Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Front Pharmacol ; 15: 1361838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576487

RESUMEN

Drug-associated pathological memory remains a critical factor contributing to the persistence of substance use disorder. Pharmacological amnestic manipulation to interfere with drug memory reconsolidation has shown promise for the prevention of relapse. In a rat heroin self-administration model, we examined the impact of rimonabant, a selective cannabinoid receptor indirect agonist, on the reconsolidation process of heroin-associated memory. The study showed that immediately administering rimonabant after conditioned stimuli (CS) exposure reduced the cue- and herion + cue-induced heroin-seeking behavior. The inhibitory effects lasted for a minimum of 28 days. The effect of Rimonabant on reduced drug-seeking was not shown when treated without CS exposure or 6 hours after CS exposure. These results demonstrate a disruptive role of rimonabant on the reconsolidation of heroin-associated memory and the therapeutic potential in relapse control concerning substance use disorder.

2.
ACS Chem Neurosci ; 15(8): 1669-1683, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38575140

RESUMEN

The cannabinoid receptor 1 (CB1) is famous as the target of Δ9-tetrahydrocannabinol (THC), which is the active ingredient of marijuana. Suppression of CB1 is frequently suggested as a drug target or gene therapy for many conditions (e.g., obesity, Parkinson's disease). However, brain networks affected by CB1 remain elusive, and unanticipated psychological effects in a clinical trial had dire consequences. To better understand the whole brain effects of CB1 suppression we performed in vivo imaging on mice under complete knockout of the gene for CB1 (cnr1-/-) and also under the CB1 inverse agonist rimonabant. We examined white matter structural changes and brain function (network activity and directional uniformity) in cnr1-/- mice. In cnr1-/- mice, white matter (in both sexes) and functional directional uniformity (in male mice) were altered across the brain but network activity was largely unaltered. Conversely, under rimonabant, functional directional uniformity was not altered but network activity was altered in cortical regions, primarily in networks known to be altered by THC (e.g., neocortex, hippocampal formation). However, rimonabant did not alter many brain regions found in both our cnr1-/- results and previous behavioral studies of cnr1-/- mice (e.g., thalamus, infralimbic area). This suggests that chronic loss of cnr1 is substantially different from short-term suppression, subtly rewiring the brain but largely maintaining the network activity. Our results help explain why pathological mutations in CB1 (e.g., chronic pain) do not always provide insight into the side effects of CB1 suppression (e.g., clinical depression), and thus urge more preclinical studies for any drugs that suppress CB1.


Asunto(s)
Agonismo Inverso de Drogas , Piperidinas , Femenino , Ratones , Masculino , Animales , Rimonabant/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Ratones Noqueados , Encéfalo , Receptores de Cannabinoides , Receptor Cannabinoide CB1/genética , Dronabinol/farmacología
3.
Cell Biochem Funct ; 42(2): e3980, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38491827

RESUMEN

The aim of this study was the identification of luteolin in Prosopis farcta extract (PFE) and melatonin to evaluate its effect on THC withdrawal syndrome in mice. Luteolin was identified by high-performance liquid chromatography (HPCL). Signs of toxicity of mice in PFE and luteolin were monitored for LD50 calculation. The behavioral symptoms of THC withdrawal (stereotypies, ambulation, and inactivity time) induced by the rimonabant challenge were illustrated in THC-dependent mice receiving PFE, luteolin, and melatonin. The expression of mature BDNF (mBDNF) was evaluated by Western blot analysis. The dopamine concentrations were measured using HPLC. PFE and luteolin LD50 were 650 and 220 mg/kg, respectively. PFE (300 mg/kg), all doses of luteolin, and melatonin increased significantly the mBDNF expression and decreased the dopamine concentration. The findings suggest that PFE, luteolin, and melatonin are mighty in reducing the signs of THC withdrawal. It seems these effects were due to a decrease in dopamine concentration level and an increase in mBDNF protein expression in mice brains.


Asunto(s)
Cannabis , Melatonina , Prosopis , Síndrome de Abstinencia a Sustancias , Ratones , Animales , Prosopis/química , Luteolina/farmacología , Factor Neurotrófico Derivado del Encéfalo , Dopamina , Melatonina/farmacología , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Extractos Vegetales/farmacología , Dronabinol
4.
EMBO Mol Med ; 16(4): 755-783, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514794

RESUMEN

Cereblon/CRBN is a substrate-recognition component of the Cullin4A-DDB1-Roc1 E3 ubiquitin ligase complex. Destabilizing mutations in the human CRBN gene cause a form of autosomal recessive non-syndromic intellectual disability (ARNSID) that is modelled by knocking-out the mouse Crbn gene. A reduction in excitatory neurotransmission has been proposed as an underlying mechanism of the disease. However, the precise factors eliciting this impairment remain mostly unknown. Here we report that CRBN molecules selectively located on glutamatergic neurons are necessary for proper memory function. Combining various in vivo approaches, we show that the cannabinoid CB1 receptor (CB1R), a key suppressor of synaptic transmission, is overactivated in CRBN deficiency-linked ARNSID mouse models, and that the memory deficits observed in these animals can be rescued by acute CB1R-selective pharmacological antagonism. Molecular studies demonstrated that CRBN interacts physically with CB1R and impairs the CB1R-Gi/o-cAMP-PKA pathway in a ubiquitin ligase-independent manner. Taken together, these findings unveil that CB1R overactivation is a driving mechanism of CRBN deficiency-linked ARNSID and anticipate that the antagonism of CB1R could constitute a new therapy for this orphan disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Trastornos de la Memoria , Ubiquitina-Proteína Ligasas , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mutación , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo
5.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686233

RESUMEN

The spread of breast cancer to distant sites is the major cause of death in breast cancer patients. Increasing evidence supports the role of the tumor microenvironment (TME) in breast cancers, and its pathologic assessment has become a diagnostic and therapeutic tool. In the TME, a bidirectional interplay between tumor and stromal cells occurs, both at the primary and metastatic site. Hundreds of molecules, including cytokines, chemokines, and growth factors, contribute to this fine interaction to promote tumor spreading. Here, we investigated the effects of Rimonabant and Cannabidiol, known for their antitumor activity, on reprogramming the breast TME. Both compounds directly affect the activity of several pathways involved in breast cancer progression. To mimic tumor-stroma interactions during breast-to-lung metastasis, we investigated the effect of the compounds on growth factor secretion from metastatic breast cancer cells and normal and activated lung fibroblasts. In this setting, we demonstrated the anti-metastatic potential of the two compounds, and the membrane array analyses highlighted their ability to alter the release of factors involved in the autocrine and paracrine regulation of tumor proliferation, angiogenesis, and immune reprogramming. The results enforce the antitumor potential of Rimonabant and Cannabidiol, providing a novel potential tool for breast cancer TME management.


Asunto(s)
Neoplasias de la Mama , Cannabidiol , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Cannabidiol/farmacología , Rimonabant/farmacología , Microambiente Tumoral , Melanoma Cutáneo Maligno
6.
Pan Afr Med J ; 45: 6, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346921

RESUMEN

Introduction: treatment of HIV infection with Protease Inhibitors (PIs) and Nucleoside Reverse Transcriptase Inhibitors (NRTIs) can lead to insulin resistance and changes in body fat distribution. Overactivity of the endogenous cannabinoid system produces similar disturbances in metabolic syndrome within the general population. However, Cannabinoid receptor type 1 antagonism, in both human and animal studies, reverses many of these biochemical and physical derangements observed in the metabolic syndrome. Methods: using an experimental study design, fifteen adult male Sprague-Dawley rats housed under standard conditions were randomized into three groups; Control, combined Anti-Retroviral Therapy (cART) only and cART + rimonabant. Drugs were administered daily by oral gavage for four weeks. After four weeks, insulin tolerance tests were conducted, the rats were euthanised and fat depots were excised and weighed. Experimental data were analysed using STATA 16.0 with the significance level set at p<0.05. The Shapiro-Wilk test determined normalcy. In cases of significance, post hoc analysis was performed by either the Dunn test or the Tukey HSD test. Results: Sprague Dawley rats treated with cART + rimonabant demonstrated better insulin sensitivity (p = 0.0239) and lower body weight (p = 0.044) than rats treated with cART alone. They had leaner body composition with 58% less adiposity than cART-only rats. Conclusion: the study results suggest a role for the endogenous cannabinoid system in cART induced metabolic derangements and physical changes. Future studies can directly assay ECS activity in cART associated metabolic syndrome.


Asunto(s)
Fármacos Anti-VIH , Cannabinoides , Intolerancia a la Glucosa , Infecciones por VIH , Síndrome Metabólico , Adulto , Humanos , Masculino , Ratas , Animales , Zidovudina/uso terapéutico , Lopinavir/uso terapéutico , Ritonavir/farmacología , Ritonavir/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Ratas Sprague-Dawley , Rimonabant/farmacología , Rimonabant/uso terapéutico , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/prevención & control , Cannabinoides/uso terapéutico
7.
Chemistry ; 29(45): e202300702, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37272609

RESUMEN

A simple and efficient one-pot oxidation synthesis of N-1-piperidonyl amides was successfully developed through the double oxidation of hydrazides (involving hydrazonium formation, azodioxy-carbonyl compounds generation, and α-carbon oxidation) by using meta-chloroperbenzoic acid (mCPBA). The convenient oxidation method was also extended to Rimonabant analogue. The lactam oxidized Rimonabant analogue was first successfully synthesized for demonstrating the construction and characterized by NMR spectroscopic methods and the single-crystal X-ray diffraction study (ORTEP).

8.
Chin Med Sci J ; 38(1): 29-37, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36851888

RESUMEN

Objective We aimed to investigate whether antagonism of the cannabinoid CB1 receptor (CB1R) could affect novel object recognition (NOR) memory in chronically rapid eye movement sleep-deprived (RSD) rats.Methods The animals were examined for recognition memory following a 7-day chronic partial RSD paradigm using the multiple platform technique. The CB1R antagonist rimonabant (1 or 3 mg/kg, i.p.) was administered either at one hour prior to the sample phase for acquisition, or immediately after the sample phase for consolidation, or at one hour before the test phase for retrieval of NOR memory. For the reconsolidation task, rimonabant was administered immediately after the second sample phase.Results The RSD episode impaired acquisition, consolidation, and retrieval, but it did not affect the reconsolidation of NOR memory. Rimonabant administration did not affect acquisition, consolidation, and reconsolidation; however, it attenuated impairment of the retrieval of NOR memory induced by chronic RSD.Conclusions These findings, along with our previous report, would seem to suggest that RSD may affect different phases of recognition memory based on its duration. Importantly, it seems that the CB1R may, at least in part, be involved in the adverse effects of chronic RSD on the retrieval, but not in the acquisition, consolidation, and reconsolidation, of NOR memory.


Asunto(s)
Cannabinoides , Memoria , Ratas , Animales , Rimonabant/farmacología , Sueño REM , Receptores de Cannabinoides , Cannabinoides/farmacología
9.
Front Pharmacol ; 14: 1100527, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814501

RESUMEN

Introduction: The endocannabinoid system has been implicated in the neurobiology of opioid use disorder. While the CB1 receptor antagonist rimonabant has been shown to block some of the behavioral effects of opioids, studies suggest that the treatment environment (i.e., receiving treatment in the drug-associated environment, and/or novelty) can influence its effects. In the present study, we investigated the role of the treatment environment in the effects of rimonabant on the expression of morphine-induced behavioral sensitization. Methods: Adult female Swiss mice were submitted to a behavioral sensitization protocol, during which they received morphine (20 mg/kg, i.p.) in the open-field apparatus, and were subsequently treated with vehicle or rimonabant (1 or 10 mg/kg, i.p.) either in the open-field, in the home-cage or in an activity box (novel environment). The expression of conditioned locomotion (increased locomotor activity in the open-field apparatus in the absence of morphine) and of morphine-induced behavioral sensitization (increased locomotor activity in animals sensitized to morphine) was evaluated during asubsequent saline and morphine challenge, respectively. Results: Animals treated with morphine expressed behavioral sensitization, showing a significant increase in locomotor activity over time. Animals sensitized to morphine and treated with vehicle in the home-cage expressed conditioned locomotion, an effect that was blocked by home-cage treatment with rimonabant. During a saline challenge, only animals sensitized to morphine and treated with saline in the home-cage expressed morphine-induced conditioned locomotion. All morphine-treated animals that received saline during the treatment phase (control groups) expressed behavioral sensitization during the morphine challenge. Treatment with rimonabant in the open-field and in the activity box, but not in the home-cage, blocked the expression of morphine-induced behavioral sensitization. Discussion: Our findings suggest that CB1 receptor antagonism can modulate conditioned responses to morphine even when administered in the home-cage. However, exposure to the drug-associated environment or to a novel environment is necessary for the expression of rimonabant's effects on morphine-induced behavioral sensitization during a morphine challenge.

10.
Am J Physiol Endocrinol Metab ; 324(2): E176-E184, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36629822

RESUMEN

Sarcopenia, the age-related loss of skeletal muscle mass, is associated with lipid accumulation and anabolic resistance; phenomena also observed in obesity and worsen when obesity and aging are combined. The endocannabinoid system (ECS) is overactivated in obesity, but its role in aging obesity-related muscle dysfunction is unknown. The aims of this study were to evaluate the effect of inhibition of the ECS by rimonabant (RIM) on the metabolic alterations induced by a high-fat high-sucrose diet and on skeletal muscle mass/function in aged mice. Eighteen-month-old male mice were subjected to a control (CTL) or a high-fat high-sucrose (HFHS) diet for 24 weeks. Mice were administered with saline or RIM (10 mg/kg/day) for the last 4 weeks of the diet. Skeletal muscle function was evaluated by open-field, rotarod, and grip strength tests. Metabolic alterations in liver, adipose tissue, and skeletal muscle were investigated by quantitative RT-PCR. Body mass was higher in HFHS mice compared to CTL mice (48.0 ± 1.5 vs. 33.5 ± 0.7 g, P < 0.01), as a result of fat accumulation (34.8 ± 1.0 vs. 16.7 ± 0.8%, P < 0.01). RIM reduced body fat mass in both CTL (-16%, P < 0.05) and HFHS conditions (-40%, P < 0.01), without affecting hindlimb skeletal muscle mass. In HFHS mice, grip strength evolution was improved (-0.29 ± 0.06 vs. -0.49 ± 0.06 g/g lean mass, P < 0.05), and rotarod activity was increased by ≈60% in response to RIM (45.9 ± 6.3 vs. 28.5 ± 4.6 cm, P < 0.05). Lipolysis and ß-oxidation genes were upregulated in the liver as well as genes involved in adipose tissue browning. These results demonstrate that inhibition of the ECS induces metabolic changes in liver and adipose tissue associated with a reversion of the obese phenotype and that RIM is able to improve motor coordination and muscle strength in aged mice, without affecting skeletal muscle mass.NEW & NOTEWORTHY In 24-month-old mice submitted to high-fat high-sucrose-induced obesity, inhibition of the endocannabinoid system by rimonabant reversed the obese phenotype by promoting adipose tissue browning and ß-oxidation in the liver but not in skeletal muscle. These metabolism modifications are associated with improved skeletal muscle function.


Asunto(s)
Endocannabinoides , Obesidad , Masculino , Animales , Ratones , Endocannabinoides/metabolismo , Rimonabant/farmacología , Obesidad/metabolismo , Músculo Esquelético/metabolismo , Dieta Alta en Grasa , Fenotipo , Sacarosa/farmacología , Ratones Endogámicos C57BL
11.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-981590

RESUMEN

Objective We aimed to investigate whether antagonism of the cannabinoid CB1 receptor (CB1R) could affect novel object recognition (NOR) memory in chronically rapid eye movement sleep-deprived (RSD) rats.Methods The animals were examined for recognition memory following a 7-day chronic partial RSD paradigm using the multiple platform technique. The CB1R antagonist rimonabant (1 or 3 mg/kg, i.p.) was administered either at one hour prior to the sample phase for acquisition, or immediately after the sample phase for consolidation, or at one hour before the test phase for retrieval of NOR memory. For the reconsolidation task, rimonabant was administered immediately after the second sample phase.Results The RSD episode impaired acquisition, consolidation, and retrieval, but it did not affect the reconsolidation of NOR memory. Rimonabant administration did not affect acquisition, consolidation, and reconsolidation; however, it attenuated impairment of the retrieval of NOR memory induced by chronic RSD.Conclusions These findings, along with our previous report, would seem to suggest that RSD may affect different phases of recognition memory based on its duration. Importantly, it seems that the CB1R may, at least in part, be involved in the adverse effects of chronic RSD on the retrieval, but not in the acquisition, consolidation, and reconsolidation, of NOR memory.


Asunto(s)
Ratas , Animales , Rimonabant/farmacología , Memoria , Sueño REM , Receptores de Cannabinoides , Cannabinoides/farmacología
12.
Drug Alcohol Depend ; 240: 109646, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36191533

RESUMEN

Evidence suggests the existence of a functional interaction between endogenous cannabinoid (CB) and opioid systems. Thus, targeting CB1 receptors might be a viable approach to develop new medications for opioid use disorders (OUD). The present studies were undertaken to evaluate the effects of the neutral CB1 antagonist AM4113 and the CB1 antagonist/inverse agonist rimonabant in male rats trained to discriminate 0.032 mg/kg fentanyl from saline under a 10-response fixed-ratio (FR-10) schedule of food reinforcement. Results show that the µ-opioid agonists (fentanyl, oxycodone, and morphine) substituted fully and dose-dependently for fentanyl, whereas pretreatment with the µ-opioid antagonist naltrexone antagonized fentanyl's discriminative-stimulus effects. In interaction studies, AM4113 (0.32 or 1.0 mg/kg) was more effective in blocking fentanyl discrimination at 10-fold lower doses that did not modify rates of food-maintained responding, whereas rimonabant (1.0-10 mg/kg) produced some attenuation of fentanyl's discriminative-stimulus effects at the highest dose tested which also significantly decreased response rates. These results extend our recent work showing that AM4113 can effectively block the behavioral effects of heroin without producing rimonabant-like adverse effects. Taken together, these data suggests that CB1 neutral antagonists effectively block the behavioral effects of structurally distinct morphinan (heroin) and phenylpiperidine-based (fentanyl) opioids and may provide a novel therapeutic option for the treatment of OUD.


Asunto(s)
Antagonistas de Receptores de Cannabinoides , Cannabinoides , Ratas , Masculino , Animales , Antagonistas de Receptores de Cannabinoides/farmacología , Rimonabant/efectos adversos , Heroína , Antagonistas de Narcóticos/farmacología , Fentanilo/farmacología , Naltrexona , Analgésicos Opioides , Oxicodona , Piperidinas/farmacología , Cannabinoides/farmacología
13.
Cells ; 11(20)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36291128

RESUMEN

Cannabinoid receptor 1 (CB1R) has been one of the major targets in medication development for treating substance use disorders (SUDs). Early studies indicated that rimonabant, a selective CB1R antagonist with an inverse agonist profile, was highly promising as a therapeutic for SUDs. However, its adverse side effects, such as depression and suicidality, led to its withdrawal from clinical trials worldwide in 2008. Consequently, much research interest shifted to developing neutral CB1R antagonists based on the recognition that rimonabant's side effects may be related to its inverse agonist profile. In this article, we first review rimonabant's research background as a potential pharmacotherapy for SUDs. Then, we discuss the possible mechanisms underlying its therapeutic anti-addictive effects versus its adverse effects. Lastly, we discuss the rationale for developing neutral CB1R antagonists as potential treatments for SUDs, the supporting evidence in recent research, and the challenges of this strategy. We conclude that developing neutral CB1R antagonists without inverse agonist profile may represent attractive strategies for the treatment of SUDs.


Asunto(s)
Antagonistas de Receptores de Cannabinoides , Receptor Cannabinoide CB1 , Rimonabant , Trastornos Relacionados con Sustancias , Humanos , Receptor Cannabinoide CB1/antagonistas & inhibidores , Rimonabant/uso terapéutico , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Antagonistas de Receptores de Cannabinoides/uso terapéutico
14.
Neurosci Lett ; 781: 136670, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35500667

RESUMEN

Oleoylethanolamide (OEA) is an endogenous N-acylethanolamine that reduces both food and alcohol intake through the activation of peripheral sensory nerves in the gut. These effects are opposite to those of anandamide, a main endogenous cannabinoid type 1 receptor (CB1R) agonist. The present study aims to characterize the impact of intermittent and voluntary alcohol intoxications (using the two-bottle choice paradigm) during adolescence on inhibitory actions of OEA and the CB1R antagonist/inverse agonist SR141716A on voluntary alcohol intake in adulthood. In the present study we show that both OEA (5 mg/kg) and SR141716A (3 mg/kg) reduce alcohol drinking in adult rats using a two-bottle choice paradigm. These effects lasted for 24 h and were not additive when both compounds were co-administered. However, when OEA and SR141716A were administered to adult rats with a history of intermittent alcohol exposure during adolescence (from postnatal day 31 to 55), the effects of OEA were attenuated. Moreover, the co-administration of OEA and SR141716A was not as effective as the administration of SR141716A alone. These data suggest that adolescent exposure to alcohol alters the inhibitory actions of OEA on alcohol drinking, which results in the loss of a protective mechanism that might account for the long-term effects of alcohol exposure in the adolescence. The implications for the vulnerability to alcohol addiction is discussed.


Asunto(s)
Endocannabinoides , Ácidos Oléicos , Consumo de Bebidas Alcohólicas , Animales , Endocannabinoides/farmacología , Etanol/farmacología , Ácidos Oléicos/farmacología , Ratas , Ratas Wistar , Rimonabant/farmacología
15.
Biomed Pharmacother ; 149: 112925, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35477218

RESUMEN

Anxiety and stress disorders are often characterized by an inability to extinguish learned fear responses. Orexins/hypocretins are involved in the modulation of aversive memories, and dysregulation of this system may contribute to the aetiology of anxiety disorders characterized by pathological fear. The mechanisms by which orexins regulate fear are unknown. Here we investigated the role of the endogenous cannabinoid system in the impaired fear extinction induced by orexin-A (OXA) in male mice. The selective inhibitor of 2-arachidonoylglycerol (2-AG) biosynthesis O7460 abolished the fear extinction deficits induced by OXA. Accordingly, increased 2-AG levels were observed in the amygdala and hippocampus of mice treated with OXA that do not extinguish fear, suggesting that high levels of this endocannabinoid are related to poor extinction. Impairment of fear extinction induced by OXA was associated with increased expression of CB2 cannabinoid receptor (CB2R) in microglial cells of the basolateral amygdala. Consistently, the intra-amygdala infusion of the CB2R antagonist AM630 completely blocked the impaired extinction promoted by OXA. Microglial and CB2R expression depletion in the amygdala with PLX5622 chow also prevented these extinction deficits. These results show that overactivation of the orexin system leads to impaired fear extinction through 2-AG and amygdalar CB2R. This novel mechanism could be of relevance for the development of novel potential approaches to treat diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder, panic anxiety and phobias.


Asunto(s)
Cannabinoides , Miedo , Amígdala del Cerebelo , Animales , Extinción Psicológica , Masculino , Ratones , Orexinas/farmacología , Receptor Cannabinoide CB2
16.
Neurosci Lett ; 779: 136634, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35429587

RESUMEN

Methamphetamine (METH) has been reported to induce social and recognition memory impairment. Evidence suggests that the cannabinoid system has an important modulatory role in cognitive processing and social interaction. Nonetheless, no previous study has investigated the probable role of the cannabinoids system on METH-induced deficits of novel object recognition (NOR) memory and social interaction. Adult male rats were given a neurotoxic METH regimen (four injections of 6 mg/kg, s.c, at 2 h intervals). One week later, they were examined for either NOR or social interaction in different groups. The cannabinoid type 1 receptor (CB1R) antagonist rimonabant (1 or 3 mg/kg, i.p.) improved METH-induced impairment of the acquisition, consolidation, and retrieval, but not reconsolidation, of NOR and also METH-induced impairment of social behavior. Administration of the CB1R agonist WIN 55,212-2 (WIN; 3 or 5 mg/kg, i.p.) did not affect memory deficits or social behavior impairment induced by METH. Our findings may indicate that METH neurotoxicity impairs social and recognition memory. On the other hand, the CB1R antagonist rimonabant, but not the CB1R agonist WIN, prevented these negative effects of METH neurotoxicity. Thus, it seems that the CB1R can be targeted to prevent the adverse effects of METH on cognition and social behavior, at least at experimental levels.


Asunto(s)
Cannabinoides , Metanfetamina , Síndromes de Neurotoxicidad , Animales , Antagonistas de Receptores de Cannabinoides/farmacología , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/prevención & control , Metanfetamina/toxicidad , Ratas , Receptor Cannabinoide CB1 , Rimonabant
17.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35328343

RESUMEN

Targeting cannabinoid 1 receptors (CB1R) with peripherally restricted antagonists (or inverse agonists) shows promise to improve metabolic disorders associated with obesity. In this context, we designed and synthetized JM-00266, a new CB1R blocker with limited blood-brain barrier (BBB) permeability. Pharmacokinetics were tested with SwissADME and in vivo in rodents after oral and intraperitoneal administration of JM-00266 in comparison with Rimonabant. In silico predictions indicated JM-00266 is a non-brain penetrant compound and this was confirmed by brain/plasma ratios and brain uptake index values. JM-00266 had no impact on food intake, anxiety-related behavior and body temperature suggesting an absence of central activity. cAMP assays performed in CB1R-transfected HEK293T/17 cells showed that the drug exhibited inverse agonist activity on CB1R. In addition, JM-00266 counteracted anandamide-induced gastroparesis indicating substantial peripheral activity. Acute administration of JM-00266 also improved glucose tolerance and insulin sensitivity in wild-type mice, but not in CB1R-/- mice. Furthermore, the accumulation of JM-00266 in adipose tissue was associated with an increase in lipolysis. In conclusion, JM-00266 or derivatives can be predicted as a new candidate for modulating peripheral endocannabinoid activity and improving obesity-related metabolic disorders.


Asunto(s)
Antagonistas de Receptores de Cannabinoides , Enfermedades Metabólicas , Animales , Antagonistas de Receptores de Cannabinoides/farmacología , Células HEK293 , Humanos , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Receptor Cannabinoide CB1/genética , Receptores de Cannabinoides
18.
Antioxidants (Basel) ; 11(1)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35052666

RESUMEN

Over the last decades, growing interest has turned to preventive and therapeutic approaches for achieving successful aging. Oxidative stress and inflammation are fundamental features of cardiovascular diseases; therefore, potential targets of them can improve cardiac outcomes. Our study aimed to examine the involvement of the endocannabinoid system, especially the CB1 receptor blockade, on inflammatory and oxidant/antioxidant processes. Twenty-month-old female and male Wistar rats were divided into rimonabant-treated and aging control (untreated) groups. Rimonabant, a selective CB1 receptor antagonist, was administered at the dose of 1 mg/kg/day intraperitoneally for 2 weeks. Cardiac amounts of ROS, the antioxidant glutathione and superoxide dismutase (SOD), and the activity and concentration of the heme oxygenase (HO) enzyme were detected. Among inflammatory parameters, nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), and myeloperoxidase (MPO) enzyme activity were measured. Two weeks of low dose rimonabant treatment significantly reduced the cardiac ROS via boosting of the antioxidant defense mechanisms as regards the HO system, and the SOD and glutathione content. Consistently, the age-related inflammatory response was alleviated. Rimonabant-treated animals showed significantly decreased NF-κB, TNF-α, and MPO levels. Our findings prove the beneficial involvement of CB1 receptor blocker rimonabant on inflammatory and oxidative damages to the aging heart.

19.
Psychopharmacology (Berl) ; 239(5): 1459-1473, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34741633

RESUMEN

RATIONALE: In human beings and experimental animals, maladaptive impulsivity is manifested by the acute injection of psychostimulants, such as amphetamine. Cannabinoid CB1 receptors have been implicated in the regulation of stimulant-induced impulsive action, but the role of CB1 receptors in timing-related impulsive action by amphetamine remains unknown. METHODS: Male rats were used in evaluating the effects of CB1 receptor antagonist and agonist (SR141716A and WIN55,212-2, respectively) systemically administered individually and combined with d-amphetamine on a differential reinforcement of low-rate response (DRL) task, an operant behavioral test of timing and behavioral inhibition characterized as a type of timing impulsive action. RESULTS: A distinct pattern of DRL behavioral changes was produced by acute d-amphetamine (0, 0.5, 1.0, and 1.5 mg/kg) treatment in a dose-dependent fashion, whereas no significant dose effect was detected for acute SR141716A (0, 0.3, 1, and 3 mg/kg) or WIN55,212-2 (0, 0.5, 1, and 2 mg/kg) treatment. Furthermore, DRL behavior altered by 1.5 mg/kg d-amphetamine was reversed by a noneffective dose of SR141716A (3 mg/kg) pretreatment. The minimally influenced DRL behavior by 0.5 mg/kg d-amphetamine was affected by pretreatment with a noneffective dose of WIN55,212-2 (1 mg/kg). CONCLUSION: These findings reveal that the activation and blockade of CB1 receptors can differentially modulate the timing impulsive action of DRL behavior induced by acute amphetamine treatment. Characterizing how CB1 receptors modulate impulsive behavior will deepen our understanding of the cannabinoid psychopharmacology of impulsivity and may be helpful in developing an optimal pharmacotherapy for reducing maladaptive impulsivity in patients with some psychiatric disorders.


Asunto(s)
Cannabinoides , Estimulantes del Sistema Nervioso Central , Anfetamina/farmacología , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Dextroanfetamina/farmacología , Humanos , Conducta Impulsiva , Masculino , Ratas , Receptor Cannabinoide CB1 , Rimonabant/farmacología
20.
Cell Mol Gastroenterol Hepatol ; 13(4): 1041-1055, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34954190

RESUMEN

BACKGROUND & AIMS: The endocannabinoid system is involved in the modulation of inflammatory, fibrotic, metabolic, and carcinogenesis-associated signaling pathways via cannabinoid receptor (CB)1 and CB2. We hypothesized that the pharmacologic antagonization of CB1 receptor improves cholestasis in Abcb4-/- mice. METHODS: After weaning, male Abcb4-/- mice were treated orally with rimonabant (a specific antagonist of CB1) or ACEA (an agonist of CB1) until up to 16 weeks of age. Liver tissue and serum were isolated and examined by means of serum analysis, quantitative real time polymerase chain reaction, Western blot, immunohistochemistry, and enzyme function. Untreated Abcb4-/- and Bagg Albino Mouse/c wild-type mice served as controls. RESULTS: Cholestasis-induced symptoms such as liver damage, bile duct proliferation, and enhanced circulating bile acids were improved by CB1 antagonization. Rimonabant treatment also improved Phosphoenolpyruvat-Carboxykinase expression and reduced inflammation and the acute-phase response. The carcinogenesis-associated cellular-Jun N-terminal kinase/cellular-JUN and signal transducer and activator of transcription 3 signaling pathways activated in Abcb4-/- mice were reduced to wild-type level by CB1 antagonization. CONCLUSIONS: We showed a protective effect of oral CB1 antagonization in chronic cholestasis using the established Abcb4-/- model. Our results suggest that pharmacologic antagonization of the CB1 receptor could have a therapeutic benefit in cholestasis-associated metabolic changes, liver damage, inflammation, and carcinogenesis.


Asunto(s)
Colestasis , Receptor Cannabinoide CB1 , Animales , Carcinogénesis , Colestasis/tratamiento farmacológico , Inflamación , Masculino , Ratones , Rimonabant/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...