Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e22342, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38074885

RESUMEN

The investigation of a proficient photocatalytic system for the degradation of organic pollutants holds significant importance in the field of environmental management. This study presents a binary type II heterojunction photocatalyst, Bi2MoO6/g-C3N4 which is synthesized using an eco-friendly ultrasonic-assisted method. Various characterization methods (XRD, FTIR, XPS, BET, TEM, UV-vis, and PL) are used to investigate the crystalline structures, composition, surface analysis, morphology, and optical properties of the photocatalyst. All the Bi2MoO6/g-C3N4 nanocomposites show better photocatalytic activity for Rhodamine B dye (Rh-B) degradation under Ultraviolet light irradiation than the pure g-C3N4. The photocatalytic activity of the 10 % Bi2MoO6/g-C3N4 nanocomposite is found to be the greatest among the tested samples. the 10 % Bi2MoO6/g-C3N4 nanocomposite demonstrates the ability to degrade 94.6 % of Rh-B (1 × 10-5 M) within 3 h, with a rate constant of 0.015 min-1. Notably, this rate constant is 7 times greater than that observed for pure g-C3N4, which has a rate constant of 0.00218 min-1. The effect of several reaction factors on the Rhodamine B (Rh-B) removal is studied. The enhanced photocatalytic activity of 10 % Bi2MoO6/g-C3N4 nanocomposite is mainly due to the formation of 2D/2D type II structures, increasing the active sites and the separation rate of photogenerated carriers. A possible photocatalytic reaction mechanism of Rhodamine B (Rh-B) degradation over Bi2MoO6/g-C3N4 is suggested based on active species trapping experiment. Moreover, the high stability and recyclability exhibited by the 10 % Bi2MoO6/g-C3N4 nanocomposite provide strong evidence supporting its suitability as a viable photocatalyst for wastewater treatment purposes.

2.
Molecules ; 28(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36615371

RESUMEN

In this study, a V@TiO2 nanocomposite is examined for its ability to eliminate carcinogenic Rhodamine (Rh-B) dye from an aqueous medium. A simple ultrasonic method was used to produce the nanosorbent. In addition, V@TiO2 was characterized using various techniques, including XRD, HRTEM, XPS, and FTIR. Batch mode studies were used to study the removal of Rh-B dye. In the presence of pH 9, the V@TiO2 nanocomposite was able to remove Rh-B dye to its maximum extent. A correlation regression of 0.95 indicated that the Langmuir model was a better fit for dye adsorption. Moreover, the maximum adsorption capacity of the V@TiO2 nanocomposite was determined to be 158.8 mg/g. According to the thermodynamic parameters, dye adsorption followed a pseudo-first-order model. Based on the results of the study, a V@TiO2 nanocomposite can be reused for dye removal using ethanol.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Vanadio , Titanio/química , Nanocompuestos/química , Agua , Adsorción , Rodaminas , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno
3.
Water Environ Res ; 93(10): 2308-2328, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34227177

RESUMEN

The use of acid-modified mango pod (AMMP) sorbent for removing Rhodamine B (Rh-B) dye from aqueous media was investigated. Raw mango pod (RMP) and AMMP sorbents were characterized using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), powdered X-ray diffractogram (PXRD), Fourier transform infrared (FTIR), point of zero charge pH (pHpzc ), and Boehm titration (BT) techniques. Batch adsorption was employed to examine the influence of operational factors. Sorption kinetic parameters were calculated using pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The pseudo-second-order model best fitted the adsorption kinetic data most with maximum correlation coefficient (R2 > 0.99). The process of the adsorption was controlled by both boundary layer and intraparticle diffusion mechanisms. Four isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin) were utilized to analyze the equilibrium data at various temperatures. Freundlich model gave the best fit with the maximum regression (0.99), while the Langmuir isotherm model established a maximum monolayer adsorption capacity of 500 mg g-1 . Thermodynamic parameters studied revealed that the interaction is spontaneous and endothermic in nature. The cost analysis of the current study provides convincing proof that AMMP is efficient for removing Rh-B dye from solution by providing a saving of 225.2 USD/kg, which is eight times cheaper than commercial activated carbon. Consequently, the study revealed that AMMP is a viable, effective, and sustainable sorbent for Rhodamine B dye removal. PRACTITIONER POINTS: The powdered X-ray diffractogram (PXRD) showed the formation of new and intense peaks with the presence of highly organized crystalline structures on acid-modified mango pod (AMMP). Surface morphology of AMMP showed well-developed open surface pores required for effective adsorption of Rh B dye molecules. Economic feasibility of the present study showed that AMMP is more affordable than commercial activated carbon that costs USD 259.5/kg, thus translated to a saving cost of USD 225.2/kg and more than 7.5 times cheaper than the commercial activated carbon (CAC).


Asunto(s)
Mangifera , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Rodaminas , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA