Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39008022

RESUMEN

PURPOSE OF REVIEW: Spinal cord injury (SCI) is a major cause of morbidity and mortality, posing a significant financial burden on patients and the healthcare system. While little can be done to reverse the primary mechanical insult, minimizing secondary injury due to ischemia and inflammation and avoiding complications that adversely affect neurologic outcome represent major goals of management. This article reviews important considerations in the acute critical care management of SCI to improve outcomes. RECENT FINDINGS: Neuroprotective agents, such as riluzole, may allow for improved neurologic recovery but require further investigation at this time. Various forms of neuromodulation, such as transcranial magnetic stimulation, are currently under investigation. Early decompression and stabilization of SCI is recommended within 24 h of injury when indicated. Spinal cord perfusion may be optimized with a mean arterial pressure goal from a lower limit of 75-80 to an upper limit of 90-95 mmHg for 3-7 days after injury. The use of corticosteroids remains controversial; however, initiation of a 24-h infusion of methylprednisolone 5.4 mg/kg/hour within 8 h of injury has been found to improve motor scores. Attentive pulmonary and urologic care along with early mobilization can reduce in-hospital complications.

2.
Neurospine ; 21(2): 375-400, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38955515

RESUMEN

Degenerative cervical myelopathy (DCM) is the leading cause of spinal cord dysfunction in adults, representing substantial morbidity and significant financial and resource burdens. Typically, patients with progressive DCM will eventually receive surgical treatment. Nonetheless, despite advancements in pharmacotherapeutics, evidence for pharmacological therapy remains limited. Health professionals from various fields would find interest in pharmacological agents that could benefit patients with mild DCM or enhance surgical outcomes. This review aims to consolidate all clinical and experimental evidence on the pharmacological treatment of DCM. We conducted a comprehensive narrative review that presents all pharmacological agents that have been investigated for DCM treatment in both humans and animal models. Riluzole exhibits effectiveness solely in rat models, but not in treating mild DCM in humans. Cerebrolysin emerges as a potential neuroprotective agent for myelopathy in animals but had contradictory results in clinical trials. Limaprost alfadex demonstrates motor function improvement in animal models and exhibits promising outcomes in a small clinical trial. Glucocorticoids not only fail to provide clinical benefits but may also lead to adverse events. Cilostazol, anti-Fas ligand antibody, and Jingshu Keli display promise in animal studies, while erythropoietin, granulocyte colony-stimulating factor and limaprost alfadex exhibit potential in both animal and human research. Existing evidence mainly rests on weak clinical data and animal experimentation. Current pharmacological efforts target ion channels, stem cell differentiation, inflammatory, vascular, and apoptotic pathways. The inherent nature and pathogenesis of DCM offer substantial prospects for developing neurodegenerative or neuroprotective therapies capable of altering disease progression, potentially delaying surgical intervention, and optimizing outcomes for those undergoing surgical decompression.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38973130

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a rare multisystem neurodegenerative disease leading to death due to respiratory failure. Riluzole was the first disease modifying treatment approved in ALS. Randomized clinical trials showed a significant benefit of riluzole on survival in the months following randomization, with a good safety profile. 'Real-world' studies suggested that the survival benefit of riluzole is substantially greater, with an extended survival ranging between 6 and 19 months. The main limiting associated adverse effects of riluzole are non-severe gastrointestinal complications and an elevation of liver enzymes, observed in 10% of patients. While different classes of drugs have been approved in some countries, riluzole remains the gold standard of therapy. Dysphagia induced by ALS is a major challenge for food intake and riluzole administration. Tablet crushing is associated with a loss of drug intake and a risk of powder aspiration, which jeopardizes the benefits of riluzole. Riluzole oral suspension (ROS) and oral film (ROF) allow riluzole intake in patients with dysphagia. Both formulations are bioequivalent to riluzole tablets with a good safety profile albeit transient oral hypoaesthesia. In case of severe dysphagia, ROS can be used with percutaneous endoscopic gastrostomy. ROF, the last approved formulation, requires low swallowing capacities and may contribute to maintain the efficacy of riluzole when tablets are inadequate according to patient's status and/or preferences. To optimize treatment continuity in newly diagnosed patients, the expected psychological impact of formulation switching that may be perceived as the sign of disease progression should be anticipated.

4.
Biomed Pharmacother ; 176: 116887, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852511

RESUMEN

BACKGROUND: The metastasis of tumors into bone tissue typically leads to intractable pain that is both very disabling and particularly difficult to manage. We investigated here whether riluzole could have beneficial effects for the treatment of prostate cancer-induced bone pain and how it could influence the development of bone metastasis. METHODS: We used a bone pain model induced by intratibial injection of human PC3 prostate cancer cells into male SCID mice treated or not with riluzole administered in drinking water. We also used riluzole in vitro to assess its possible effect on PC3 cell viability and functionality, using patch-clamp. RESULTS: Riluzole had a significant preventive effect on both evoked and spontaneous pain involving the TREK-1 potassium channel. Riluzole did not interfere with PC3-induced bone loss or bone remodeling in vivo. It also significantly decreased PC3 cell viability in vitro. The antiproliferative effect of riluzole is correlated with a TREK-1-dependent membrane hyperpolarization in these cells. CONCLUSION: The present data suggest that riluzole could be very useful to manage evoked and spontaneous hypersensitivity in cancer-induced bone pain and has no significant adverse effect on cancer progression.


Asunto(s)
Analgésicos , Neoplasias Óseas , Dolor en Cáncer , Proliferación Celular , Ratones SCID , Canales de Potasio de Dominio Poro en Tándem , Riluzol , Riluzol/farmacología , Animales , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Masculino , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Neoplasias Óseas/patología , Neoplasias Óseas/complicaciones , Humanos , Dolor en Cáncer/tratamiento farmacológico , Dolor en Cáncer/metabolismo , Analgésicos/farmacología , Proliferación Celular/efectos de los fármacos , Células PC-3 , Ratones , Supervivencia Celular/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral
5.
Sci Rep ; 14(1): 12118, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802492

RESUMEN

Amyotrophic lateral sclerosis (ALS) selectively affects motor neurons. SOD1 is the first causative gene to be identified for ALS and accounts for at least 20% of the familial (fALS) and up to 4% of sporadic (sALS) cases globally with some geographical variability. The destabilisation of the SOD1 dimer is a key driving force in fALS and sALS. Protein aggregation resulting from the destabilised SOD1 is arrested by the clinical drug ebselen and its analogues (MR6-8-2 and MR6-26-2) by redeeming the stability of the SOD1 dimer. The in vitro target engagement of these compounds is demonstrated using the bimolecular fluorescence complementation assay with protein-ligand binding directly visualised by co-crystallography in G93A SOD1. MR6-26-2 offers neuroprotection slowing disease onset of SOD1G93A mice by approximately 15 days. It also protected neuromuscular junction from muscle denervation in SOD1G93A mice clearly indicating functional improvement.


Asunto(s)
Esclerosis Amiotrófica Lateral , Azoles , Isoindoles , Compuestos de Organoselenio , Superóxido Dismutasa-1 , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Animales , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Isoindoles/farmacología , Ratones , Azoles/farmacología , Humanos , Ratones Transgénicos , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
7.
Eur J Med Chem ; 272: 116496, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38759454

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the first and second motoneurons (MNs), associated with muscle weakness, paralysis and finally death. The exact etiology of the disease still remains unclear. Currently, efforts to develop novel ALS treatments which target specific pathomechanisms are being studied. The mechanisms of ALS pathogenesis involve multiple factors, such as protein aggregation, glutamate excitotoxicity, oxidative stress, mitochondrial dysfunction, apoptosis, inflammation etc. Unfortunately, to date, there are only two FDA-approved drugs for ALS, riluzole and edavarone, without curative treatment for ALS. Herein, we give an overview of the many pathways and review the recent discovery and preclinical characterization of neuroprotective compounds. Meanwhile, drug combination and other therapeutic approaches are also reviewed. In the last part, we analyze the reasons of clinical failure and propose perspective on the treatment of ALS in the future.


Asunto(s)
Esclerosis Amiotrófica Lateral , Fármacos Neuroprotectores , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Animales
8.
Biomed Pharmacother ; 174: 116602, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636396

RESUMEN

The development of new molecules for the treatment of calmodulin related cardiovascular or neurodegenerative diseases is an interesting goal. In this work, we introduce a novel strategy with four main steps: (1) chemical synthesis of target molecules, (2) Förster Resonance Energy Transfer (FRET) biosensor development and in vitro biological assay of new derivatives, (3) Cheminformatics models development and in vivo activity prediction, and (4) Docking studies. This strategy is illustrated with a case study. Firstly, a series of 4-substituted Riluzole derivatives 1-3 were synthetized through a strategy that involves the construction of the 4-bromoriluzole framework and its further functionalization via palladium catalysis or organolithium chemistry. Next, a FRET biosensor for monitoring Ca2+-dependent CaM-ligands interactions has been developed and used for the in vitro assay of Riluzole derivatives. In particular, the best inhibition (80%) was observed for 4-methoxyphenylriluzole 2b. Besides, we trained and validated a new Networks Invariant, Information Fusion, Perturbation Theory, and Machine Learning (NIFPTML) model for predicting probability profiles of in vivo biological activity parameters in different regions of the brain. Next, we used this model to predict the in vivo activity of the compounds experimentally studied in vitro. Last, docking study conducted on Riluzole and its derivatives has provided valuable insights into their binding conformations with the target protein, involving calmodulin and the SK4 channel. This new combined strategy may be useful to reduce assay costs (animals, materials, time, and human resources) in the drug discovery process of calmodulin inhibitors.


Asunto(s)
Calmodulina , Fármacos Cardiovasculares , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores , Riluzol , Riluzol/análogos & derivados , Riluzol/síntesis química , Riluzol/química , Riluzol/farmacología , Calmodulina/antagonistas & inhibidores , Calmodulina/química , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Cardiovasculares/síntesis química , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacología , Desarrollo de Medicamentos , Simulación del Acoplamiento Molecular/métodos , Técnicas Biosensibles , Aprendizaje Automático , Humanos , Animales , Línea Celular , Transferencia Resonante de Energía de Fluorescencia/métodos , Encéfalo/efectos de los fármacos , Ligandos , Conformación Proteica
9.
Front Pharmacol ; 15: 1380655, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638868

RESUMEN

Background: The unique microenvironment in tumors inhibits the normal functioning of tumor-infiltrating lymphocytes, leading to immune evasion and cancer progression. Over-activation of KCa3.1 using positive modulators has been proposed to rescue the anti-tumor response. One of the key characteristics of the tumor microenvironment is extracellular acidity. Herein, we analyzed how intra- and extracellular pH affects K+ currents through KCa3.1 and if the potency of two of its positive modulators, Riluzole and SKA-31, is pH sensitive. Methods: Whole-cell patch-clamp was used to measure KCa3.1 currents either in activated human peripheral lymphocytes or in CHO cells transiently transfected with either the H192A mutant or wild-type hKCa3.1 in combination with T79D-Calmodulin, or with KCa2.2. Results: We found that changes in the intra- and extracellular pH minimally influenced the KCa3.1-mediated K+ current. Extracellular pH, in the range of 6.0-8.0, does not interfere with the capacity of Riluzole and SKA-31 to robustly activate the K+ currents through KCa3.1. Contrariwise, an acidic intracellular solution causes a slow, but irreversible loss of potency of both the activators. Using different protocols of perfusion and depolarization we demonstrated that the loss of potency is strictly time and pH-dependent and that this peculiar effect can be observed with a structurally similar channel KCa2.2. While two different point mutations of both KCa3.1 (H192A) and its associated protein Calmodulin (T79D) do not limit the effect of acidity, increasing the cytosolic Ca2+ concentration to saturating levels eliminated the loss-of-potency phenotype. Conclusion: Based on our data we conclude that KCa3.1 currents are not sensitive the either the intracellular or the extracellular pH in the physiological and pathophysiological range. However, intracellular acidosis in T cells residing in the tumor microenvironment could hinder the potentiating effect of KCa3.1 positive modulators administered to boost their activity. Further research is warranted both to clarify the molecular interactions between the modulators and KCa3.1 at different intracellular pH conditions and to define whether this loss of potency can be observed in cancer models as well.

10.
Cancers (Basel) ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672652

RESUMEN

Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles.

11.
Anticancer Res ; 44(5): 1829-1835, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677733

RESUMEN

BACKGROUND/AIM: Glioblastoma multiforme (GBM)-induced oedema is a major cause of morbidity and mortality among patients with GBM. Dexamethasone (Dex) is the most common corticosteroid used pre-operatively to control cerebral oedema in patients with GBM. Dex is associated with many side effects, and shorter overall survival and progression-free survival of patients with GBM. These negative effects of Dex highlight the need for combinational therapy. Riluzole (Ril), a drug used to treat amyotrophic lateral sclerosis (ALS), is thought to have potential as a treatment for various cancers, with clinical trials underway. Here, we investigated whether Ril could reverse some of the undesirable effects of Dex. MATERIALS AND METHODS: The effect of Dex, Ril, and Ril-Dex treatment on cell migration was monitored using the xCELLigence system. Cell viability assays were performed using 3-(4, 5-dimethylthiazol)-2, 5-diphenyltetrazolium bromide (MTT). The expression of genes involved in migration, glucose metabolism, and stemness was examined using real-time polymerase chain reaction (PCR). RESULTS: Pre-treating GBM cells with Ril reduced Dex-induced cell migration and altered Dex-induced effects on cell invasion, stem cell, and glucose metabolism markers. Furthermore, Ril remained effective in killing GBM cells in combination with Dex. CONCLUSION: Ril, which acts as an anti-tumorigenic drug, mediates some of the negative effects of Dex; therefore, it could be a potential drug to manage the side effects of Dex therapy in GBM.


Asunto(s)
Movimiento Celular , Dexametasona , Glioblastoma , Riluzol , Riluzol/farmacología , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Dexametasona/farmacología , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Supervivencia Celular/efectos de los fármacos
12.
Free Radic Biol Med ; 217: 126-140, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38531462

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which the death of motor neurons leads to loss of muscle function. Additionally, cognitive and circadian disruptions are common in ALS patients, contributing to disease progression and burden. Most ALS cases are sporadic, and environmental exposures contribute to their aetiology. However, animal models of these sporadic ALS cases are scarce. The small vertebrate zebrafish is a leading organism to model neurodegenerative diseases; previous studies have proposed bisphenol A (BPA) or ß-methylamino-l-alanine (BMAA) exposure to model sporadic ALS in zebrafish, damaging motor neurons and altering motor responses. Here we characterise the face and predictive validity of sporadic ALS models, showing their potential for the mechanistic study of ALS drugs. We phenotypically characterise the BPA and BMAA-induced models, going beyond motor activity and motor axon morphology, to include circadian, redox, proteostasis, and metabolomic phenotypes, and assessing their predictive validity for ALS modelling. BPA or BMAA exposure induced concentration-dependent activity impairments. Also, exposure to BPA but not BMAA induced motor axonopathy and circadian alterations in zebrafish larvae. Our further study of the BPA model revealed loss of habituation to repetitive startles, increased oxidative damage, endoplasmic reticulum (ER) stress, and metabolome abnormalities. The BPA-induced model shows predictive validity, since the approved ALS drug edaravone counteracted BPA-induced motor phenotypes, ER stress, and metabolic disruptions. Overall, BPA exposure is a promising model of ALS-related redox and ER imbalances, contributing to fulfil an unmet need for validated sporadic ALS models.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Animales , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Edaravona , Pez Cebra , Oxidación-Reducción
13.
Exp Neurol ; 375: 114717, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38336286

RESUMEN

Cancer-related cognitive impairments (CRCI) are neurological complications associated with cancer treatment, and greatly affect cancer survivors' quality of life. Brain-derived neurotrophic factor (BDNF) plays an essential role in neurogenesis, learning and memory. The reduction of BDNF is associated with the decrease in cognitive function in various neurological disorders. Few pre-clinical studies have reported on the effects of chemotherapy and medical stress on BDNF levels and cognition. The present study aimed to compare the effects of medical stress and cisplatin on serum BDNF levels and cognitive function in 9-month-old female Sprague Dawley rats to age-matched controls. Serum BDNF levels were collected longitudinally during cisplatin treatment, and cognitive function was assessed by novel object recognition (NOR) 14 weeks post-cisplatin initiation. Terminal BDNF levels were collected 24 weeks after cisplatin initiation. In cultured hippocampal neurons, we screened three neuroprotective agents, riluzole (an approved treatment for amyotrophic lateral sclerosis), as well as the ampakines CX546 and CX1739. We assessed dendritic arborization by Sholl analysis and dendritic spine density by quantifying postsynaptic density-95 (PSD-95) puncta. Cisplatin and exposure to medical stress reduced serum BDNF levels and impaired object discrimination in NOR compared to age-matched controls. Pharmacological BDNF augmentation protected neurons against cisplatin-induced reductions in dendritic branching and PSD-95. Ampakines (CX546 and CX1739) and riluzole did not affect the antitumor efficacy of cisplatin in vitro. In conclusion, we established the first middle-aged rat model of cisplatin-induced CRCI, assessing the contribution of medical stress and longitudinal changes in BDNF levels on cognitive function, although future studies are warranted to assess the efficacy of BDNF enhancement in vivo on synaptic plasticity. Collectively, our results indicate that cancer treatment exerts long-lasting changes in BDNF levels, and support BDNF enhancement as a potential preventative approach to target CRCI with therapeutics that are FDA approved and/or in clinical study for other indications.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cisplatino , Ratas , Animales , Femenino , Cisplatino/toxicidad , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratas Sprague-Dawley , Regulación hacia Abajo , Calidad de Vida , Riluzol/farmacología , Hipocampo/metabolismo , Homólogo 4 de la Proteína Discs Large
14.
Anal Bioanal Chem ; 416(7): 1707-1716, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38363306

RESUMEN

Glutamate is the main excitatory neurotransmitter in the brain and plays a leading role in degenerative diseases, such as motor neuron diseases. Riluzole is a glutamate regulator and a therapeutic drug for motor neuron diseases. In this work, the interaction between glutamate and riluzole was studied using cyclic voltammetry and square-wave voltammetry at a glassy carbon electrode (GCE). It was shown that glutamate underwent a two-electron transfer reaction on the GCE surface, and the electrochemical detection limits of glutamate and riluzole were 483 µmol/L and 11.47 µmol/L, respectively. The results confirm that riluzole can promote the redox reaction of glutamate. This work highlights the significance of electrochemical technology in the sensing detection of the interaction between glutamate and related psychotropic drugs.


Asunto(s)
Enfermedad de la Neurona Motora , Riluzol , Humanos , Riluzol/farmacología , Ácido Glutámico , Carbono , Psicotrópicos , Oxidación-Reducción , Electrodos , Técnicas Electroquímicas/métodos
15.
Neurotrauma Rep ; 5(1): 117-127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414779

RESUMEN

Traumatic spinal cord injury (SCI) is a cause of significant morbidity, often resulting in long-term disability. We aimed to compare outcomes after riluzole versus patients who received placebo or standard of care with no specific intervention. MEDLINE, Embase, Scopus, and Cochrane Library database searches yielded 92 records, and five met the study inclusion criteria. Fixed-effect and random-effects models were used to establish odds ratios (ORs) and mean difference (MD) with 95% confidence intervals (CIs) for each outcome. The results of the pooled analysis showed that in patients with acute traumatic SCI, riluzole resulted in increased American Spinal Injury Association (ASIA) motor scores at 3 months (MD 0.26, 95% CI [-0.10,0.61], I2 = 0%; p = 0.157) and 6 months (MD 0.21, 95% CI [-0.17,0.60], I2 = 0%; p = 0.280) and change in ASIA Impairment Scale (AIS) at 3 months (OR 0.59, 95% CI [-0.12,1.30], I2 = 0%, p = 0.101) and 6 months (OR 0.28, 95% CI [-0.50,1.06], I2 = 0%, p = 0.479) in comparison to the control groups, though not to a level of statistical significance. Riluzole resulted in fewer adverse events than the control groups (OR -0.12, 95% CI [-1.59,1.35], I2 = 0%, p = 0.874) and lower mortality (OR -0.20, 95% CI [-1.03,0.63], I2 = 0%, p = 0.640), though also not to a level of statistical significance. These meta-analyses suggest that riluzole for the treatment of traumatic SCI is safe and results in improved neurological outcomes when compared to controls, though not to a level of statistical significance. More robust prospective, randomized studies are necessary to help inform the safety and efficacy of riluzole for traumatic SCI.

16.
Pharmacoepidemiol Drug Saf ; 33(1): e5736, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38014926

RESUMEN

PURPOSE: Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease. Riluzole may increase survival and delay the need for mechanical ventilation. The CAESAR project ('Comparative evaluation of the efficacy and safety of drugs used in rare neuromuscular and neurodegenerative diseases', FV AIFA project 2012-2013-2014) involves evaluating prescribing patterns, and analysing effectiveness and comparative safety of drugs, in patients with neurodegenerative diseases. The aim of this study is to evaluate adherence to riluzole in patients with ALS during the first year of use, identifying adherence clusters. METHODS: A retrospective cohort study was conducted using administrative data from Latium, Tuscany, and Umbria. We identified subjects with a new diagnosis of ALS between 2014 and 2019, with the first dispensation of riluzole within 180 days of diagnosis. We considered a two-year look-back period for the characterization of patients, and we followed them from the date of first dispensing of riluzole for 1 year. We calculated 12 monthly adherence measures, through a modified version of the Medication Possession Ratio, estimating drug coverage with Defined Daily Dose. Adherence trajectories were identified using a three-step method: (1) calculation of statistical measures; (2) principal component analysis; (3) cluster analysis. Patient characteristics at baseline and during follow-up were described and compared between adherence groups identified. RESULTS: We included 264 ALS patients as new users of riluzole in Latium, 344 in Tuscany, and 63 in Umbria. We observed a higher frequency of males (56.2%) and a mean age of 67.4 (standard deviation, SD, 10.4) in the overall population. We identified two clusters in all regions: one more numerous, including adherent patients (60%, 74%, 88%, respectively), and another one including patients who discontinued therapy (40%, 26%, 12%, respectively). In Tuscany patients discontinuing riluzole more frequently died (28.6% vs. 15.4%, p-value <0.01). Additionally, low-adherers had a higher frequency of central nervous system disorders (69.0% vs. 52.5%, p-value 0.01), and a greater use of non-pharmacological treatments (p-values ≤0.01 for invasive ventilation and tracheostomy). We did not observe any differences in Lazio, whereas in Umbria we observed a higher use of drugs for dementia-related psychiatric problems among low-adherers (57.1% vs. 7.8%, respectively, p-value <0.01), although with small numbers. CONCLUSION: Most ALS patients who start riluzole adhere to therapy during the first year. Patients who discontinue therapy early show greater fragility and mortality.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Masculino , Humanos , Anciano , Riluzol/efectos adversos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/inducido químicamente , Estudios Retrospectivos , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Italia/epidemiología
17.
Fundam Clin Pharmacol ; 38(2): 225-237, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37753585

RESUMEN

BACKGROUND: Despite several hundred clinical trials of drugs that initially showed promise, there has been limited clinical improvement in Alzheimer's disease (AD). This may be attributed to the existence of at least 25 abnormal cellular pathways that underlie the disease. It is improbable for a single drug to address all or most of these pathways, thus even drugs that show promise when administered alone are unlikely to produce significant results. According to previous studies, eight drugs, namely, dantrolene, erythropoietin, lithium, memantine, minocycline, piracetam, riluzole, and silymarin, have been found to target multiple pathways that are involved in the development of AD. Among these drugs, riluzole is currently indicated for the treatment of medical conditions in both adult patients and children and has gained increased attention from scientists due to its potential in the excitotoxic hypothesis of neurodegenerative diseases. OBJECTIVE: The aim of this study was to investigate the effects of drugs on AD based on cellular and molecular mechanisms. METHODS: The literature search for this study utilized the Scopus, ScienceDirect, PubMed, and Google Scholar databases to identify relevant articles. RESULTS: Riluzole exerts its effects in AD through diverse pathways including the inhibition of voltage-dependent sodium and calcium channels, blocking AMPA and NMDA receptors and inhibiting the release of glutamic acid release and stimulation of EAAT1-EAAT2. CONCLUSION: In this review article, we aimed to review the neuroprotective properties of riluzole, a glutamate modulator, in AD, which could benefit patients with the disease.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Niño , Humanos , Riluzol/farmacología , Riluzol/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Memantina/farmacología , Memantina/uso terapéutico
18.
Artículo en Inglés | MEDLINE | ID: mdl-38063139

RESUMEN

Melanoma is the most aggressive type of skin cancer and is responsible for the majority of deaths from skin cancer. Therapeutic advances in the last few decades, notably the development of novel targeted therapies and immunotherapies have significantly improved patient outcomes; nonetheless, these options remain limited due to the onset of resistance to treatment modalities and relapse. In this review, we focus on the available therapeutic options, their benefits, and limitations.

19.
Curr Res Physiol ; 6: 100109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107787

RESUMEN

High affinity methylaminoisobutyric acid(MeAIB)/glutamine(Gln) transport activity regulated by neuronal firing occurs at the plasma membrane in mature rat hippocampal neuron-enriched cultures. Spontaneous Ca2+-regulated transport activity was similarly inhibited by riluzole, a benzothiazole anticonvulsant agent, and by novel naphthalenyl substituted aminothiazole derivatives such as SKA-378. Here, we report that spontaneous transport activity is stimulated by 4-aminopyridine (4-AP) and that phorbol-myristate acetate (PMA) increases high K+ stimulated transport activity that is inhibited by staurosporine. 4-AP-stimulated spontaneous and PMA-stimulated high K+-induced transport is not present at 7 days in vitro (DIV) and is maximal by DIV∼21. The relative affinity for MeAIB is similar for spontaneous and high K+-stimulated transport (Km âˆ¼ 50 µM) suggesting that a single transporter is involved. While riluzole and SKA-378 inhibit spontaneous transport with equal potency (IC50 ∼ 1 µM), they exhibit decreased (∼3-5 X) potency for 4-AP-stimulated spontaneous transport. Interestingly, high K+-stimulated MeAIB transport displays lower and differential sensitivity to the two compounds. SKA-378-related halogenated derivatives of SKA-75 (SKA-219, SKA-377 and SKA-375) preferentially inhibit high K+-induced expression of MeAIB transport activity at the plasma membrane (IC50 < 25 µM), compared to SKA-75 and riluzole (IC50 > 100 µM). Ca2+-dependent spontaneous and high K+-stimulated MeAIB transport activity is blocked by ω-conotoxin MVIIC, ω-agatoxin IVA, ω-agatoxin TK (IC50 ∼ 500 nM) or cadmium ion (IC50 ∼ 20 µM) demonstrating that P/Q-type CaV channels that are required for activity-regulated presynaptic vesicular glutamate (Glu) release are also required for high-affinity MeAIB transport expression at the plasma membrane. We suggest that neural activity driven and Ca2+ dependent trafficking of the high affinity MeAIB transporter to the plasma membrane is a unique target to understand mechanisms of Glu/Gln recycling in synapses and acute neuroprotection against excitotoxic presynaptic Glu induced neural injury.

20.
Pharmaceutics ; 15(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38004616

RESUMEN

In our previous study, riluzole azo-linked to salicylic acid (RAS) was prepared as a colon-targeted prodrug of riluzole (RLZ) to facilitate the repositioning of RLZ as an anticolitic drug. RAS is more effective against rat colitis than RLZ and sulfasalazine, currently used as an anti-inflammatory bowel disease drug. The aim of this study is to further improve colon specificity, anticolitic potency, and safety of RAS. N-succinylaspart-1-ylRLZ (SAR) and N-succinylglutam-1-ylRLZ (SGR) were synthesized and evaluated as a "me-better" colon-targeted prodrug of RLZ against rat colitis. SAR but not SGR was converted to RLZ in the cecal contents, whereas both conjugates remained intact in the small intestine. When comparing the colon specificity of SAR with that of RAS, the distribution coefficient and cell permeability of SAR were lower than those of RAS. In parallel, oral SAR delivered a greater amount of RLZ to the cecum of rats than oral RAS. In a DNBS-induced rat model of colitis, oral SAR mitigated colonic damage and inflammation and was more potent than oral RAS. Moreover, upon oral administration, SAR had a greater ability to limit the systemic absorption of RLZ than RAS, indicating a reduced risk of systemic side effects of SAR. Taken together, SAR may be a "me-better" colon-targeted prodrug of RLZ to improve the safety and anticolitic potency of RAS, an azo-type colon-targeted prodrug of RLZ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...