Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 364: 142995, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39097114

RESUMEN

This paper describes an alternative method for the in situ synthesis of gold nanoparticles (AuNPs) with a particle size of less than 3 nm, using nanoreactors formed by reverse micelles of 1,4-bis-(2-ethylhexyl) sulfosuccinate sodium (AOT) and nanoparticle stabilization with l-cysteine, which favor the preparation of nanoparticles with size and shape control, which are homogeneously dispersed (1% by weight) on the support of titanium dioxide nanowires (TNWs). To study the activity and selectivity of the prepared catalyst (AuNPs@TNWs), an aqueous solution of 40 mM glycerol was irradiated with a green laser (λ = 530 nm, power = 100 mW) in the presence of the catalyst and O2 as an oxidant at 22 °C for 6 h, obtaining a glycerol conversion of 86% with a selectivity towards hydroxypyruvic acid (HA) of more than 90%. From the control and reactions, we concluded that the Ti-OH groups promote the glycerol adsorption on the nanowires surface and the surface plasmon of the gold nanoparticles favors the selectivity of the reaction towards the hydroxypyruvic acid.

2.
Biophys Chem ; 311: 107269, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815545

RESUMEN

Reverse micelles (RMs) are spontaneously organizing nanobubbles composed of an organic solvent, surfactants, and an aqueous phase that can encapsulate biological macromolecules for various biophysical studies. Unlike other RM systems, the 1-decanoyl-rac-glycerol (10MAG) and lauryldimethylamine-N-oxide (LDAO) surfactant system has proven to house proteins with higher stability than other RM mixtures with little sensitivity to the water loading (W0, defined by the ratio of water to surfactant). We investigated this unique property by encapsulating three model proteins - cytochrome c, myoglobin, and flavodoxin - in 10MAG/LDAO RMs and applying a variety of experimental methods to characterize this system's behavior. We found that this surfactant system differs greatly from the traditional, spherical, monodisperse RM population model. 10MAG/LDAO RMs were discovered to be oblate ellipsoids at all conditions, and as W0 was increased, surfactants redistributed to form a greater number of increasingly spherical ellipsoidal particles with pools of more bulk-like water. Proteins distinctively influence the thermodynamics of the mixture, encapsulating at their optimal RM size and driving protein-free RM sizes to scale accordingly. These findings inform the future development of similarly malleable encapsulation systems and build a foundation for application of 10MAG/LDAO RMs to analyze biological and chemical processes under nanoscale confinement.


Asunto(s)
Glicerol , Micelas , Mioglobina , Tensoactivos , Mioglobina/química , Tensoactivos/química , Glicerol/química , Citocromos c/química , Flavodoxina/química , Lauratos/química , Termodinámica , Agua/química , Dimetilaminas
3.
J Lipid Res ; 65(7): 100533, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38522749

RESUMEN

Mycobacterial plasma membrane, together with the peptidoglycan-arabinogalactan cell wall and waxy outer membrane, creates a robust permeability barrier against xenobiotics. The fact that several antituberculosis drugs target plasma membrane-embedded enzymes underscores the importance of the plasma membrane in bacterial physiology and pathogenesis. Nevertheless, its accurate phospholipid composition remains undefined, with conflicting reports on the abundance of phosphatidylinositol mannosides (PIMs), physiologically important glycolipids evolutionarily conserved among mycobacteria and related bacteria. Some studies indicate cardiolipin, phosphatidylethanolamine, and phosphatidylinositol as dominant structural phospholipids. Conversely, some suggest PIMs dominate the plasma membrane. A striking example of the latter is the use of reverse micelle extraction, showing diacyl phosphatidylinositol dimannoside (Ac2PIM2) as the most abundant phospholipid in a model organism, Mycobacterium smegmatis. Our recent work reveals a rapid response mechanism to membrane-fluidizing stress in mycobacterial plasma membrane: monoacyl phosphatidylinositol dimannoside and hexamannoside (AcPIM2 and AcPIM6) are converted to diacyl forms (Ac2PIM2 and Ac2PIM6). Given the dynamic nature of PIMs, we aimed to resolve the conflicting data in the literature. We show that unstressed M. smegmatis lacks an Ac2PIM2-dominated plasma membrane. Ac2PIM2 accumulation is induced by experimental conditions involving sodium docusate, a component of the reverse micellar solution. Using chemically synthesized PIMs as standards, we accurately quantified phospholipid ratio in M. smegmatis through liquid chromatography-mass spectrometry, revealing that mycobacterial plasma membrane is dominated by cardiolipin, phosphatidylethanolamine, and phosphatidylinositol. PIMs are quantitatively minor but responsive to environmental stresses in M. smegmatis. Our study paves the way for accurate modeling of mycobacterial plasma membrane.


Asunto(s)
Mycobacterium smegmatis , Fosfatidilinositoles , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/efectos de los fármacos , Fosfatidilinositoles/metabolismo , Fosfatidilinositoles/química , Detergentes/química , Detergentes/farmacología , Membrana Celular/metabolismo
4.
Food Chem X ; 20: 100896, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144793

RESUMEN

A producing-fibrinolytic enzyme strain was isolated with high yield. The strain was identified as Bacillus amyloliquefaciens. B. amyloliquefaciens GUTU06 fibrinolytic enzyme was purified by acetone precipitation and reverse micelle. Acetone precipitation condition and reverse micelle condition were examined. Results showed that the total reverse micelle extraction efficiency was 64.49 % ± 1.6 %. The purification fold of the entire process reached 13.38. The optimum pH of purified enzyme is 5, and the optimum temperature is 45 °C. Fe3+ and K+ can enhance the fibrinolytic activity of the enzyme. Compared to commercial fibrinolytic enzymes such as urokinase and lumbrukinase, GUTU06 fibrinolytic enzymes have a lower pH optimal range and higher temperature stability. The molecular weight of the enzyme was approximately 28 kDa. Reverse micelle extraction with cetyl trimethylammonium bromide as a surfactant combined with acetone precipitation is suitable for separating and purifying fibrinolytic enzymes and a promising technique for obtaining active proteins.

5.
J Chromatogr A ; 1710: 464441, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37832460

RESUMEN

An eco-friendly dispersive liquid-liquid microextraction mediated with a reverse micelle and coupled to an HPLC-DAD was developed for the simultaneous determination of venlafaxine and agomelatine in dosage forms and human plasma. All the parameters affecting the extraction efficiencies of both drugs were investigated and optimized. Under the optimal conditions, an effective analytes' preconcentration with enrichment factors (EFs) up to 72 was achieved. The linearity of the method was established over the concentration range of 0.50-70.0 and 3.0-100.0 ng/mL for venlafaxine and agomelatine, respectively with good correlation coefficients > 0.998. The method exhibited low detection limits in the range of 0.15-0.89 ng/mL and excellent precisions expressed in %RSD < 3% with average recoveries between 95.0 to 101.0%. The proposed method was employed to analyze the targeted analytes in dosage forms and human plasma samples with favorable characteristics like excellent enrichment, high sensitivity, great accuracy, and high precision. Finally, the greenness of the developed method was assessed using three distinct metric tools, confirming the greenness of the proposed method. The findings of this research could have more general implications for the extraction of other analytes from various matrices.


Asunto(s)
Microextracción en Fase Líquida , Humanos , Microextracción en Fase Líquida/métodos , Micelas , Cromatografía Líquida de Alta Presión/métodos , Clorhidrato de Venlafaxina , Límite de Detección
6.
Polymers (Basel) ; 15(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37896419

RESUMEN

This study investigates the feasibility of using biodegradable secondary alcohol ethoxylate (SAE) non-ionic surfactant as a building block for the formation of reverse micelles, functioning as reactive dye carriers for the dyeing of cotton fabric in non-aqueous octane medium. Ten dyeing parameters were optimised, by a one-factor-at-a-time approach, namely: (i) effect of colour fixation agent; (ii) surfactant-to-water mole ratio; (iii) surfactant-to-co-surfactant mole ratio; (iv) volume of soda ash; (v) volume of dye; (vi) solvent-to-cotton ratio; (vii) dyeing temperature; (viii) dyeing time; (ix) fixation time; (x) soda-ash-to-cotton ratio. The colour properties, fastness properties and physical properties of SAE-dyed samples were experimentally compared with the conventional water-dyed samples. The optimised condition was found when SAE samples were dyed as follows: (a) 1:20 surfactant-to-water ratio; (b) 1:8 surfactant-to-co-surfactant ratio; (c) 10:1 solvent ratio; (d) 40 min dyeing time; (e) 60 min fixation time; and (f) 70 °C dyeing and fixation temperature. The results showed that SAE-dyed samples have better colour strength, lower reflectance percentage and comparable levelness, fastness and physical properties than that of water-dyed samples. SEM images revealed that the dyed cotton fibres had no severe surface damage caused by an SAE-based reverse micellar dyeing system. The TEM image depicts that the reverse micelle was of nanoscale, spherical-shaped and had a core-shell structure, validating the presence of reverse micelle as a reactive dye carrier and the potential of an SAE-based reverse micellar system for dyeing of cotton fabrics.

7.
ACS Appl Mater Interfaces ; 15(24): 29542-29549, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37296516

RESUMEN

Precise patterning of molecules/ions in the nanometer scale is a crucial but challenging technique for the fabrication of advanced functional nanodevices. We developed a robust method to print molecules/ions into arbitrarily defined patterns with sub-20 nm precision assisted by reverse micelles. The reverse micelle, serving as a nano-sized vessel, can load molecules/ions and then be patterned onto the predefined positions by electrostatic attraction. The number of molecules/ions on each spot, the spot spacing, and pattern shapes can be flexibly adjusted, reaching 10 nm position accuracy, 30 nm spot size, and 100 nm spot spacing (>250,000 DPI). Then, water-soluble dye molecules, protein molecules, and chloroaurate ions were loaded in the micelles and successfully patterned into nanoarrays, which provides an important platform for the convenient, flexible, and robust fabrication of functional molecule/ion-based nanodevices, such as biochips, for high-throughput and ultrasensitive analysis.

8.
Talanta ; 260: 124616, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37146457

RESUMEN

For applying highly sensitive mass spectrometry to chemical analysis of aqueous samples, we have developed a novel technique using a new form of liquid droplets, which we call "aeromicelle" (AM), to deliver aqueous sample solutions directly into the vacuum region of a single-particle mass spectrometer in liquid form and conduct immediate mass analysis. AMs are generated by spraying an aqueous solution containing a surfactant at a concentration significantly lower than its critical micelle concentration (CMC). When the solution is sprayed, liquid droplets containing the surfactant are formed, which gradually dry in an air flow. Upon drying, the surfactant concentration in the droplet exceeds its CMC, and consequently, the surfactant molecules begin to cover the droplet surface. Finally, the surface is expected to be fully covered with surfactant molecules such as reverse micelles. The surface coverage helps suppress the evaporation of water, thereby enhancing the residence time of the liquid droplet. Our experimental results show that the AMs retained a liquid form for at least 100 s in air and survived even under vacuum conditions for further mass analysis: each AM delivered in the vacuum region of a single-particle mass spectrometer is ablated with an intense laser pulse and then, mass analyzed. Individual AMs generated from an aqueous solution containing CsCl were analyzed using a single-particle mass spectrometer. The Cs+ ion peak was observed even in AMs generated from the 10 nM solution. The number of Cs atoms in each AM was estimated to be approximately 7 × 103, which corresponds to 1.2 × 10-20 mol (12 zmol). Meanwhile, in the mass analysis of tyrosine, both positive and negative fragmentation ions from tyrosine in AMs were observed in the mass spectrum and 4.6 × 105 (760 zmol) tyrosine molecules were detected.

9.
Drug Deliv ; 30(1): 2181744, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36855953

RESUMEN

The oral absorption of exenatide, a type 2 diabetes medication, can be increased by employing lipid nanocapsules (LNC). To increase mucus permeability and exenatide intestinal absorption, reverse micelle lipid nanocapsules (RM-LNC) were prepared and their surface was modified with DSPE-PEG-FA. The RM-LNC with surface modification of DSPE-PEG-FA (FA-RM-LNC) were able to target enterocytes and reduce mucus aggregation in the intestine. Furthermore, in vitro absorption at different intestinal sites and flip-flop intestinal loop experiments revealed that LNCs with surface modification significantly increased their absorption efficiency in the small intestine. FA-RM-LNC delivers more drugs into Caco-2 cells via caveolin-, macrophagocytosis-, and lipid raft-mediated endocytosis. Additionally, the enhanced transport capacity of FA-RM-LNC was observed in a study of monolayer transport in Caco-2 cells. The oral administration of exenatide FA-RM-LNC resulted in a prolonged duration of hypoglycemia in diabetic mice and a relative bioavailability (BR) of up to 7.5% in rats. In conclusion, FA-RM-LNC can target enterocytes and has promising potential as a nanocarrier for the oral delivery of peptides.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nanocápsulas , Sistema de Administración de Fármacos con Nanopartículas , Animales , Humanos , Ratones , Ratas , Células CACO-2 , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Exenatida , Ácido Fólico , Intestinos , Lípidos , Micelas , Péptidos
10.
Bioelectrochemistry ; 149: 108275, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36228395

RESUMEN

We report on Prussian Blue based nanozymes, comparable in size with a natural enzyme peroxidase. Protein-sized nanoparticles have been synthesized in the course of reduction of ferric ion (Fe3+) and ferricyanide ([Fe(CN)6]3-) one-to-one mixture in reversed micelles (isooctane|AOT|water) used as templates. Aniline chosen as the best reductant for this aim has led to formation of composite (according to Raman spectroscopy) Prussian Blue - polyaniline nanoparticles. The protein-like size of the nanoparticles (∅ = 4 - 6 nm) has been confirmed by DLS and TEM imaging. Kinetic investigations of peroxidase-like activity in reversed micelles resulted in the catalytic rate constant belonging to the same size-dependence as regular bulk catalytically synthesized nanozymes (slope ≈ 2.6), allowing to denote the reported Prussian Blue nanoparticles synthesized in reversed micelles as nanozymes «artificial peroxidase¼. Hydrogen peroxide sensors made by dipping the suspension of the latter onto the electrode support, displayed two-fold higher sensitivity as compared to the Prussian Blue film-based ones. Protein-sized nanozymes «artificial peroxidase¼ would obviously provide an advantage over regular nanozymes in (bio)sensors and analytical kits.


Asunto(s)
Micelas , Peroxidasa , Ferrocianuros , Catálisis , Peroxidasas , Peróxido de Hidrógeno , Colorantes , Hierro
11.
Pharmaceutics ; 14(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36559122

RESUMEN

Pluronics are a family of amphiphilic block copolymers broadly explored in the pharmaceutical field. Under certain conditions, Pluronics self-assemble in different structures including nanosized direct and reverse micelles. This review provides an overview about the main parameters affecting the micellization process of Pluronics, such as polymer length, fragments distribution within the chain, solvents, additives and loading of cargo. Furthermore, it offers a guide about the most common techniques used to characterize the structure and properties of the micelles. Finally, it presents up-to-date approaches to improve the stability and drug loading of Pluronic micelles. Special attention is paid to reverse Pluronics and reverse micelles, currently underexplored in the literature. Pluronic micelles present a bright future as drug delivery agents. A smart design and thorough characterization will improve the transfer to clinical applications.

12.
Proc Natl Acad Sci U S A ; 119(45): e2211228119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322742

RESUMEN

Magnetic targeting is one of the most promising approaches for improving the targeting efficiency by which magnetic drug carriers are directed using external magnetic fields to reach their targets. As a natural magnetic nanoparticle (MNP) of biological origin, the magnetosome is a special "organelle" formed by biomineralization in magnetotactic bacteria (MTB) and is essential for MTB magnetic navigation to respond to geomagnetic fields. The magnetic targeting of magnetosomes, however, can be hindered by the aggregation and precipitation of magnetosomes in water and biological fluid environments due to the strong magnetic attraction between particles. In this study, we constructed a magnetosome-like nanoreactor by introducing MTB Mms6 protein into a reverse micelle system. MNPs synthesized by thermal decomposition exhibit the same crystal morphology and magnetism (high saturation magnetization and low coercivity) as natural magnetosomes but have a smaller particle size. The DSPE-mPEG-coated magnetosome-like MNPs exhibit good monodispersion, penetrating the lesion area of a tumor mouse model to achieve magnetic enrichment by an order of magnitude more than in the control groups, demonstrating great prospects for biomedical magnetic targeting applications.


Asunto(s)
Magnetosomas , Magnetospirillum , Nanopartículas , Neoplasias , Ratones , Animales , Proteínas Bacterianas/metabolismo , Magnetosomas/química , Bacterias Gramnegativas/metabolismo , Nanopartículas/química , Campos Magnéticos , Neoplasias/metabolismo , Magnetospirillum/metabolismo
13.
J Chromatogr A ; 1673: 463042, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35490464

RESUMEN

A new analytical method was developed for the separation and determination of basic orange II, acid orange II and auramine O in soybean products. The technique was focused on ionic liquid reverse micelle microextraction (IL-RMME) followed by analysis and determination by ultra-high performance liquid chromatography (UHPLC) with photodiode array detector of three chemical dyes. In this method, IL-RMME solution consisting of ionic liquid [Omim]BF6 and surfactant GenapolX-080 was used as extractant. Important parameters affecting IL-RMME efficiency, such as extraction solvent type and volume, sample solution pH, salt effect, centrifugation speed and time were investigated. Under the optimal condition, the linearity of the method was in the range of 0.1-10 ng mL-1with correlation coefficient above 0.9994 and the limits of detection below 0.03 ng mL-1. At the same time, relative standard deviations of the developed procedure for intra- (n = 5) and inter-day (n = 5) precision were in the range of 5.04-8.50%. The results demonstrated that a simple fast environmentally friendly efficient method was successfully applied in the separation and determination of three chemical dyes in soybean products.


Asunto(s)
Líquidos Iónicos , Microextracción en Fase Líquida , Compuestos Azo , Bencenosulfonatos , Benzofenoneido , Cromatografía Líquida de Alta Presión/métodos , Colorantes , Líquidos Iónicos/química , Límite de Detección , Microextracción en Fase Líquida/métodos , Micelas , Naftalenos , Glycine max
14.
J Fluoresc ; 32(5): 1639-1650, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35608805

RESUMEN

Malachite green (MG) is a dye that has been presented to use as photosensitizers for photodynamic therapy (PDT). Nonlinear absorption coefficient (ß) and nonlinear refractive index (n2) of MG formulations with micelles and its encapsulation are studied aiming PDT. Encapsulation of MG was prepared by the mixture of water droplet in the continuous phase of oil, stabilized with surfactant. MG interacts with micelles and reverses micelle (RM), and the results are related to the size and concentration of micelles, RM, surfactant charge types. At low capsule size, the 1/ß linearly increases by the increase of volume fraction of water droplet, while, an exponential behavior was observed in the higher capsule size.


Asunto(s)
Micelas , Colorantes de Rosanilina , Tensoactivos , Agua
15.
Nanomaterials (Basel) ; 12(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35335760

RESUMEN

Amine modified nano-silica was prepared via a one-pot route and under very mild conditions in water in oil microemulsion with a non-ionic surfactant to study the effect of changing the amount of N-[3-(Trimethoxysilyl)propyl]ethylenediamine (DA) added to the synthesis mixture on the characteristics of the obtained nanocomposite such as morphology, crystallinity, surface charge, particle size, surface area, and accordingly the effect of all of these factors on the efficiency of the nanocomposite for the removal of heavy metal ions, namely zinc, from aqueous solutions. XRD, SEM, TGA, BET, DLS, FTIR, and pH0 analysis were performed for samples and the results showed a strong effect for the amount of DA added to the synthesis mixture on the characteristics of the obtained nanocomposites. It was found that increasing the amount of DA added to the synthesis mixture increased the pH0, hydrodynamic particle size obtained by dynamic light scattering analysis, and the particle size obtained by SEM. Sample prepared without the addition of DA (SNP) and the samples prepared with 1.5 mL of DA (SNP-1.5DA) showed a better adsorption performance compared to the samples prepared with 0.5 and 1.0 mL of DA (SNP-0.5DA and SNP-1.0DA, respectively). The main factor affecting the adsorption efficiency was found to be the available surface area for each nanocomposite, which was directly related to the degree of crystallinity as obtained by XRD analysis.

16.
Molecules ; 27(5)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35268673

RESUMEN

Despite considerable advances in recent years, challenges in delivery and storage of biological drugs persist and may delay or prohibit their clinical application. Though nanoparticle-based approaches for small molecule drug encapsulation are mature, encapsulation of proteins remains problematic due to destabilization of the protein. Reverse micelles composed of decylmonoacyl glycerol (10MAG) and lauryldimethylamino-N-oxide (LDAO) in low-viscosity alkanes have been shown to preserve the structure and stability of a wide range of biological macromolecules. Here, we present a first step on developing this system as a future platform for storage and delivery of biological drugs by replacing the non-biocompatible alkane solvent with solvents currently used in small molecule delivery systems. Using a novel screening approach, we performed a comprehensive evaluation of the 10MAG/LDAO system using two preparation methods across seven biocompatible solvents with analysis of toxicity and encapsulation efficiency for each solvent. By using an inexpensive hydrophilic small molecule to test a wide range of conditions, we identify optimal solvent properties for further development. We validate the predictions from this screen with preliminary protein encapsulation tests. The insight provided lays the foundation for further development of this system toward long-term room-temperature storage of biologics or toward water-in-oil-in-water biologic delivery systems.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas
17.
Molecules ; 27(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35209000

RESUMEN

Compounds that exhibit spin-crossover (SCO) type behavior have been extensively investigated due to their ability to act as molecular switches. Depending on the coordinating ligand, in this case 1H-1,2,4-triazole, and the crystallite size of the SCO compound produced, the energy requirement for the spin state transition can vary. Here, SCO [Fe(Htrz)2(trz)](BF4)] nanoparticles were synthesized using modified reverse micelle methods. Reaction conditions and reagent ratios are strictly controlled to produce nanocubes of 40-50 nm in size. Decreases in energy requirements are seen in both thermal and magnetic transitions for the smaller sized crystallites, where, compared to bulk materials, a decrease of as much as 20 °C can be seen in low to high spin state transitions.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 120911, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35131618

RESUMEN

The effect of water, confinement and confined water on the proton transfer of 3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazole (bis-HPTA) was investigated. Water alters the proton transfer process. At higher pH, an anion is formed in water and it undergoes intermolecular proton transfer and forms a keto tautomer. Confinement of molecule in ß-cyclodextrin affects the intramolecular proton transfer. It also prevents the intermolecular proton transfer of the anionic form. In reverse micelle, the molecule resides in the interfacial region and interacts with bound water. The intermolecular hydrogen bond of the surfactants opens the intramolecular hydrogen bond in the weaker ß-ring of bis-HPTA. It led to single tautomer emission from bis-HPTA. An increase in water amount enhances the relative amount of trans-enol, but predominantly tautomer emission is observed.


Asunto(s)
Protones , Agua , Enlace de Hidrógeno , Triazoles , Agua/química
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120581, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34776375

RESUMEN

To understand the stability of protein in confined environment, the near-infrared (NIR) spectra of aqueous solutions and reverse micelles (RMs) containing bovine serum albumin (BSA), human serum albumin (HSA) and ovalbumin (OVA) were measured at different temperature. With the resolution enhanced spectra calculated by continuous wavelet transform (CWT), the intensity change of the α-helix band at 4617 cm-1 with temperature shows a clear denaturation of the protein in aqueous solution but not in RMs. The effect of the confined environment on the stability of the proteins is indicated. More importantly, the intensity change of the spectral bands of water around 6956 and 6842 cm-1 provide an evidence for the denaturation, suggesting that water can be a probe exhibiting the structural change of proteins. Furthermore, comparing the spectral features of different water structures obtained by principal component analysis (PCA) from the spectra of RM with and without BSA, it is demonstrated that the bridging water connecting NH in protein and SO in the inner surface of RM may be the reason for the stabilization.


Asunto(s)
Espectroscopía Infrarroja Corta , Agua , Humanos , Análisis de Componente Principal , Albúmina Sérica Bovina , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
20.
Photochem Photobiol Sci ; 21(1): 77-89, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34839454

RESUMEN

The degradation performance of Cu-TiO2 nanomaterials towards levofloxacin (LFX) antibiotic was investigated under an environmentally benign visible LED light source. Cu-TiO2 nanomaterials were prepared using the reverse micelle sol-gel method with different copper content ranging from 0.25 to 1.0 wt% concerning titania. Characterization of Cu-TiO2 samples was performed by XRD, TEM, UV-Vis, BET, ICP-MS, FTIR and XPS techniques. 0.5 wt% Cu-TiO2 showed crystallite size below 6 nm, surface area (69.85 m2/g) and significant visible light absorption capacity. Both Cu1+ and Cu2+ are formed in lower Cu-doped TiO2 samples, whereas only Cu2+ is present in higher Cu-doped TiO2 samples as evident in XPS analysis. 0.5 wt% Cu-TiO2 has shown the optimum photocatalytic degradation of 75.5% under 6 h. of a visible light source. FTIR analysis of LFX adsorbed Cu-TiO2 materials indicated the pollutant-catalyst interaction, where the declining trend was observed in photocatalytic degradation efficiency for higher Cu-doped TiO2 samples due to copper-LFX complex formation. Copper-LFX complexes are formed due to the presence of Cu2+ in higher Cu-doped TiO2 nanomaterials, which might have hindered the photocatalytic activity under visible light. Effects of initial pollutant concentration, catalyst loading and visible light intensity on the degradation of LFX are studied. Photocatalytic degradation pathways of LFX using best performing Cu-TiO2 material were also proposed based on the LC-MS analysis.


Asunto(s)
Micelas , Nanoestructuras , Catálisis , Levofloxacino , Luz , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA