finally, we explored the effect of SCU on the activation of the mitogen-activated protein kinase (MAPK) pathway both in vivo and in vitro. We found that SCU suppressed the activation of the MAPK pathway, including the extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38. Our results demonstrated that SCU protects the kidney against IRI by inhibiting macrophage infiltration and polarization toward pro-inflammatory phenotype via the MAPK pathway, suggesting that SCU may be therapeutically important in treatment of IRI.


Asunto(s)
Apigenina , Glucuronatos , Sistema de Señalización de MAP Quinasas , Macrófagos , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Ratones , Apigenina/farmacología , Glucuronatos/farmacología , Glucuronatos/uso terapéutico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Masculino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Apoptosis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/prevención & control , Inflamación/patología
3.
J Vasc Res ; : 1-18, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38952123

RESUMEN

INTRODUCTION: The comorbidities of ischemic heart disease (IHD) and diabetes mellitus (DM) compromise the protection of the diabetic heart from ischemia/reperfusion (I/R) injury. We hypothesized that manipulation of reperfusion injury salvage kinase (RISK) and survivor activating factor enhancement (SAFE) pathways might protect the diabetic heart, and intervention of these pathways could be a new avenue for potentially protecting the diabetic heart. METHODS: All hearts were subjected to 30-min ischemia and 30-min reperfusion. During reperfusion, hearts were exposed to molecules proven to protect the heart from I/R injury. The hemodynamic data were collected using suitable software. The infarct size, troponin T levels, and protein levels in hearts were evaluated. RESULTS: Both cyclosporine-A and nitric oxide donor (SNAP) infusion at reperfusion protected 4-week diabetic hearts from I/R injury. However, 6-week diabetic hearts were protected only by SNAP, but not cyclosporin-A. These treatments significantly (p < 0.05) improved cardiac hemodynamics and decreased infarct size. CONCLUSIONS: The administration of SNAP to diabetic hearts protected both 4- and 6-week diabetic hearts; however, cyclosporine-A protected only the 4-week diabetic hearts. The eNOS/GLUT-4 pathway executed the SNAP-mediated cardioprotection.

4.
Biol Sport ; 41(3): 191-200, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952909

RESUMEN

The aim of this study was to systematically review the current literature on blood flow restriction (BFR) as a post-exercise recovery strategy. Experimental studies investigating the effect of BFR on recovery after exercise were included. Only studies meeting the following inclusion criteria were selected: (a) studies investigating about BFR as a post-exercise recovery strategy in athletes and healthy individuals; (b) the full text being available in English; (c) experimental research study design. Studies that exclusively analyzed BFR as a recovery strategy during the exercise (e.g., recovery strategy between bouts of exercise) were excluded. A literature review was conducted on the PubMed, Cochrane, and Web of Science electronic databases up until May 7th, 2023. The main findings were that (i) 9 studies investigated passive BFR as a post-exercise recovery strategy, which shows a significant lack of research in both team and individual sports (especially in female populations), and only 2 studies used active BFR protocols; (ii) although a high quality range of studies was observed, there were methodological limitations such as BFR interventions that were usually conducted after fatiguing protocols or fitness tests, which may not represent the real exercise (e.g., a sprint session of 6 sets of 50 m may induce muscle damage but it does not represent the demands of a team sport like rugby or soccer); (iii) there is a lack of consistency in BFR protocols (e.g., number of cycles or duration of the occlusion-reperfusion periods) for recovery; (iv) some studies showed beneficial effects while others found no positive or detrimental effects of BFR as a post-exercise recovery strategy in comparison with the control/SHAM group. In conclusion, only 11 studies investigated BFR as a post-exercise recovery strategy and there is not any significant amount of evidence in team or individual sports (especially in female populations). BFR could be a potential post-exercise recovery strategy, but practitioners should use caution when applying this method of recovery for their athletes and clients. In addition, it would be of interest for high performance-related practitioners to have a better understanding of the benefits of BFR interventions combined with either active or passive forms of exercise as a post-exercise recovery strategy.

5.
World J Transplant ; 14(2): 92137, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38947967

RESUMEN

BACKGROUND: Lung transplantation is a well-established treatment of end-stage lung disease. A rodent model is an inexpensive way to collect biological data from a living model after lung transplantation. However, mastering the surgical technique takes time owing to the small organ size. AIM: To conduct rat lung transplantation using a shunt cannula (SC) or modified cannula (MC) and assess their efficacy. METHODS: Rat lung transplantation was performed in 11 animals in the SC group and 12 in the MC group. We devised a method of rat lung transplantation using a coronary SC for coronary artery bypass surgery as an anastomosis of pulmonary arteriovenous vessels and bronchioles. The same surgeon performed all surgical procedures in the donor and recipient rats without using a magnifying glass. The success rate of lung transplantation, operating time, and PaO2 values were compared after 2-h reperfusion after transplantation. RESULTS: Ten and 12 lungs were successfully transplanted in the SC and MC groups, respectively. In the SC group, one animal had cardiac arrest within 1 h after reperfusion owing to bleeding during pulmonary vein anastomosis. The operating time for the removal of the heart-lung block from the donor and preparation of the left lung graft was 26.8 ± 2.3 and 25.7 ± 1.3 min in the SC and MC groups, respectively (P = 0.21). The time required for left lung transplantation in the recipients was 37.5 ± 2.8 min and 35.9 ± 1.4 min in the SC and MC groups, respectively (P = 0.12). PaO2 values at 2 h after reperfusion were 456.2 ± 25.5 and 461.2 ± 21.5 mmHg in the SC and MC groups, respectively (P = 0.63), without difference between the groups. CONCLUSION: A hyperacute rat lung transplantation model using a coronary SC was created using a simple technique. The MC was inexpensive, easy to prepare, and simple to operate.

6.
Clin Transl Med ; 14(7): e1749, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38951127

RESUMEN

During myocardial ischaemia‒reperfusion injury (MIRI), the accumulation of damaged mitochondria could pose serious threats to the heart. The migrasomes, newly discovered mitocytosis-mediating organelles, selectively remove damaged mitochondria to provide mitochondrial quality control. Here, we utilised low-intensity pulsed ultrasound (LIPUS) on MIRI mice model and demonstrated that LIPUS reduced the infarcted area and improved cardiac dysfunction. Additionally, we found that LIPUS alleviated MIRI-induced mitochondrial dysfunction. We provided new evidence that LIPUS mechanical stimulation facilitated damaged mitochondrial excretion via migrasome-dependent mitocytosis. Inhibition the formation of migrasomes abolished the protective effect of LIPUS on MIRI. Mechanistically, LIPUS induced the formation of migrasomes by evoking the RhoA/Myosin II/F-actin pathway. Meanwhile, F-actin activated YAP nuclear translocation to transcriptionally activate the mitochondrial motor protein KIF5B and Drp1, which are indispensable for LIPUS-induced mitocytosis. These results revealed that LIPUS activates mitocytosis, a migrasome-dependent mitochondrial quality control mechanism, to protect against MIRI, underlining LIPUS as a safe and potentially non-invasive treatment for MIRI.


Asunto(s)
Modelos Animales de Enfermedad , Daño por Reperfusión Miocárdica , Animales , Ratones , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/terapia , Ondas Ultrasónicas , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo
7.
Neuropeptides ; 107: 102453, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38959559

RESUMEN

INTRODUCTION: This study explored how acute sleep deprivation (ASD) before myocardial ischemia influences oxytocin release from paraventricular (PVN) neurons and its correlation with sympathetic nervous system (SNS) activity post-acute sleep loss, impacting subsequent left ventricular (LV) remodeling following myocardial infarction (MI). METHODS: The study was conducted in two phases: induction of ASD, inducing MI, blood sampling, euthanizing animals and collecting their heart and brain for histological and gene expression evaluations. The animals in first and second phase were euthanized 24 h and 14 days after MI, respectively. RESULTS: Pre-MI ASD, accompanied by increased serum epinephrine levels within 24 h of MI, upregulated oxytocin and cFos expression in the PVN. Also, pre-MI ASD resulted in decreased serum PAB levels 14 days post-MI (P < 0.001). While notable echocardiographic changes were seen in MI versus sham groups, ASD demonstrated protective effects. This was evidenced by reduced infarct size, elevated TIMP1, MMP2, and MMP9 in the LV of SD + MI animals versus MI alone (P < 0.05). Additionally, histological analysis showed reduced LV fibrosis in pre-MI ASD subjects (P < 0.05). CONCLUSION: Our study supports the notion that activation of oxytocin neurons within the PVN subsequent to ASD interacts with autonomic centers in the central nervous system. This enhanced sympathetic outflow to the heart prior to MI triggers a preconditioning response, thereby mediating cardioprotection through decreased oxidative stress biomarkers and regulated extracellular matrix (ECM) turnover.

8.
J Neurol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960948

RESUMEN

INTRODUCTION: United States stroke systems are increasingly transitioning from alteplase (TPA) to tenecteplase (TNK). Real-world data on the safety and effectiveness of replacing TPA with TNK before large vessel occlusion (LVO) stroke endovascular treatment (EVT) are lacking. METHODS: Four Pennsylvania stroke systems transitioned from TPA to TNK during the study period 01/2020-06/2023. LVO stroke patients who received intravenous thrombolysis with TPA or TNK before EVT were reviewed. Multivariate logistic analysis was conducted adjusting for age, sex, National Institute of Health Stroke Scale (NIHSS), occlusion site, last-known-well-to-intravenous thrombolysis time, interhospital-transfer and stroke system. RESULTS: Of 635 patients, 309 (48.7%) received TNK and 326 (51.3%) TPA prior to EVT. The site of occlusion was the M1 middle cerebral artery (MCA) (47.7%), M2 MCA (25.4%), internal carotid artery (14.0%), tandem carotid with M1 or M2 MCA (9.8%) and basilar artery (3.1%). A favorable functional outcome (90-day mRS ≤ 2) was observed in 47.6% of TNK and 49.7% of TPA patients (p = 0.132). TNK versus TPA groups had similar rates of early recanalization (11.9% vs. 8.4%, p = 0.259), successful endovascular reperfusion (93.5% vs. 89.3%, p = 0.627), symptomatic intracranial hemorrhage (3.2% vs. 3.4%, p = 0.218) and 90-day all-cause mortality (23.1% vs. 21.5%, p = 0.491). CONCLUSIONS: This U.S. multicenter real-world clinical experience demonstrated that switching from TPA to TNK before EVT for LVO stroke resulted in similar endovascular reperfusion, safety, and functional outcomes.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38961845

RESUMEN

There are diverse pathophysiological mechanisms involved in acute kidney injury (AKI). Among them, overactivity of the renin angiotensin system (RAS) has been described. Angiotensin converting enzyme 2 (ACE2) is a tissue RAS enzyme expressed in the apical border of proximal tubules. Given the important role of ACE2 in the metabolism of Angiotensin II this study was aimed to characterize kidney and urinary ACE2 in amouse model of AKI. Ischemia reperfusion injury (IRI) was induced in C57BL/6 mice by clamping of the left renal artery followed by removal of the right kidney. In kidneys harvested 48 hours after IRI, immunostaining revealed a striking maldistribution of ACE2 including spillage into the tubular lumen and presence of ACE2 positive luminal casts in the medulla. In cortical membranes ACE2 protein and enzymatic activity were both markedly reduced (37±4 vs. 100±6 ACE2/ß-Actin, P=0.0004 and 96±14 vs. 152±6 RFU/µg protein/h P=0.006). In urine, the full-length membrane bound ACE2 protein (100kD) was markedly increased (1120±405 vs. 100±46 ACE2/µg Crea, P=0.04) and casts stained for ACE2 were recovered in the urine sediment. In AKI caused by IRI there is a marked loss of ACE2 from the apical tubular border with deposition of ACE2 positive material in the medulla and increased urinary excretion of the full length-membrane bound ACE2 protein. The deficiency of tubular ACE2 in AKI suggests that provision of this enzyme could have therapeutic applications and that its excretion in the urine may also serve as a diagnostic marker of severe proximal tubular injury.

10.
J Cell Physiol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962880

RESUMEN

Ischemia-reperfusion injury (IRI) results in irreversible metabolic dysfunction and structural damage to tissues or organs, posing a formidable challenge in the field of organ implantation, cardiothoracic surgery, and general surgery. Glycogen synthase kinase-3ß (GSK-3ß) a multifunctional serine/threonine kinase, is involved in a variety of biological processes, including cell proliferation, apoptosis, and immune response. Phosphorylation of its tyrosine 216 and serine 9 sites positively and negatively regulates the activation and inactivation of the enzyme. Significantly, inhibition or inactivation of GSK-3ß provides protection against IRI, making it a viable target for drug development. Though numerous GSK-3ß inhibitors have been identified to date, the development of therapeutic treatments remains a considerable distance away. In light of this, this review summarizes the complicated network of GSK-3ß roles in IRI. First, we provide an overview of GSK-3ß's basic background. Subsequently, we briefly review the pathological mechanisms of GSK-3ß in accelerating IRI, and highlight the latest progress of GSK-3ß in multiorgan IRI, encompassing heart, brain, kidney, liver, and intestine. Finally, we discuss the current development of GSK-3ß inhibitors in various organ IRI, offering a thorough and insightful reference for GSK-3ß as a potential target for future IRI therapy.

11.
Sci Rep ; 14(1): 15246, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956068

RESUMEN

This study aimed to explore the effects of peroxisome proliferator-activated receptor α (PPAR-α), a known inhibitor of ferroptosis, in Myocardial ischemia/reperfusion injury (MIRI) and its related mechanisms. In vivo and in vitro MIRI models were established. Our results showed that activation of PPAR-α decreased the size of the myocardial infarct, maintained cardiac function, and decreased the serum contents of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and Fe2+ in ischemia/reperfusion (I/R)-treated mice. Additionally, the results of H&E staining, DHE staining, TUNEL staining, and transmission electron microscopy demonstrated that activation of PPAR-α inhibited MIRI-induced heart tissue and mitochondrial damage. It was also found that activation of PPAR-α attenuated MIRI-induced ferroptosis as shown by a reduction in malondialdehyde, total iron, and reactive oxygen species (ROS). In vitro experiments showed that intracellular contents of malondialdehyde, total iron, LDH, reactive oxygen species (ROS), lipid ROS, oxidized glutathione disulphide (GSSG), and Fe2+ were reduced by the activation of PPAR-α in H9c2 cells treated with anoxia/reoxygenation (A/R), while the cell viability and GSH were increased after PPAR-α activation. Additionally, changes in protein levels of the ferroptosis marker further confirmed the beneficial effects of PPAR-α activation on MIRI-induced ferroptosis. Moreover, the results of immunofluorescence and dual-luciferase reporter assay revealed that PPAR-α achieved its activity via binding to the 14-3-3η promoter, promoting its expression level. Moreover, the cardioprotective effects of PPAR-α could be canceled by pAd/14-3-3η-shRNA or Compound C11 (14-3-3η inhibitor). In conclusion, our results indicated that ferroptosis plays a key role in aggravating MIRI, and PPAR-α/14-3-3η pathway-mediated ferroptosis and mitochondrial injury might be an effective therapeutic target against MIRI.


Asunto(s)
Proteínas 14-3-3 , Ferroptosis , Daño por Reperfusión Miocárdica , PPAR alfa , Ferroptosis/efectos de los fármacos , Animales , PPAR alfa/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Proteínas 14-3-3/metabolismo , Ratones , Masculino , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratones Endogámicos C57BL , Ratas , Modelos Animales de Enfermedad
12.
Sci Rep ; 14(1): 15174, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956161

RESUMEN

Coronary artery bypass surgery can result in endothelial dysfunction due to ischemia/reperfusion (IR) injury. Previous studies have demonstrated that DuraGraft helps maintain endothelial integrity of saphenous vein grafts during ischemic conditions. In this study, we investigated the potential of DuraGraft to mitigate endothelial dysfunction in arterial grafts after IR injury using an aortic transplantation model. Lewis rats (n = 7-9/group) were divided in three groups. Aortic arches from the control group were prepared and rings were immediately placed in organ baths, while the aortic arches of IR and IR + DuraGraft rats were preserved in saline or DuraGraft, respectively, for 1 h before being transplanted heterotopically. After 1 h after reperfusion, the grafts were explanted, rings were prepared, and mounted in organ baths. Our results demonstrated that the maximum endothelium-dependent vasorelaxation to acetylcholine was significantly impaired in the IR group compared to the control group, but DuraGraft improved it (control: 89 ± 2%; IR: 24 ± 1%; IR + DuraGraft: 48 ± 1%, p < 0.05). Immunohistochemical analysis revealed decreased intercellular adhesion molecule-1, 4-hydroxy-2-nonenal, caspase-3 and caspase-8 expression, while endothelial cell adhesion molecule-1 immunoreactivity was increased in the IR + DuraGraft grafts compared to the IR-group. DuraGraft mitigates endothelial dysfunction following IR injury in a rat bypass model. Its protective effect may be attributed, at least in part, to its ability to reduce the inflammatory response, oxidative stress, and apoptosis.


Asunto(s)
Endotelio Vascular , Ratas Endogámicas Lew , Daño por Reperfusión , Animales , Ratas , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Daño por Reperfusión/metabolismo , Masculino , Puente de Arteria Coronaria/métodos , Puente de Arteria Coronaria/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Modelos Animales de Enfermedad , Aldehídos/metabolismo , Aldehídos/farmacología , Caspasa 3/metabolismo , Vasodilatación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Acetilcolina/farmacología
13.
Brain Behav ; 14(7): e3608, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956886

RESUMEN

INTRODUCTION: Cerebral ischemia reperfusion injury (CIRI) often leads to deleterious complications after stroke patients receive reperfusion therapy. Exercise preconditioning (EP) has been reported to facilitate brain function recovery. We aim to explore the specific mechanism of EP in CIRI. METHODS: Sprague-Dawley rats were randomized into Sham, middle cerebral artery occlusion (MCAO), and EP groups (n = 11). The rats in the EP group received adaptive training for 3 days (10 m/min, 20 min/day, with a 0° incline) and formal training for 3 weeks (6 days/week, 25 m/min, 30 min/day, with a 0° incline). Then, rats underwent MCAO surgery to establish CIRI models. After 48 h, neurological deficits and cerebral infarction of the rats were measured. Neuronal death and apoptosis in the cerebral cortices were detected. Furthermore, RNA sequencing was conducted to investigate the specific mechanism of EP on CIRI, and qPCR and Western blotting were further applied to confirm RNA sequencing results. RESULTS: EP improved neurological deficit scores and reduced cerebral infarction in MCAO rats. Additionally, pre-ischemic exercise also alleviated neuronal death and apoptosis of the cerebral cortices in MCAO rats. Importantly, 17 differentially expressed genes (DEGs) were identified through RNA sequencing, and these DEGs were mainly enriched in the HIF-1 pathway, cellular senescence, proteoglycans in cancer, and so on. qPCR and Western blotting further confirmed that EP could suppress TIMP1, SOCS3, ANGPTL4, CDO1, and SERPINE1 expressions in MCAO rats. CONCLUSION: EP can improve CIRI in vivo, the mechanism may relate to TIMP1 expression and HIF-1 pathway, which provided novel targets for CIRI treatment.


Asunto(s)
Infarto de la Arteria Cerebral Media , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/terapia , Ratas , Masculino , Condicionamiento Físico Animal/fisiología , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Análisis de Secuencia de ARN , Modelos Animales de Enfermedad , Apoptosis , Precondicionamiento Isquémico/métodos
14.
Front Pharmacol ; 15: 1395167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962303

RESUMEN

Backgrounds: Mature angiogenesis plays a critical role in improving cerebral ischemia-reperfusion injury (CIRI). Glycolysis serves as the primary energy source for brain microvascular endothelial cells (BMECs), whereas other vascular cells rely on aerobic respiration. Therefore, intercellular variations in energy metabolism could influence mature angiogenesis. Taohong Siwu Decoction (THSWD) has demonstrated efficacy in treating ischemic stroke (IS), yet its potential to promote mature angiogenesis through glycolysis activation remains unclear. Methods: In this study, we established a middle cerebral artery occlusion/reperfusion (MCAO/R) model in vivo and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in vitro. We assessed neuroprotective effects using neurobehavioral scoring, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxylin-eosin (HE) staining, and Nissl staining in MCAO/R rats. Additionally, we evaluated mature angiogenesis and glycolysis levels through immunofluorescence, immunohistochemistry, and glycolysis assays. Finally, we investigated THSWD's mechanism in linking glycolysis to mature angiogenesis in OGD/R-induced BMECs. Results: In vivo experiments demonstrated that THSWD effectively mitigated cerebral damage and restored neurological function in MCAO/R rats. THSWD significantly enhanced CD31, Ang1, PDGFB, and PDGFR-ß expression levels, likely associated with improved glucose, pyruvate, and ATP levels, along with reduced lactate and lactate/pyruvate ratios. In vitro findings suggested that THSWD may boost the expression of mature angiogenesis factors (VEGFA, Ang1, and PDGFB) by activating glycolysis, increasing glucose uptake and augmenting lactate, pyruvate, and ATP content, thus accelerating mature angiogenesis. Conclusion: THSWD could alleviate CIRI by activating the glycolysis pathway to promote mature angiogenesis. Targeting the glycolysis-mediated mature angiogenesis alongside THSWD therapy holds promise for IS treatment.

15.
Front Med (Lausanne) ; 11: 1424188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962735

RESUMEN

Cardiac surgery with cardiopulmonary bypass results in global myocardial ischemia-reperfusion injury, leading to significant postoperative morbidity and mortality. Although cardioplegia is the cornerstone of intraoperative cardioprotection, a number of additional strategies have been identified. The concept of preconditioning and postconditioning, despite its limited direct clinical application, provided an essential contribution to the understanding of myocardial injury and organ protection. Therefore, physicians can use different tools to limit perioperative myocardial injury. These include the choice of anesthetic agents, remote ischemic preconditioning, tight glycemic control, optimization of respiratory parameters during the aortic unclamping phase to limit reperfusion injury, appropriate choice of monitoring to optimize hemodynamic parameters and limit perioperative use of catecholamines, and early reintroduction of cardioprotective agents in the postoperative period. Appropriate management before, during, and after cardiopulmonary bypass will help to decrease myocardial damage. This review aimed to highlight the current advancements in cardioprotection and their potential applications during cardiac surgery.

16.
Brain Res Bull ; : 111025, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964663

RESUMEN

OBJECTIVE: Research has shown that cerebral ischemia-reperfusion injury (CIRI) involves a series of physiological and pathological mechanisms, including inflammation, oxidative stress, and cell apoptosis. The cannabinoid receptor 2 agonist AM1241 has been found to have anti-inflammatory and anti-oxidative stress effects. However, it is unclear whether AM1241 has a protective effect against brain ischemia-reperfusion injury, and its underlying mechanisms are not yet known. METHODS: In this study, we investigated the anti-inflammatory, anti-oxidative stress, and anti-apoptotic effects of AM1241 and its mechanisms in BV2 cells stimulated with H2O2 and in a C57BL/6 mouse model of CIRI in vitro and in vivo, respectively. RESULTS: In vitro, AM1241 significantly inhibited the release of pro-inflammatory cytokines TNF-α and IL-6, reactive oxygen species (ROS), and the increase in Toll-like receptor 4/myeloid differentiation protein 2 (MD2/TLR4) complex induced by H2O2. Under H2O2 stimulation, MD2 overexpression resulted in increased levels of MD2/TLR4 complex, TNF-α, IL-6, NOX2, BAX, and Cleaved-Caspase3 (C-Caspase3), as well as the activation of the MAPK pathway and NF-κB, which were reversed by AM1241. In addition, molecular docking experiments showed that AM1241 directly interacted with MD2. Surface Plasmon Resonance (SPR) experiments further confirmed the binding of AM1241 to MD2. In vivo, AM1241 significantly attenuated neurofunctional impairment, brain edema, increased infarct volume, oxidative stress levels, and neuronal apoptosis in CIRI mice overexpressing MD2. CONCLUSION: Our study demonstrates for the first time that AM1241 alleviates mouse CIRI by inhibiting the MD2/TLR4 complex, exerting anti-inflammatory, anti-oxidative stress and anti-apoptotic effects.

17.
J Nanobiotechnology ; 22(1): 394, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965594

RESUMEN

DNA nanostructures have long been developed for biomedical purposes, but their controlled delivery in vivo proposes a major challenge for disease theranostics. We previously reported that DNA nanostructures on the scales of tens and hundreds nanometers showed preferential renal excretion or kidney retention, allowing for sensitive evaluation and effective protection of kidney function, in response to events such as unilateral ureter obstruction or acute kidney injury. Encouraged by the positive results, we redirected our focus to the liver, specifically targeting organs noticeably lacking DNA materials, to explore the interaction between DNA nanostructures and the liver. Through PET imaging, we identified SDF and M13 as DNA nanostructures exhibiting significant accumulation in the liver among numerous candidates. Initially, we investigated and assessed their biodistribution, toxicity, and immunogenicity in healthy mice, establishing the structure-function relationship of DNA nanostructures in the normal murine. Subsequently, we employed a mouse model of liver ischemia-reperfusion injury (IRI) to validate the nano-bio interactions of SDF and M13 under more challenging pathological conditions. M13 not only exacerbated hepatic oxidative injury but also elevated local apoptosis levels. In contrast, SDF demonstrated remarkable ability to scavenge oxidative responses in the liver, thereby mitigating hepatocyte injury. These compelling results underscore the potential of SDF as a promising therapeutic agent for liver-related conditions. This aimed to elucidate their roles and mechanisms in liver injury, providing a new perspective for the biomedical applications of DNA nanostructures.


Asunto(s)
ADN , Hígado , Nanoestructuras , Daño por Reperfusión , Animales , Daño por Reperfusión/tratamiento farmacológico , Ratones , Hígado/metabolismo , ADN/química , Nanoestructuras/química , Masculino , Distribución Tisular , Ratones Endogámicos C57BL , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
18.
Redox Biol ; 75: 103258, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38970988

RESUMEN

Ischemia-reperfusion (IR) or reoxygenation injury is the paradoxical exacerbation of cellular impairment following restoration of blood flow after a period of ischemia during surgical procedures or other conditions. Acute interruption of blood supply to the liver and subsequent reperfusion can result in hepatocyte injury, apoptosis, and necrosis. Since the liver requires a continuous supply of oxygen for many biochemical reactions, any obstruction of blood flow can rapidly lead to hepatic hypoxia, which could quickly progress to absolute anoxia. Reoxygenation results in the increased generation of reactive oxygen species and oxidative stress, which lead to the enhanced production of proinflammatory cytokines, chemokines, and other signaling molecules. Consequent acute inflammatory cascades lead to significant impairment of hepatocytes and nonparenchymal cells. Furthermore, the expression of several vascular growth factors results in the heterogeneous closure of numerous hepatic sinusoids, which leads to reduced oxygen supply in certain areas of the liver even after reperfusion. Therefore, it is vital to identify appropriate therapeutic modalities to mitigate hepatic IR injury and subsequent tissue damage. This review covers all the major aspects of cellular and molecular mechanisms underlying the pathogenesis of hepatic ischemia-reperfusion injury, with special emphasis on oxidative stress, associated inflammation and complications, and prospective therapeutic approaches.

19.
Int Immunopharmacol ; 138: 112463, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971110

RESUMEN

Intestinal ischemia/reperfusion injury (IRI) poses a serious threat to human survival and quality of life with high mortality and morbidity rates. The current absence of effective treatments for intestinal IRI highlights the urgent need to identify new therapeutic targets. Ursolic acid (UA), a pentacyclic triterpene natural compound, has been shown to possess various pharmacological properties including intestinal protection. However, its potential protective efficacy on intestinal IRI remains elusive. This study aimed to investigate the effect of UA on intestinal IRI and explore the underlying mechanisms. To achieve this, we utilized network pharmacology to analyze the mechanism of UA in intestinal IRI and assessed UA's effects on intestinal IRI using a mouse model of superior mesenteric artery occlusion/reperfusion and an in vitro model of oxygen-glucose deprivation and reperfusion-induced IEC-6 cells. Our results demonstrated that UA improved necroptosis through the RIP1/RIP3/MLKL pathway, reduced necroinflammation via the HMGB1/TLR4/NF-κB pathway, attenuated morphological damage, and enhanced intestinal barrier function. Furthermore, UA pretreatment downregulated the phosphorylation level of signal transducer and activator of transcription 3 (STAT3). The effects of UA were attenuated by the STAT3 agonist Colivelin. In conclusion, our study suggests that UA can improve intestinal IRI by inhibiting necroptosis in enterocytes via the suppression of STAT3 activation. These results provide a theoretical basis for UA treatment of intestinal IRI and related clinical diseases.

20.
Neurointervention ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38946131

RESUMEN

PURPOSE: The direct aspiration first pass technique (ADAPT) is an effective and safe endovascular treatment for distal medium vessel occlusions (DMVOs). We evaluated technical features and initial results of a novel reperfusion catheter (REDTM 62) used for frontline aspiration thrombectomy of M2 occlusions in acute ischemic stroke patients. Appropriate aspiration catheters are crucial for a successful ADAPT maneuver; however, the selection of catheters suitable for smaller-sized vessels is scarce compared to the ones for large vessel occlusions. MATERIALS AND METHODS: All patients treated with ADAPT using REDTM 62 as the frontline treatment approach for acute M2 occlusions between December 2022 and February 2024 were retrospectively enrolled. Demographic data, procedural timings and safety, recanalization rates, and outcome data were recorded. RESULTS: Twenty patients with a median admission National Institutes of Health Stroke Scale (NIHSS) score of 8 were identified. Successful revascularization (DMVO-thrombolysis in cerebral infarction [TICI]≥2b) with REDTM 62 aspiration thrombectomy was obtained in 65.0% (13/20) of cases. The first pass effect was 45.0% (9/20). In 2 cases, the REDTM 62 did not reach the clot due to marked distal vessel tortuosity. Stent retrievers were additionally used in 9 cases and led to an overall DMVO-TICI 2c/3 of 90.0% (18/20). Mean procedural time was 48 minutes. No complications directly related to ADAPT occurred. In-hospital mortality rate was 20.0% (4/20). The median discharge NIHSS score was 2.5. A good functional outcome at discharge (modified Rankin scale 0-2) was achieved in 55.0% (11/20) of cases. CONCLUSION: Our initial experiences with the novel REDTM 62 reperfusion catheter for treatment of M2 occlusions is in line with published data. ADAPT using this catheter may be considered as a safe and effective first-line treatment option. Further studies are warranted to validate the initial results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA