Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.426
Filtrar
1.
Methods Mol Biol ; 2848: 187-196, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240524

RESUMEN

In several ocular diseases, degeneration of retinal neurons can lead to permanent blindness. Transplantation of stem cell (SC)-derived RGCs has been proposed as a potential therapy for RGC loss. Although there are reports of successful cases of SC-derived RGC transplantation, achieving long-distance regeneration and functional connectivity remains a challenge. To address these hurdles, retinal organoids are being used to study the regulatory mechanism of stem cell transplantation. Here we present a modified protocol for differentiating human embryonic stem cells (ESCs) into retinal organoids and transplanting organoid-derived RGCs into the murine eyes.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias Humanas , Células Ganglionares de la Retina , Humanos , Animales , Ratones , Células Madre Embrionarias Humanas/citología , Células Ganglionares de la Retina/citología , Trasplante de Células Madre/métodos , Organoides/citología , Organoides/trasplante , Técnicas de Cultivo de Célula/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Retina/citología , Células Madre Embrionarias/citología
2.
Br J Pharmacol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252503

RESUMEN

BACKGROUND AND PURPOSE: Retinal ganglion cells (RGCs) are the output stage of retinal information processing, via their axons forming the optic nerve (ON). ON damage leads to axonal degeneration and death of RGCs, and results in vision impairment. Nerve growth factor (NGF) signalling is crucial for RGC operations and visual functions. Here, we investigate a new neuroprotective mechanism of a novel therapeutic candidate, a p75-less, TrkA-biased NGF agonist (hNGFp) in rat RGC degeneration, in comparison with wild type human NGF (hNGFwt). EXPERIMENTAL APPROACH: Both neonate and adult rats, whether subjected or not to ON lesion, were treated with intravitreal injections or eye drops containing either hNGFp or hNGFwt. Different doses of the drugs were administered at days 1, 4 or 7 after injury for a maximum of 10 days, when immunofluorescence, electrophysiology, cellular morphology, cytokine array and behaviour studies were carried out. Pharmacokinetic evaluation was performed on rabbits treated with hNGFp ocular drops. RESULTS: hNGFp exerted a potent RGC neuroprotection by acting on microglia cells, and outperformed hNGFwt in rescuing RGC degeneration and reducing inflammatory molecules. Delayed use of hNGFp after ON lesion resulted in better outcomes compared with treatment with hNGFwt. Moreover, hNGFp-based ocular drops were less algogenic than hNGFwt. Pharmacokinetic measurements revealed that biologically relevant quantities of hNGFp were found in the rabbit retina. CONCLUSIONS AND IMPLICATIONS: Our data point to microglia as a new cell target through which NGF-induced TrkA signalling exerts neuroprotection of the RGC, emphasizing hNGFp as a powerful treatment to tackle retinal degeneration.

3.
J Comp Neurol ; 532(8): e25663, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39235164

RESUMEN

The transcription factor forkhead/winged-helix domain proteins Foxp1 and Foxp2 have previously been studied in mouse retina, where they are expressed in retinal ganglion cells named F-mini and F-midi. Here we show that both transcription factors are expressed by small subpopulations (on average less than 10%) of retinal ganglion cells in the retina of the marmoset monkey (Callithrix jacchus). The morphology of Foxp1- and Foxp2-expressing cells was revealed by intracellular DiI injections of immunofluorescent cells. Foxp1- and Foxp2-expressing cells comprised multiple types of wide-field ganglion cells, including broad thorny cells, narrow thorny cells, and tufted cells. The large majority of Foxp2-expressing cells were identified as tufted cells. Tufted cells stratify broadly in the middle of the inner plexiform layer. They resemble broad thorny cells but their proximal dendrites are bare of branches and the distal dendrites branch frequently forming dense dendritic tufts. Double labeling with calretinin, a previously established marker for broad thorny and narrow thorny cells, showed that only a small proportion of ganglion cells co-expressed calretinin and Foxp1 or Foxp2 supporting the idea that the two markers are differentially expressed in retinal ganglion cells of marmoset retina.


Asunto(s)
Callithrix , Factores de Transcripción Forkhead , Células Ganglionares de la Retina , Animales , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/biosíntesis , Células Ganglionares de la Retina/metabolismo , Masculino , Femenino , Retina/metabolismo , Retina/citología
4.
Annu Rev Vis Sci ; 10(1): 425-453, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39292555

RESUMEN

Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and subsequent visual field defects. RGCs, as the final output neurons of the retina, perform key computations underpinning human pattern vision, such as contrast coding. Conventionally, glaucoma has been associated with peripheral vision loss, and thus, relatively little attention has been paid to deficits in central vision. However, recent advancements in retinal imaging techniques have significantly bolstered research into glaucomatous damage of the macula, revealing that it is prevalent even in the early stages of glaucoma. Thus, it is an opportune time to explore how glaucomatous damage undermines the perceptual processes associated with central visual function. This review showcases recent studies addressing central dysfunction in the early and moderate stages of glaucoma. It further emphasizes the need to characterize glaucomatous damage in both central and peripheral vision, as they jointly affect an individual's everyday activities.


Asunto(s)
Glaucoma , Células Ganglionares de la Retina , Campos Visuales , Humanos , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/patología , Campos Visuales/fisiología , Glaucoma/fisiopatología , Trastornos de la Visión/fisiopatología
5.
Exp Eye Res ; : 110099, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284507

RESUMEN

Loss of retinal ganglion cells (RGCs) is the cause of visual impairment and blindness in glaucoma. Previously, our studies showed that FK962 (N-[1-acetylpiperidin-4-yl]-4-fluorobenzamide) promoted neurite elongation in rat RGCs and trigeminal ganglion (TG) cells. In TG cells, glial cell line-derived neurotrophic factor (GDNF) is known to be involved in the mechanism. The purpose of the present study is to investigate whether, 1) FK962 shows an RGC-protective effect under hypoxia/reoxygenation (H/R) and 2) GDNF is involved in the neuroprotective mechanism of FK962. Rat primary retinal cells were cultured under 24-hour hypoxia/24-hour reoxygenation conditions, with or without FK962, recombinant GDNF, GDNF antibody and RET receptor tyrosine kinase inhibitor, GSK3179106. Cells were co-immunostained with RBPMS and Neurofilament 200 as a RGC marker, and the number of survived RGCs was counted. Results showed H/R treatment decreased the number of survived RGCs. FK962 promoted RGC survival under H/R by a bell-shaped dose response, with the highest RGC-protective effect of 10-8 M. The protective effect was the same level with 10-12M exogenous GDNF. Addition of GDNF antibody or GSK3179106 counteracted the neuroprotective effect of FK962. From these results, it is suggested that FK962 ameliorates RGC death under H/R, possibly via a GDNF signaling pathway.

6.
Glia ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39228100

RESUMEN

Familial dysautonomia (FD) is a rare genetic neurodevelopmental and neurodegenerative disorder. In addition to the autonomic and peripheral sensory neuropathies that challenge patient survival, one of the most debilitating symptoms affecting patients' quality of life is progressive blindness resulting from the steady loss of retinal ganglion cells (RGCs). Within the FD community, there is a concerted effort to develop treatments to prevent the loss of RGCs. However, the mechanisms underlying the death of RGCs are not well understood. To study the mechanisms underlying RGC death, Pax6-cre;Elp1loxp/loxp male and female mice and postmortem retinal tissue from an FD patient were used to explore the neuronal and non-neuronal cellular pathology associated with the FD optic neuropathy. Neurons, astrocytes, microglia, Müller glia, and endothelial cells were investigated using a combination of histological analyses. We identified a novel disruption of cellular homeostasis and gliosis in the FD retina. Beginning shortly after birth and progressing with age, the FD retina is marked by astrogliosis and perturbations in microglia, which coincide with vascular remodeling. These changes begin before the onset of RGC death, suggesting alterations in the retinal neurovascular unit may contribute to and exacerbate RGC death. We reveal for the first time that the FD retina pathology includes reactive gliosis, increased microglial recruitment to the ganglion cell layer (GCL), disruptions in the deep and superficial vascular plexuses, and alterations in signaling pathways. These studies implicate the neurovascular unit as a disease-modifying target for therapeutic interventions in FD.

7.
Pathol Res Pract ; 262: 155552, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39180803

RESUMEN

Glaucoma is a degenerative disease characterized by retinal ganglion cell (RGC) death and visual impairment caused by elevated intraocular pressure (IOP). Elevated IOP can activate microglia, which participate in ganglion cell injury. Based on the study of caveolin-1 (Cav-1) in glaucoma, we aimed to explore the effect and mechanism of Cav-1 on RGC apoptosis in mice with acute ocular hypertension (AOH). AOH mice were established, and Cav-1 was intravitreally injected. Retinal microglia and RGCs were isolated from neonatal mice. TUNEL staining, hematoxylin-eosin staining, immunohistochemistry, flow cytometry, PCR and western blotting were used to observe the effect of Cav-1 on RGCs and mouse retinas. The thickness of the whole retina and the inner retinal sublayer decreased significantly, retinal cell apoptosis increased after AOH injury, and Cav-1 treatment reversed the effect of AOH injury. In addition, Cav-1 treatment promoted the conversion of proinflammatory M1 microglia to anti-inflammatory M2 microglia. Microglia and RGCs were isolated from neonatal mice. Cav-1 protects RGCs from OGD/R-induced injury by changing the polarization status of retinal microglia in vitro. Further studies revealed that Cav-1 activated the Akt/PTEN signaling pathway and inhibited TLR4. Our study provides evidence that Cav-1 may be a promising therapeutic target for glaucoma.


Asunto(s)
Caveolina 1 , Glaucoma , Fosfohidrolasa PTEN , Proteínas Proto-Oncogénicas c-akt , Células Ganglionares de la Retina , Transducción de Señal , Receptor Toll-Like 4 , Animales , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Caveolina 1/metabolismo , Transducción de Señal/fisiología , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Glaucoma/metabolismo , Glaucoma/patología , Receptor Toll-Like 4/metabolismo , Ratones Endogámicos C57BL , Apoptosis/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Modelos Animales de Enfermedad
8.
Biomed Pharmacother ; 178: 117270, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39126773

RESUMEN

The blood supply in the retina ensures photoreceptor function and maintains regular vision. Leber's hereditary optic neuropathy (LHON), caused by the mitochondrial DNA mutations that deteriorate complex I activity, is characterized by progressive vision loss. Although some reports indicated retinal vasculature abnormalities as one of the comorbidities in LHON, the paracrine influence of LHON-affected retinal ganglion cells (RGCs) on vascular endothelial cell physiology remains unclear. To address this, we established an in vitro model of mitochondrial complex I deficiency using induced pluripotent stem cell-derived RGCs (iPSC-RGCs) treated with a mitochondrial complex I inhibitor rotenone (Rot) to recapitulate LHON pathologies. The secretomes from Rot-treated iPSC-RGCs (Rot-iPSC-RGCs) were collected, and their treatment effect on human umbilical vein endothelial cells (HUVECs) was studied. Rot induced LHON-like characteristics in iPSC-RGCs, including decreased mitochondrial complex I activity and membrane potential, and increased mitochondrial reactive oxygen species (ROS) and apoptosis, leading to mitochondrial dysfunction. When HUVECs were exposed to conditioned media (CM) from Rot-iPSC-RGCs, the angiogenesis of HUVECs was suppressed compared to those treated with CM from control iPSC-RGCs (Ctrl-iPSC-RGCs). Angiogenesis-related proteins were altered in the secretomes from Rot-iPSC-RGC-derived CM, particularly angiopoietin, MMP-9, uPA, collagen XVIII, and VEGF were reduced. Notably, GeneMANIA analysis indicated that VEGFA emerged as the pivotal angiogenesis-related protein among the identified proteins secreted by health iPSC-RGCs but reduced in the secretomes from Rot-iPSC-RGCs. Quantitative real-time PCR and western blots confirmed the reduction of VEGFA at both transcription and translation levels, respectively. Our study reveals that Rot-iPSC-RGCs establish a microenvironment to diminish the angiogenic potential of vascular cells nearby, shedding light on the paracrine regulation of LHON-affected RGCs on retinal vasculature.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Células Madre Pluripotentes Inducidas , Atrofia Óptica Hereditaria de Leber , Células Ganglionares de la Retina , Humanos , Atrofia Óptica Hereditaria de Leber/metabolismo , Atrofia Óptica Hereditaria de Leber/patología , Atrofia Óptica Hereditaria de Leber/genética , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Rotenona/farmacología , Medios de Cultivo Condicionados/farmacología , Apoptosis/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neovascularización Patológica/metabolismo , Angiogénesis
9.
J Invest Surg ; 37(1): 2389379, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39164010

RESUMEN

OBJECTIVE: This investigation was to determine the relationship between changes in the expression levels of miR-134 and the E2F transcription factor 6 (E2F6) in mediating control of apoptosis in N-methyl-D-aspartate (NMDA)-induced glaucomatous mice. METHODS: Morphological and structural changes were quantitatively analyzed along with apoptosis in the retinal ganglion cell (RGC) layer, internal plexiform layer and RGCs. Glaucomatous RGCs were transfected, and cell viability and apoptosis were examined. The targeting relationship between miR-134 and E2F6 was analyzed, as well as their expression pattern. RESULTS: Intravitreal injection of NMDA induced a significant reduction in the number of RGCs and thinning of IPL thickness. miR-134 was highly expressed and E2F6 was lowly expressed in glaucoma mice. Suppression of miR-134 or E2F6 overexpression inhibited apoptosis in the glaucomatous RGCs and instead their proliferative activity. MiR-134 targeted inhibition of E2F6 expression. Suppressing rises in E2F6 expression reduced the interfering effect of miR-134 on glaucomatous RGC development. CONCLUSION: Depleting miR134 expression increases, in turn, E2F6 expression levels and in turn reduces glaucomatous RGC apoptosis expression.


Asunto(s)
Apoptosis , Factor de Transcripción E2F6 , Glaucoma , MicroARNs , N-Metilaspartato , Células Ganglionares de la Retina , Animales , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Glaucoma/genética , Glaucoma/patología , Glaucoma/metabolismo , Glaucoma/inducido químicamente , N-Metilaspartato/toxicidad , Ratones , Factor de Transcripción E2F6/genética , Factor de Transcripción E2F6/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino , Inyecciones Intravítreas , Supervivencia Celular/efectos de los fármacos
10.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39201313

RESUMEN

This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.


Asunto(s)
Mitocondrias , Estrés Oxidativo , Células Ganglionares de la Retina , Humanos , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Mitocondrias/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Glaucoma/metabolismo , Glaucoma/patología
11.
eNeuro ; 11(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39160068

RESUMEN

Retinal ganglion cell (RGC) axons provide direct input into several brain regions, including the dorsal lateral geniculate nucleus (dLGN), which is important for image-forming vision, and the ventrolateral geniculate nucleus (vLGN), which is associated with nonimage-forming vision. Through both activity- and morphogen-dependent mechanisms, retinal inputs play important roles in the development of dLGN, including the refinement of retinal projections, morphological development of thalamocortical relay cells (TRCs), timing of corticogeniculate innervation, and recruitment and distribution of inhibitory interneurons. In contrast, little is known about the role of retinal inputs in the development of vLGN. Grossly, vLGN is divided into two domains, the retinorecipient external vLGN (vLGNe) and nonretinorecipient internal vLGN (vLGNi). Studies previously found that vLGNe consists of transcriptionally distinct GABAergic subtypes distributed into at least four adjacent laminae. At present, it remains unclear whether retinal inputs influence the development of these cell-type-specific neuronal laminae in vLGNe. Here, we elucidated the developmental timeline for these laminae in the mouse vLGNe, and results indicate that these laminae are specified at or before birth. We observed that mutant mice without retinal inputs have a normal laminar distribution of GABAergic cells at birth; however, after the first week of postnatal development, these mutants exhibited a dramatic disruption in the laminar organization of inhibitory neurons and clear boundaries between vLGNe and vLGNi. Overall, our results show that while the formation of cell-type-specific layers in mouse vLGNe does not depend on RGC inputs, retinal signals are critical for their maintenance.


Asunto(s)
Cuerpos Geniculados , Ratones Transgénicos , Vías Visuales , Animales , Cuerpos Geniculados/fisiología , Vías Visuales/fisiología , Vías Visuales/crecimiento & desarrollo , Retina/fisiología , Retina/crecimiento & desarrollo , Células Ganglionares de la Retina/fisiología , Ratones Endogámicos C57BL , Ratones , Factor de Transcripción Brn-3A/metabolismo , Factor de Transcripción Brn-3A/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Neuronas/fisiología
12.
BMC Ophthalmol ; 24(1): 379, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192272

RESUMEN

PURPOSE: To assess the interactive relationship between blood pressure status and diabetic mellitus (DM) with ganglion cell complex (GCC) thickness in elderly individuals in rural China. METHODS: Participants aged 50 years and older in a rural area of Daxing District, Beijing, were recruited in this study from October 2018 to November 2018. All subjects underwent a comprehensive systemic and ocular examination. Blood pressure status was graded as normotension, controlled hypertension and uncontrolled hypertension according to blood pressure measurements and the use of any medication for hypertension treatment. GCC parameters were measured by spectral-domain optical coherence tomography (SD-OCT). Generalized linear models (GLM) adjusted for related potential confounders were used to assess the interaction between DM and blood pressure status. RESULTS: Among 1415 screened subjects (2830 eyes), a total of 1117 eyes were enrolled in the final analysis. GLM analysis showed a significant interactive relationship between DM with uncontrolled hypertension status (ß = 3.868, p = 0.011). GCC thickness would decrease 0.255 µm per year as the age increased (ß=-0.255, p < 0.001). In a subgroup of 574 subjects with uncontrolled hypertension, DM was associated with an increased average of GCC thickness (ß = 1.929, p = 0.022). CONCLUSIONS: The present results revealed a significant interactive relationship between blood pressure status and DM. The average GCC thickness increased in individuals with DM combined with uncontrolled hypertension, which should be considered in the measurement of GCC. Further studies are warranted to explore ganglion cells changes as a non-invasive method to detect neuron alterations in individuals with DM and uncontrolled hypertension. TRAIL REGISTRATION: The registration number of the present trial in the Chinese Clinical Trial Registry is ChiCTR2000037944.


Asunto(s)
Presión Sanguínea , Hipertensión , Fibras Nerviosas , Células Ganglionares de la Retina , Tomografía de Coherencia Óptica , Humanos , Células Ganglionares de la Retina/patología , Masculino , Femenino , Persona de Mediana Edad , Tomografía de Coherencia Óptica/métodos , Hipertensión/complicaciones , Hipertensión/fisiopatología , Anciano , China/epidemiología , Presión Sanguínea/fisiología , Fibras Nerviosas/patología , Estudios Transversales , Retinopatía Diabética/diagnóstico , Diabetes Mellitus/epidemiología , Población Rural/estadística & datos numéricos
13.
Percept Mot Skills ; : 315125241272512, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39108229

RESUMEN

Bright light impacts the human circadian system such that exposure to bright light at night can suppress melatonin secretion, and exposure to bright light in the morning prevents light-induced melatonin suppression at night. The preventive effect of morning light may attenuate the prior history of light sensitivity of intrinsically photosensitive retinal ganglion cells (ipRGCs) that regulate the circadian system. In this study, we evaluated electroretinogram (ERG) responses to red and blue flickering lights following dim and bright daylight conditions. Eleven healthy females underwent ERG measurements during exposure to 33 Hz flickering red or blue light under dim and bright daytime conditions. We averaged ERG waves for 50 flickering light pulses of the trigger signal data. We obtained the amplitude of the signal-averaged ERG by calculating the difference between the waves' peaks and bottoms. Although there was no significant dim and bright light difference in the amplitude of ERG waves, the ERG amplitude to flickering blue light under the bright light condition was significantly lower than to flickering blue light under the dim light condition. In this study, blue light stimulated mainly ipRGCs and S-cones. Since S-cones may contribute minimally to the light-adapted 33 Hz flicker ERG results, our findings suggest that bright light during the daytime attenuates the sensitivity of human ipRGCs.

14.
Int J Ophthalmol ; 17(8): 1531-1544, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156786

RESUMEN

Retinal degenerative diseases were a large group of diseases characterized by the primary death of retinal ganglion cells (RGCs). Recent studies had shown an interaction between autophagy and nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasomes, which may affect RGCs in retinal degenerative diseases. The NLRP3 inflammasome was a protein complex that, upon activation, produces caspase-1, mediating the apoptosis of retinal cells and promoting the occurrence and development of retinal degenerative diseases. Upregulated autophagy could inhibit NLRP3 inflammasome activation, while inhibited autophagy can promote NLRP3 inflammasome activation, which leaded to the accelerated emergence of drusen and lipofuscin deposition under the neurosensory retina. The activated NLRP3 inflammasome could further inhibit autophagy, thus forming a vicious cycle that accelerated the damage and death of RGCs. This review discussed the relationship between NLRP3 inflammasome and autophagy and its effects on RGCs in age-related macular degeneration, providing a new perspective and direction for the treatment of retinal diseases.

15.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39201471

RESUMEN

This study asked whether the P2X7 receptor was necessary and sufficient to trigger astrocyte polarization into neuroinflammatory activation states. Intravitreal injection of agonist BzATP increased gene expression of pan-astrocyte activation markers Gfap, Steap4, and Vim and A1-type astrocyte activation markers C3, Serping1, and H2T23, but also the Cd14 and Ptx3 genes usually associated with the A2-type astrocyte activation state and Tnfa, IL1a, and C1qa, assumed to be upstream of astrocyte activation in microglia. Correlation analysis of gene expression suggested the P2X7 receptor induced a mixed A1/A2-astrocyte activation state, although A1-state genes like C3 increased the most. A similar pattern of mixed glial activation genes occurred one day after intraocular pressure (IOP) was elevated in wild-type mice, but not in P2X7-/- mice, suggesting the P2X7 receptor is necessary for the glial activation that accompanies IOP elevation. In summary, this study suggests stimulation of the P2X7R is necessary and sufficient to trigger the astrocyte activation in the retina following IOP elevation, with a rise in markers for pan-, A1-, and A2-type astrocyte activation. The P2X7 receptor is expressed on microglia, optic nerve head astrocytes, and retinal ganglion cells (RGCs) in the retina, and can be stimulated by the mechanosensitive release of ATP that accompanies IOP elevation. Whether the P2X7 receptor connects this mechanosensitive ATP release to microglial and astrocyte polarization in glaucoma remains to be determined.


Asunto(s)
Adenosina Trifosfato , Astrocitos , Receptores Purinérgicos P2X7 , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Animales , Astrocitos/metabolismo , Ratones , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/análogos & derivados , Ratones Noqueados , Ratones Endogámicos C57BL , Presión Intraocular , Biomarcadores , Masculino , Retina/metabolismo , Microglía/metabolismo
16.
Metabolites ; 14(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39195519

RESUMEN

Neurodegenerative retinal diseases such as glaucoma, diabetic retinopathy, Leber's hereditary optic neuropathy (LHON), and dominant optic atrophy (DOA) are marked by progressive death of retinal ganglion cells (RGC). This decline is promoted by structural and functional mitochondrial deficits, including electron transport chain (ETC) impairments, increased oxidative stress, and reduced energy (ATP) production. These cellular mechanisms associated with progressive optic nerve atrophy have been similarly observed in familial dysautonomia (FD) patients, who experience gradual loss of visual acuity due to the degeneration of RGCs, which is thought to be caused by a breakdown of mitochondrial structures, and a disruption in ETC function. Retinal metabolism plays a crucial role in meeting the elevated energetic demands of this tissue, and recent characterizations of FD patients' serum and stool metabolomes have indicated alterations in central metabolic processes and potential systemic deficits of taurine, a small molecule essential for retina and overall eye health. The present study sought to elucidate metabolic alterations that contribute to the progressive degeneration of RGCs observed in FD. Additionally, a critical subpopulation of retinal interneurons, the dopaminergic amacrine cells, mediate the integration and modulation of visual information in a time-dependent manner to RGCs. As these cells have been associated with RGC loss in the neurodegenerative disease Parkinson's, which shares hallmarks with FD, a targeted analysis of the dopaminergic amacrine cells and their product, dopamine, was also undertaken. One dimensional (1D) proton (1H) nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and retinal histology methods were employed to characterize retinae from the retina-specific Elp1 conditional knockout (CKO) FD mouse model (Pax6-Cre; Elp1LoxP/LoxP). Metabolite alterations correlated temporally with progressive RGC degeneration and were associated with reduced mitochondrial function, alterations in ATP production through the Cahill and mini-Krebs cycles, and phospholipid metabolism. Dopaminergic amacrine cell populations were reduced at timepoints P30-P90, and dopamine levels were 25-35% lower in CKO retinae compared to control retinae at P60. Overall, this study has expanded upon our current understanding of retina pathology in FD. This knowledge may apply to other retinal diseases that share hallmark features with FD and may help guide new avenues for novel non-invasive therapeutics to mitigate the progressive optic neuropathy in FD.

17.
Exp Eye Res ; 246: 110012, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059735

RESUMEN

Photopic negative response (PhNR), an index of retinal ganglion cell (RGC) function, is impaired in patients with optic pathway gliomas (OPGs). The aim of this longitudinal study was to evaluate whether PhNR deteriorates over time in OPG patients. Fourteen pediatric patients affected by OPG (4 males and 10 females, mean age 12.4 ± 5.7 years, 8 with neurofibromatosis type 1 [NF1]) with ≥12 months of follow-up and ≥2 evaluations, were included in this retrospective study. All patients had received chemotherapy, with or without OPG surgical resection, at least 5 years prior to the study. At baseline, all patients underwent a complete ophthalmological examination. Follow-up included clinical examination and PhNR measurement as well as brain MRI (according to pediatric oncologist indications) every 6 or 12 months. Mean follow-up duration was 16.7 ± 7.5 months (range 12-36 months). Photopic electroretinograms were elicited by 2.0 cd-s/m2 Ganzfeld white flashes presented on a steady 20 cd/m2 white background. The PhNR amplitude was measured as the difference between baseline and the maximal negative amplitude (minimum) of the negative wave, following the photopic b-wave. Compared to baseline, mean PhNR amplitude was significantly decreased at the end of follow-up (p = 0.008). NF1-related OPGs exhibited a decline in PhNR amplitude (p = 0.005) and an increase in PhNR peak-time during the follow-up (p = 0.013), whereas sporadic OPGs showed no significant changes. Tumor size remained stable in all patients on MRI. PhNR amplitude decreased over the observation period, suggesting progressive RGC dysfunction in NF1-related pediatric OPGs, despite stable size on MRI imaging. PhNR could serve as a non-invasive objective tool for assessing longitudinal changes in RGC function in the clinical management of childhood OPG.


Asunto(s)
Visión de Colores , Electrorretinografía , Glioma del Nervio Óptico , Células Ganglionares de la Retina , Humanos , Femenino , Masculino , Células Ganglionares de la Retina/patología , Niño , Estudios Retrospectivos , Glioma del Nervio Óptico/fisiopatología , Adolescente , Visión de Colores/fisiología , Estudios de Seguimiento , Imagen por Resonancia Magnética , Estimulación Luminosa , Preescolar , Agudeza Visual/fisiología
18.
J Physiol Anthropol ; 43(1): 16, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961509

RESUMEN

BACKGROUND: In the mammalian retina, intrinsically-photosensitive retinal ganglion cells (ipRGC) detect light and integrate signals from rods and cones to drive multiple non-visual functions including circadian entrainment and the pupillary light response (PLR). Non-visual photoreception and consequently non-visual sensitivity to light may change across child development. The PLR represents a quick and reliable method for examining non-visual responses to light in children. The purpose of this study was to assess differences in the PLRs to blue and red stimuli, measured one hour prior to bedtime, between children and adolescents. METHODS: Forty healthy participants (8-9 years, n = 21; 15-16 years, n = 19) completed a PLR assessment 1 h before their habitual bedtime. After a 1 h dim-light adaptation period (< 1 lx), baseline pupil diameter was measured in darkness for 30 s, followed by a 10 s exposure to 3.0 × 1013 photons/cm2/s of either red (627 nm) or blue (459 nm) light, and a 40 s recovery in darkness to assess pupillary re-dilation. Subsequently, participants underwent 7 min of dim-light re-adaptation followed by an exposure to the other light condition. Lights were counterbalanced across participants. RESULTS: Across both age groups, maximum pupil constriction was significantly greater (p < 0.001, ηp2 = 0.48) and more sustained (p < 0.001, ηp2 = 0.41) during exposure to blue compared to red light. For adolescents, the post-illumination pupillary response (PIPR), a hallmark of melanopsin function, was larger after blue compared with red light (p = 0.02, d = 0.60). This difference was not observed in children. Across light exposures, children had larger phasic (p < 0.01, ηp2 = 0.20) and maximal (p < 0.01, ηp2 = 0.22) pupil constrictions compared to adolescents. CONCLUSIONS: Blue light elicited a greater and more sustained pupillary response than red light in children and adolescents. However, the overall amplitude of the rod/cone-driven phasic response was greater in children than in adolescents. Our findings using the PLR highlight a higher sensitivity to evening light in children compared to adolescents, and continued maturation of the human non-visual photoreception/system throughout development.


Asunto(s)
Luz , Pupila , Humanos , Adolescente , Niño , Masculino , Femenino , Pupila/fisiología , Pupila/efectos de la radiación , Reflejo Pupilar/fisiología , Reflejo Pupilar/efectos de la radiación
19.
Cells ; 13(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38994994

RESUMEN

The proneural transcription factor atonal basic helix-loop-helix transcription factor 7 (ATOH7) is expressed in early progenitors in the developing neuroretina. In vertebrates, this is crucial for the development of retinal ganglion cells (RGCs), as mutant animals show an almost complete absence of RGCs, underdeveloped optic nerves, and aberrations in retinal vessel development. Human mutations are rare and result in autosomal recessive optic nerve hypoplasia (ONH) or severe vascular changes, diagnosed as autosomal recessive persistent hyperplasia of the primary vitreous (PHPVAR). To better understand the role of ATOH7 in neuroretinal development, we created ATOH7 knockout and eGFP-expressing ATOH7 reporter human induced pluripotent stem cells (hiPSCs), which were differentiated into early-stage retinal organoids. Target loci regulated by ATOH7 were identified by Cleavage Under Targets and Release Using Nuclease with sequencing (CUT&RUN-seq) and differential expression by RNA sequencing (RNA-seq) of wildtype and mutant organoid-derived reporter cells. Additionally, single-cell RNA sequencing (scRNA-seq) was performed on whole organoids to identify cell type-specific genes. Mutant organoids displayed substantial deficiency in axon sprouting, reduction in RGCs, and an increase in other cell types. We identified 469 differentially expressed target genes, with an overrepresentation of genes belonging to axon development/guidance and Notch signaling. Taken together, we consolidate the function of human ATOH7 in guiding progenitor competence by inducing RGC-specific genes while inhibiting other cell fates. Furthermore, we highlight candidate genes responsible for ATOH7-associated optic nerve and retinovascular anomalies, which sheds light to potential future therapy targets for related disorders.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células Madre Pluripotentes Inducidas , Retina , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Retina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Transducción de Señal , Células Ganglionares de la Retina/metabolismo , Organoides/metabolismo , Regulación del Desarrollo de la Expresión Génica
20.
Artículo en Inglés | MEDLINE | ID: mdl-38995841

RESUMEN

Purpose: Glaucoma is a leading cause of irreversible blindness. Glaucomatous intraocular pressure (IOP) triggers deleterious effects, including gliosis, optic nerve (ON) axonal retraction, neurotrophic factor deprivation, inflammation, and other pathological events, leading to retinal ganglion cell (RGC) loss. Trophic factor impairment enhances RGC apoptosis susceptibility. Neuritin 1 (NRN1), a neurotrophic protein downstream of various neurotrophins, exhibited RGC protection and regeneration in axotomy models. We evaluated human recombinant NRN1's impact on human RGCs cultured in pressurized conditions within the ex vivo translaminar autonomous system to simulate glaucoma pathogenesis. Methods: Human glaucomatous and non-glaucomatous donor eyes were obtained from eye banks according to the Declaration of Helsinki. Initially, we evaluated NRN1and RGC marker expression in glaucoma and non-glaucomatous retina to determine the NRN1 level and its association with RGC loss. Further, we evaluated NRN1's therapeutic potential by treating pressurized human eyes at normal and high IOP for seven days. Retina, ON, and conditioned medium were analyzed for RGC survival (THY1, RBPMS), gliosis (GFAP), apoptosis (CASP3, CASP7), and extracellular matrix deposition (COLIV, FN) by qRT-PCR and western blotting. Paraphenylenediamine staining assessed ON axonal degeneration, whereas ex vivo electroretinogram assessed retinal activity. Results: Glaucomatous retinas exhibited significant reductions in both NRN1 (*p = 0.007, n = 5) and RGC marker expression (*p = 0.04, n = 5). NRN1 treatment reduced gliosis, extracellular matrix deposition, ON degeneration, and increased retinal activity in pressure-perfused eyes. Conclusions: Our study confirms that NRN1 enhances human RGC survival and improves retinal function in degenerative conditions, substantiating it as a promising candidate for rescuing human RGCs from degeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA