Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
Biotechnol J ; 19(6): e2300659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863121

RESUMEN

All-trans retinoic acid (atRA) is an endogenous ligand of the retinoic acid receptors, which heterodimerize with retinoid X receptors. AtRA is generated in tissues from vitamin A (retinol) metabolism to form a paracrine signal and is locally degraded by cytochrome P450 family 26 (CYP26) enzymes. The CYP26 family consists of three subtypes: A1, B1, and C1, which are differentially expressed during development. This study aims to develop and validate a high throughput screening assay to identify CYP26A1 inhibitors in a cell-free system using a luminescent P450-Glo assay technology. The assay performed well with a signal to background ratio of 25.7, a coefficient of variation of 8.9%, and a Z-factor of 0.7. To validate the assay, we tested a subset of 39 compounds that included known CYP26 inhibitors and retinoids, as well as positive and negative control compounds selected from the literature and/or the ToxCast/Tox21 portfolio. Known CYP26A1 inhibitors were confirmed, and predicted CYP26A1 inhibitors, such as chlorothalonil, prochloraz, and SSR126768, were identified, demonstrating the reliability and robustness of the assay. Given the general importance of atRA as a morphogenetic signal and the localized expression of Cyp26a1 in embryonic tissues, a validated CYP26A1 assay has important implications for evaluating the potential developmental toxicity of chemicals.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Ácido Retinoico 4-Hidroxilasa , Ensayos Analíticos de Alto Rendimiento/métodos , Ácido Retinoico 4-Hidroxilasa/metabolismo , Ácido Retinoico 4-Hidroxilasa/genética , Humanos , Tretinoina/farmacología , Tretinoina/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Reproducibilidad de los Resultados
2.
Front Pharmacol ; 15: 1361679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38910889

RESUMEN

Introduction: The members retinoic acid receptors (RARs) (α, ß, and γ) and retinoid X receptors (RXRs) (α, ß, and γ) belong to the retinoid receptor family. They regulate the biological action of classical retinoids through nuclear retinoid receptors, a transcription factor that is regulated by ligands. Through the binding of particular retinoic acid-responsive elements (RAREs) located in target gene promoters, RARs and members of the RXRs form heterodimers. By binding to its nuclear receptors and triggering the transcription of the target genes downstream, retinoic acid (RA) mediates the expression of certain genes. Retinoids so mainly control gene expression to carry out their biological actions. RARs are essential for many biological processes, such as development, immunity, reproduction, organogenesis, and homeostasis. Apart from their physiological functions, RARs are also linked to pathologies and tumors due to mutations, protein fusions, changes in expression levels, or abnormal post-translational changes that lead to aberrant functions and homeostasis breakdown. The oncogenic development of animal tissues or cultured cells is linked to altered expression of retinoid receptors. The RAR-α is over-expressed in several malignancies. Increased invasion and migration in several cancer forms, including HNSC carcinoma, pediatric low-grade gliomas, lung adenocarcinoma, and breast cancer, have been linked to its upregulated expression. Numerous approved therapeutic regimens targeting RAR-α have been developed, improving patient survival rates. Objective: This study's main objective was to identify novel RAR-α-targeting drugs and evaluate the expression patterns of RAR-α in breast cancer patients. Methodology: In-silico investigation using a variety of bioinformatics tools like UALCAN, TISCH, TIMER 2.0, ENRICHR, and others were employed to examine the expression of RAR-α. Further we evaluated in-silico inhibition of RAR-α with trifarotene and also tested the cytotoxicity of trifarotene in breast cancer cells. Results: Our research indicates that RAR-α is upregulated in several malignancies including Breast Cancer. It regulates granulocyte differentiation and has an association with the retinoic acid receptor signaling pathway and cellular response to estrogen stimulus. Furthermore, trifarotene was found as a potential synthetic compound that targets RAR-α through in silico and in-vitro study. Discussion: Overall, this research indicates that elevated expression of RAR-α enhances the onset of breast cancer. Using trifarotene medication to target RAR-α will significantly boost the response of breast cancer individuals to treatment and delay the development of resistance to drugs.

3.
Front Biosci (Landmark Ed) ; 29(6): 233, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38940043

RESUMEN

BACKGROUND: This study investigated the mechanism by which tazarotene-induced gene 1 (TIG1) inhibits melanoma cell growth. The main focus was to analyze downstream genes regulated by TIG1 in melanoma cells and its impact on cell growth. METHODS: The effects of TIG1 expression on cell viability and death were assessed using water-soluble tetrazolium 1 (WST-1) mitochondrial staining and lactate dehydrogenase release assays. RNA sequencing and Western blot analysis were employed to investigate the genes regulated by TIG1 in melanoma cells. Additionally, the correlation between TIG1 expression and its downstream genes was analyzed in a melanoma tissue array. RESULTS: TIG1 expression in melanoma cells was associated with decreased cell viability and increased cell death. RNA-sequencing (RNA-seq), quantitative reverse transcription PCR (reverse RT-QPCR), and immunoblots revealed that TIG1 expression induced the expression of Endoplasmic Reticulum (ER) stress response-related genes such as Homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain member 1 (HERPUD1), Binding immunoglobulin protein (BIP), and DNA damage-inducible transcript 3 (DDIT3). Furthermore, analysis of the melanoma tissue array revealed a positive correlation between TIG1 expression and the expression of HERPUD1, BIP, and DDIT3. Additionally, attenuation of the ER stress response in melanoma cells weakened the impact of TIG1 on cell growth. CONCLUSIONS: TIG1 expression effectively hinders the growth of melanoma cells. TIG1 induces the upregulation of ER stress response-related genes, leading to an increase in caspase-3 activity and subsequent cell death. These findings suggest that the ability of retinoic acid to prevent melanoma formation may be associated with the anticancer effect of TIG1.


Asunto(s)
Supervivencia Celular , Estrés del Retículo Endoplásmico , Regulación Neoplásica de la Expresión Génica , Melanoma , Humanos , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Muerte Celular/genética , Apoptosis/genética , Apoptosis/efectos de los fármacos , Proliferación Celular/genética , Proliferación Celular/efectos de los fármacos , Proteínas de la Membrana
4.
BMC Genomics ; 25(1): 610, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886650

RESUMEN

Understanding the mechanisms underlying alcohol metabolism and its regulation, including the effect of polymorphisms in alcohol-metabolizing enzymes, is crucial for research on Fetal Alcohol Spectrum Disorders. The aim of this study was to identify specific single nucleotide polymorphisms in key alcohol-metabolizing enzymes in a cohort of 71 children, including children with fetal alcohol syndrome, children prenatally exposed to ethanol but without fetal alcohol spectrum disorder, and controls. We hypothesized that certain genetic variants related to alcohol metabolism may be fixed in these populations, giving them a particular alcohol metabolism profile. In addition, the difference in certain isoforms of these enzymes determines their affinity for alcohol, which also affects the metabolism of retinoic acid, which is key to the proper development of the central nervous system. Our results showed that children prenatally exposed to ethanol without fetal alcohol spectrum disorder traits had a higher frequency of the ADH1B*3 and ADH1C*1 alleles, which are associated with increased alcohol metabolism and therefore a protective factor against circulating alcohol in the fetus after maternal drinking, compared to FAS children who had an allele with a lower affinity for alcohol. This study also revealed the presence of an ADH4 variant in the FAS population that binds weakly to the teratogen, allowing increased circulation of the toxic agent and direct induction of developmental abnormalities in the fetus. However, both groups showed dysregulation in the expression of genes related to the retinoic acid pathway, such as retinoic acid receptor and retinoid X receptor, which are involved in the development, regeneration, and maintenance of the nervous system. These findings highlight the importance of understanding the interplay between alcohol metabolism, the retinoic acid pathway and genetic factors in the development of fetal alcohol syndrome.


Asunto(s)
Alcohol Deshidrogenasa , Trastornos del Espectro Alcohólico Fetal , Polimorfismo de Nucleótido Simple , Receptores de Ácido Retinoico , Humanos , Trastornos del Espectro Alcohólico Fetal/genética , Trastornos del Espectro Alcohólico Fetal/metabolismo , Estudios de Casos y Controles , Femenino , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Masculino , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Niño , Etanol/metabolismo , Embarazo , Preescolar , Alelos
5.
Anim Biotechnol ; 35(1): 2351973, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38753962

RESUMEN

Vitamin A is an essential nutrient in animals, playing important roles in animal health. In the pig industry, proper supplementation of vitamin A in the feed can improve pork production performance, while deficiency or excessive intake can lead to growth retardation or disease. However, the specific molecular mechanisms through which vitamin A operates on pig skeletal muscle growth as well as muscle stem cell function remain unexplored. Therefore, in this study, we isolated the pig primary skeletal muscle stem cells (pMuSCs) and treated with retinoic acid (RA), the natural metabolite of vitamin A, and then examined the myogenic capacity of pMuSCs via immunostaining, real-time PCR, CCK8 and western-blot analysis. Unexpectedly, the RA caused a significant decrease in the proliferation and differentiation of pMuSCs. Mechanistically, the RA addition induced the activation of retinoic acid receptor gamma (RARγ), which inhibited the myogenesis through the blockage of protein translation of the master myogenic regulator myogenic differentiation 1 gene (MYOD). Specifically, RARγ inactivate AKT kinase (AKT) signalling and lead to dephosphorylation of eukaryotic translation initiation factor 4E binding protein 1 (eIF4EBP1), which in turn repress the eukaryotic translation initiation factor 4E (eIF4E) complex and block mRNA translation of MYOD. Inhibition of AKT could rescue the myogenic defects of RA-treated pMuSCs. Our findings revealed that retinoid acid signalling inhibits the skeletal muscle stem cell proliferation and differentiation in pigs. Therefore, the vitamin A supplement in the feedstuff should be cautiously optimized to avoid the potential adverse consequences on muscle development associated with the excessive levels of retinoic acid.


Asunto(s)
Diferenciación Celular , Desarrollo de Músculos , Proteína MioD , Transducción de Señal , Tretinoina , Animales , Tretinoina/farmacología , Porcinos , Desarrollo de Músculos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína MioD/genética , Proteína MioD/metabolismo , Diferenciación Celular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Receptores de Ácido Retinoico/metabolismo , Receptores de Ácido Retinoico/genética , Proliferación Celular/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Células Cultivadas
6.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474284

RESUMEN

N-retinylidene-N-retinylethanolamine (A2E) has been associated with age-related macular degeneration (AMD) physiopathology by inducing cell death, angiogenesis and inflammation in retinal pigmented epithelial (RPE) cells. It was previously thought that the A2E effects were solely mediated via the retinoic acid receptor (RAR)-α activation. However, this conclusion was based on experiments using the RAR "specific" antagonist RO-41-5253, which was found to also be a ligand and partial agonist of the peroxisome proliferator-activated receptor (PPAR)-γ. Moreover, we previously reported that inhibiting PPAR and retinoid X receptor (RXR) transactivation with norbixin also modulated inflammation and angiogenesis in RPE cells challenged in the presence of A2E. Here, using several RAR inhibitors, we deciphered the respective roles of RAR, PPAR and RXR transactivations in an in vitro model of AMD. We showed that BMS 195614 (a selective RAR-α antagonist) displayed photoprotective properties against toxic blue light exposure in the presence of A2E. BMS 195614 also significantly reduced the AP-1 transactivation and mRNA expression of the inflammatory interleukin (IL)-6 and vascular endothelial growth factor (VEGF) induced by A2E in RPE cells in vitro, suggesting a major role of RAR in these processes. Surprisingly, however, we showed that (1) Norbixin increased the RAR transactivation and (2) AGN 193109 (a high affinity pan-RAR antagonist) and BMS 493 (a pan-RAR inverse agonist), which are photoprotective against toxic blue light exposure in the presence of A2E, also inhibited PPARs transactivation and RXR transactivation, respectively. Therefore, in our in vitro model of AMD, several commercialized RAR inhibitors appear to be non-specific, and we propose that the phototoxicity and expression of IL-6 and VEGF induced by A2E in RPE cells operates through the activation of PPAR or RXR rather than by RAR transactivation.


Asunto(s)
Carotenoides , Degeneración Macular , Receptores Activados del Proliferador del Peroxisoma , Quinolinas , para-Aminobenzoatos , Antiinflamatorios , Agonismo Inverso de Drogas , Inflamación , Degeneración Macular/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Receptores X Retinoide/metabolismo , Retinoides/metabolismo , Activación Transcripcional , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Int Immunopharmacol ; 130: 111772, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38432148

RESUMEN

Post-operative cognitive dysfunction (POCD) is a multi-etiological symptom mainly occurred in elderly people after surgery. The activation of retinoic acid receptor α (RARα), a transcriptional factor, was previously predicated to be negatively associated with the occurrence of POCD. However, the mechanisms underlying anti-POCD effects of RARα were still unclear. In this study, AM580, a selective agonist of RARα, and all-trans-retinoic acid (ATRA), a pan agonist of RAR, significantly alleviated cognitive dysfunction and increased the expression of RARα in elderly mice after surgery, which was decreased by RO41-5253, an antagonist of RARα. A bioinformatic study further predicted that the activation of RARα might produce anti-POCD effects via the restoration of synaptic proteins. Both agonists inhibited the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (Myd88) and the phosphorylation of nuclear factorkappa-B (NF-κB), leading to the prevention of microglial over-activation and pro-inflammatory cytokines secretion in the hippocampal regions of elderly mice after surgery. Moreover, AM580 and ATRA increased the expression of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95), and the phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP-response element binding protein (CREB). All these results suggested that the activation of RARα prevented surgery-induced cognitive impairments via the inhibition of neuroinflammation by the reduction of the TLR4/Myd88/NF-κB pathway and the restoration of synaptic proteins by the activation of the BDNF/ERK/CREB pathway, providing a further support that RARα could be developed as a therapeutic target for POCD.


Asunto(s)
Benzoatos , FN-kappa B , Complicaciones Cognitivas Postoperatorias , Receptor alfa de Ácido Retinoico , Tetrahidronaftalenos , Animales , Ratones , Benzoatos/farmacología , Benzoatos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones Endogámicos ICR , Factor 88 de Diferenciación Mieloide/metabolismo , Enfermedades Neuroinflamatorias/prevención & control , FN-kappa B/metabolismo , Complicaciones Cognitivas Postoperatorias/prevención & control , Receptor alfa de Ácido Retinoico/agonistas , Transducción de Señal , Tetrahidronaftalenos/farmacología , Tetrahidronaftalenos/uso terapéutico , Receptor Toll-Like 4/metabolismo , Tretinoina/farmacología
8.
Phytomedicine ; 125: 155327, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295659

RESUMEN

BACKGROUND: Considerable researches have directed toward metabolic disorders caused by sleep restriction (SR). SR-induced disruption of circadian metabolic rhythmicity is identified as an important pathophysiological mechanism. The flavonoid pterostilbene (PTE) is abundant in the traditional Chinese medicine dragon's blood with protective efficacy against obesity-related metabolic dysfunctions. Our previous study found that PTE ameliorates exercise intolerance and clock gene oscillation in the skeletal muscles subjected to SR. PURPOSE: This study aimed to explore whether PTE improves SR-induced metabolic disorders and delineate the relationship between PTE and the circadian clock. STUDY DESIGN AND METHODS: Two hundred male C57/B6J mice were kept awake for 20 h/d over five consecutive days and concurrently gavaged with 50, 100, or 200 mg/kg·bw/d PTE. Food consumption and body weight were monitored, and the metabolic status of the mice was evaluated by performing OGTT and ITT, measuring the serum lipid profiles and liver histopathology in response to SR. Daily behavior was analyzed by Clocklab™. The circadian rhythms of the liver clock genes and metabolic output genes were evaluated by cosine analysis. Binding between PTE and RORα/γ or NR1D1/2 was investigated by molecular docking. A luciferase reporter assay was used to determine the impact of PTE on Bmal1 transcription in SR-exposed mice co-transfected with Ad-BMAL1-LUC plus Ad-RORγ-mCherry or Ad-NR1D1-EGFP. RESULTS: PTE significantly ameliorated abnormal glucose and lipid metabolism (p < 0.05) in SR-exposed mice. PTE improved circadian behavior (p < 0.05) and rescued the circadian rhythm oscillation of the liver clock (p < 0.05) and metabolic output genes (p < 0.05) under SR condition. Molecular docking disclosed that PTE might interact with RORs, and PTE was found to increase Bmal1 promoter luciferase activity with RORE elements in the presence of Ad-RORγ-mCherry (p < 0.05). CONCLUSIONS: PTE may protect against SR-induced metabolic disorders by directly modulating RORγ to maintain circadian metabolic rhythm. The findings provide valuable insights into the potential use of PTE in the treatment of metabolic disorders associated with disruptions in the circadian rhythm.


Asunto(s)
Factores de Transcripción ARNTL , Enfermedades Metabólicas , Masculino , Animales , Ratones , Factores de Transcripción ARNTL/genética , Simulación del Acoplamiento Molecular , Ritmo Circadiano/genética , Sueño , Enfermedades Metabólicas/tratamiento farmacológico , Luciferasas
9.
Journal of Chinese Physician ; (12): 413-417, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1026118

RESUMEN

Objective:To investigate the expression of retinoic acid receptor responsive gene 2 (RARRES2), microtubule microfilament cross-linking factor 1 (MACF1), and core protein polysaccharide (DCN) in cerebrospinal fluid (CSF) of patients with neurosyphilis, and their diagnostic value for neurosyphilis.Methods:A total of 64 non neurosyphilis syphilis patients (syphilis group) and 78 neurosyphilis patients (neurosyphilis group) admitted to the Second Hospital of Nanjing between June 2020 and September 2022 were included. Among neurosyphilis patients, there were 48 early neurosyphilis patients (early group) and 30 late neurosyphilis patients (late group). Patients with neurosyphilis are treated with routine symptomatic therapy and antibiotic therapy to expel syphilis. The mRNA levels of RARRES2, MACF1, and DCN in CSF of patients with neurosyphilis before and after treatment were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The National Institutes of Health Stroke Scale (NIHSS) was used to evaluate the neurological function of patients with neurosyphilis before and after treatment. The diagnostic value of various indicators for neurosyphilis was analyzed using receiver operating characteristic (ROC) curves.Results:The mRNA levels of RARRES2, MACF1, and DCN in CSF of patients with neurosyphilis were higher than those in the syphilis group (all P<0.001). The mRNA levels of RARRES2, MACF1, and DCN in the CSF of patients with advanced neurosyphilis were higher than those in the early group (all P<0.001). Compared with before treatment, the NIHSS score and RARRES2, MACF1, and DCN mRNA levels of neurosyphilis patients decreased after treatment (all P<0.001). The area under the curve (AUC), sensitivity, and specificity of the combined diagnosis of RARRES2, MACF1, and DCN mRNA in CSF for neurosyphilis were 0.995%, 100.00%, and 93.75%, respectively. The AUC and sensitivity were higher than those of individual diagnosis. Conclusions:The expression of RARRES2, MACF1, and DCN is elevated in CSF of patients with neurosyphilis, and is associated with disease severity and treatment response. These three genes may be candidate biomarkers for diagnosing neurosyphilis.

10.
Environ Sci Technol ; 57(49): 20551-20558, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38037888

RESUMEN

Hexaphenoxycyclotriphosphazene (HPCTP), an unregistered chemical, has been used as a substitute for triphenyl phosphate in flame retardants and plasticizers. Here, we identified its metabolite, pentaphenoxycyclotriphosphazene (PPCTP) in the liver of Japanese medaka exposed to HPCTP. When sexually mature female medaka were exposed to HPCTP at 37.0, 90.4, and 465.4 ng/L for 35 days, the HPCTP concentration (642.1-2531.9 ng/g lipid weight [lw]) in the embryos considerably exceeded that (34.7-298.1 ng/g lw) in the maternal muscle, indicating remarkable maternal transfer. During 0-9 days postfertilization, the HPCTP concentration in the embryos decreased continuously, while the PPCTP concentration increased. HPCTP and PPCTP antagonized the retinoic X receptor with 50% inhibitory concentrations (IC50) of 34.8 and 21.2 µM, respectively, and PPCTP also antagonized the retinoic acid receptor with IC50 of 2.79 µM. Such antagonistic activities may contribute to eye deformity (4.7% at 465.4 ng/L), body malformation (2.1% at 90.4 ng/L and 6.8% at 465.4 ng/L), and early developmental mortality (11.6-21.7% in all exposure groups) of the embryos. HPCTP was detected in a main tributary of the Yangtze River Basin. Thus, HPCTP poses a risk to wild fish populations, given the developmental toxicities associated with this chemical and its metabolite.


Asunto(s)
Retardadores de Llama , Oryzias , Contaminantes Químicos del Agua , Animales , Femenino , Tretinoina , Hígado , Oryzias/fisiología , Retardadores de Llama/toxicidad , Contaminantes Químicos del Agua/análisis
11.
Spine J ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38092193

RESUMEN

BACKGROUND CONTEXT: Bone morphogenetic proteins (BMPs) have potent osteoinductivity and have been applied clinically for challenging musculoskeletal conditions. However, the supraphysiological doses of BMPs used in clinical settings cause various side effects that prevent widespread use, and therefore the BMP dosage needs to be reduced. PURPOSE: To address this problem, we synthesized 7C, a retinoic acid receptor γ antagonist-loaded nanoparticle (NP), and investigated its potential application in BMP-based bone regeneration therapy using a rat spinal fusion model. STUDY DESIGN: An experimental animal study. METHODS: Fifty-three male 8-week-old Sprague-Dawley rats underwent posterolateral spinal fusion and were divided into the following five treatment groups: (1) no recombinant human (rh)BMP-2 and blank-NP (Control), (2) no rhBMP-2 and 1 µg 7C-NP (7C group), (3) low-dose rhBMP-2 (0.5 µg) and 1 µg blank-NP (L-BMP group), (4) low-dose rhBMP-2 (0.5 µg) and 1 µg 7C-NP (L-BMP + 7C group), and (5) high-dose rhBMP-2 (5.0 µg) and 1 µg blank-NP (H-BMP group). Micro-computed tomography and histologic analysis were performed 2 and 6 weeks after the surgery. RESULTS: The spinal fusion rates of the Control and 7C groups were both 0%, and those of the L-BMP, L-BMP + 7C, and H-BMP groups were 55.6%, 94.4%, and 100%, respectively. The L-BMP + 7C group markedly promoted cartilaginous tissue formation during BMP-induced endochondral bone formation that resulted in a significantly better spinal fusion rate and bone formation than in the L-BMP group. Although spinal fusion was slower in the L-BMP + 7C group, the L-BMP + 7C group formed a spinal fusion mass with better bone quality than the spinal fusion mass in the H-BMP group. CONCLUSIONS: The combined use of 7C-NP with rhBMP-2 in a rat posterolateral lumbar fusion model increased spinal fusion rate and new bone volume without deteriorating the quality of newly formed bone. CLINICAL SIGNIFICANCE: 7C-NP potentiates BMP-2-induced bone regeneration and has the potential for efficient bone regeneration with low-dose BMP-2, which can reduce the dose-dependent side effects of BMP-2 in clinical settings.

12.
Nutrients ; 15(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37764703

RESUMEN

Obesity is a known risk factor for metabolic diseases and is often associated with chronic inflammation in adipose tissue. We previously identified the polyethoxylated flavonoid Nobiletin (NOB) as a circadian clock modulator that directly binds to and activates the ROR receptors in the core oscillator, markedly improving metabolic fitness in obese mice. Here, we show that NOB enhanced the oscillation of core clock genes in differentiated 3T3-L1 adipocytes, including ROR target genes such as Bmal1, Cry1, Dec1, and Dec2. NOB inhibited lipid accumulation in 3T3-L1 and SVF cells, concomitant with the dysregulated circadian expression of adipogenic differentiation-related genes including Cebpb, Pparg, Lpl, Scd1, and Fas. Importantly, RORα/RORγ double knockdown in 3T3-L1 cells (Ror DKD) significantly attenuated the effects of NOB on circadian gene expression and lipid accumulation. Furthermore, whereas NOB upregulated the expression of IκBα, a target of RORs, to inhibit NF-κB activation and proinflammatory cytokine expression, Ror DKD cells exhibited a heightened activation of the NF-κB pathway, further indicating a requisite role of RORs for NOB efficacy in adipocytes. Together, these results highlight a significant regulatory function of the NOB-ROR axis in the circadian expression of clock and clock-controlled genes in adipocytes, thereby governing adipogenic differentiation, lipogenesis, and inflammation.


Asunto(s)
Adipocitos , Flavonas , FN-kappa B , Animales , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa , Adipocitos/metabolismo , Inflamación , Lípidos , Células 3T3-L1
13.
Pharmaceutics ; 15(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37765280

RESUMEN

Postoperative cognitive dysfunction (POCD) is a clinical syndrome characterizing by cognitive impairments in the elderly after surgery. There is limited effective treatment available or clear pathological mechanisms known for this syndrome. In this study, a Connectivity Map (CMap) bioinformatics model of POCD was established by using differently expressed landmark genes in the serum samples of POCD and non-POCD patients from the only human transcriptome study. The predictability and reliability of this model were further supported by the positive CMap scores of known POCD inducers and the negative CMap scores of anti-POCD drug candidates. Most retinoic acid receptor (RAR) agonists were negatively associated with POCD in this CMap model, suggesting that RAR might be a novel target for POCD. Most importantly, acitretin, a clinically used RAR agonist, significantly inhibited surgery-induced cognitive impairments and prevented the reduction in RARα and RARα-target genes in the hippocampal regions of aged mice. The study denotes a reliable CMap bioinformatics model of POCD for future use and establishes that RAR is a novel therapeutic target for treating this clinical syndrome.

15.
Eur J Med Chem ; 261: 115821, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37776573

RESUMEN

Reported here are the synthesis and in vitro evaluation of a series of 26 retinoic acid analogs based on dihydronaphthalene and chromene scaffolds using a transactivation assay. Chromene amide analog 21 was the most potent and selective retinoic acid receptor α antagonist identified from this series. In vitro evaluation indicated that 21 has favorable physicochemical properties and a favorable pharmacokinetic PK profile in vivo with significant oral bioavailability, metabolic stability, and testes exposure. Compound 21 was evaluated for its effects on spermatogenesis and disruption of fertility in a mouse model. Oral administration of compound 21 at low doses showed reproducibly characteristic albeit modest effects on spermatogenesis, but no effects on fertility were observed in mating studies. The inhibition of spermatogenesis could not be enhanced by raising the dose and lengthening the duration of dosing. Thus, 21 may not be a good candidate to pursue further for effects on male fertility.


Asunto(s)
Anticoncepción , Testículo , Ratones , Animales , Masculino , Receptor alfa de Ácido Retinoico/metabolismo , Benzopiranos/farmacología
16.
Immunity ; 56(9): 2054-2069.e10, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37597518

RESUMEN

Ligation of retinoic acid receptor alpha (RARα) by RA promotes varied transcriptional programs associated with immune activation and tolerance, but genetic deletion approaches suggest the impact of RARα on TCR signaling. Here, we examined whether RARα would exert roles beyond transcriptional regulation. Specific deletion of the nuclear isoform of RARα revealed an RARα isoform in the cytoplasm of T cells. Extranuclear RARα was rapidly phosphorylated upon TCR stimulation and recruited to the TCR signalosome. RA interfered with extranuclear RARα signaling, causing suboptimal TCR activation while enhancing FOXP3+ regulatory T cell conversion. TCR activation induced the expression of CRABP2, which translocates RA to the nucleus. Deletion of Crabp2 led to increased RA in the cytoplasm and interfered with signalosome-RARα, resulting in impaired anti-pathogen immunity and suppressed autoimmune disease. Our findings underscore the significance of subcellular RA/RARα signaling in T cells and identify extranuclear RARα as a component of the TCR signalosome and a determinant of immune responses.


Asunto(s)
Enfermedades Autoinmunes , Activación de Linfocitos , Humanos , Receptor alfa de Ácido Retinoico/genética , Membrana Celular , Receptores de Antígenos de Linfocitos T
17.
Pharmacol Res ; 195: 106886, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37591326

RESUMEN

Liver fibrosis can occur in many chronic liver diseases, and no effective treatments are available due to the poorly characterized molecular pathogenesis. Semaphorin 4D (Sema4D) has immune functions and serves important roles in T cell priming. Here, we found that Sema4D was highly expressed in fibrotic liver, and the expression of Sema4D increased with hepatic stellate cells (HSCs) activation. Knockout of Sema4D alleviated liver fibrosis. Mechanistically, knockout of Sema4D alleviated liver fibrosis by suppressing the expression of AOX1 in retinol metabolism. Further investigation demonstrated that retinoic acid receptor α (RARA), an important nuclear receptor of retinoic acid, was reduced by Sema4D knockout during liver fibrogenesis. Sema4D knockout-mediated suppression of liver fibrosis was partly mediated by regulating the balance of Th1, Th2, Th17, and T-bet+Treg cells via inhibiting AOX1/RARA. Thus, targeting Sema4D may hold promise as a potential therapeutic approach for treating liver fibrosis.


Asunto(s)
Cirrosis Hepática , Semaforinas , Animales , Humanos , Masculino , Ratones , Aldehído Oxidasa , Antígenos CD , Cirrosis Hepática/genética , Ratones Noqueados , Semaforinas/genética
18.
Adv Exp Med Biol ; 1415: 327-332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440052

RESUMEN

The retinoic acid receptor-related orphan receptors (RORs) are ligand-mediated transcription factors with important biological roles in regulating circadian rhythms, metabolism, immunity, angiogenesis, inflammation, and development. They belong to the superfamily of nuclear receptors and include three family members: RORα, RORß, and RORγ. Currently identified ROR ligands include cholesterol and cholesterol derivatives for RORα and RORγ, and stearic acid and all-trans retinoic acid for RORß. Aberrant signaling of the RORs is involved in the pathogenesis of several human diseases including autoimmune diseases, metabolic disorders, and certain cancers. In the eye, RORs regulate normal development of the lens and the retina, and also contribute to potentially blinding eye diseases, especially retinal vascular diseases. Here, we review the role of RORs in eye development and disease to highlight their potential as druggable targets for therapeutic development in retinal vascular and degenerative diseases.


Asunto(s)
Neoplasias , Receptores de Ácido Retinoico , Humanos , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Factores de Transcripción , Tretinoina , Neoplasias/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares
19.
Int Immunopharmacol ; 121: 110420, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37331293

RESUMEN

Systemic sclerosis (SSc) is an autoimmune connective tissue disease that leads to irreversible fibrosis of the skin and the internal organs. The etiology of SSc is complex, its pathophysiology is poorly understood, and clinical therapeutic options are restricted. Thus, research into medications and targets for treating fibrosis is essential and urgent. Fos-related antigen 2 (Fra2) is a transcription factor that is a member of the activator protein-1 family. Fra2 transgenic mice were shown to have spontaneous fibrosis. All-trans retinoic acid (ATRA) is a vitamin A intermediate metabolite and ligand for the retinoic acid receptor (RAR), which possesses anti-inflammatory and anti-proliferative properties. Recent research has demonstrated that ATRA also has an anti-fibrotic effect. However, the exact mechanism is not fully understood. Interestingly, we identified potential binding sites for the transcription factor RARα to the promoter region of the FRA2 gene through JASPAR and PROMO databases. In this study, the pro-fibrotic effect of Fra2 in SSc is confirmed. SSc dermal fibroblasts and bleomycin-induced fibrotic tissues of SSc animals exhibit increased levels of Fra2. Inhibition of Fra2 expression in SSc dermal fibroblasts with Fra2 siRNA markedly decreased collagen I expression. ATRA reduced the expressions of Fra2, collagen I, and α-smooth muscle actin(α-SMA) in SSc dermal fibroblasts and bleomycin-induced fibrotic tissues of SSc mice. In addition, chromatin immunoprecipitation and dual-luciferase assays demonstrated that retinoic acid receptor RARα binds to the FRA2 promoter and modulates its transcriptional activity. ATRA decreases collagen I expression both in vivo and in vitro via the reduction of Fra2 expression. This work establishes the rationale for expanding the use of ATRA in the treatment of SSc and indicates that Fra2 can be used as an anti-fibrotic target.


Asunto(s)
Esclerodermia Sistémica , Factor de Transcripción AP-1 , Ratones , Animales , Factor de Transcripción AP-1/metabolismo , Fibrosis , Esclerodermia Sistémica/metabolismo , Ratones Transgénicos , Colágeno Tipo I/metabolismo , Tretinoina/farmacología , Receptores de Ácido Retinoico/metabolismo , Bleomicina/metabolismo , Fibroblastos , Piel/patología , Modelos Animales de Enfermedad
20.
Pharmacol Ther ; 248: 108481, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37331524

RESUMEN

Vitamin A (VA, retinol) and its metabolites (commonly called retinoids) are required for the proper development of the kidney during embryogenesis, but retinoids also play key roles in the function and repair of the kidney in adults. Kidneys filter 180-200 liters of blood per day and each kidney contains approximately 1 million nephrons, which are often referred to as the 'functional units' of the kidney. Each nephron consists of a glomerulus and a series of tubules (proximal tubule, loop of Henle, distal tubule, and collecting duct) surrounded by a network of capillaries. VA is stored in the liver and converted to active metabolites, most notably retinoic acid (RA), which acts as an agonist for the retinoic acid receptors ((RARs α, ß, and γ) to regulate gene transcription. In this review we discuss some of the actions of retinoids in the kidney after injury. For example, in an ischemia-reperfusion model in mice, injury-associated loss of proximal tubule (PT) differentiation markers occurs, followed by re-expression of these differentiation markers during PT repair. Notably, healthy proximal tubules express ALDH1a2, the enzyme that metabolizes retinaldehyde to RA, but transiently lose ALDH1a2 expression after injury, while nearby myofibroblasts transiently acquire RA-producing capabilities after injury. These results indicate that RA is important for renal tubular injury repair and that compensatory mechanisms exist for the generation of endogenous RA by other cell types upon proximal tubule injury. ALDH1a2 levels also increase in podocytes, epithelial cells of the glomeruli, after injury, and RA promotes podocyte differentiation. We also review the ability of exogenous, pharmacological doses of RA and receptor selective retinoids to treat numerous kidney diseases, including kidney cancer and diabetic kidney disease, and the emerging genetic evidence for the importance of retinoids and their receptors in maintaining or restoring kidney function after injury. In general, RA has a protective effect on the kidney after various types of injuries (eg. ischemia, cytotoxic actions of chemicals, hyperglycemia related to diabetes). As more research into the actions of each of the three RARs in the kidney is carried out, a greater understanding of the actions of vitamin A is likely to lead to new insights into the pathology of kidney disorders and the development of new therapies for kidney diseases.


Asunto(s)
Riñón , Retinoides , Vitamina A , Vitamina A/metabolismo , Riñón/fisiología , Retinoides/metabolismo , Receptores de Ácido Retinoico/metabolismo , Tretinoina/metabolismo , Enfermedades Renales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA