Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38610394

RESUMEN

This paper proposes a new sensor using optical flow to stabilize a quadrotor when a GPS signal is not available. Normally, optical flow varies with the attitude of the aerial vehicle. This produces positive feedback on the attitude control that destabilizes the orientation of the vehicle. To avoid this, we propose a novel sensor using an optical flow camera with a 6DoF IMU (Inertial Measurement Unit) mounted on a two-axis anti-shake stabilizer mobile aerial gimbal. We also propose a robust algorithm based on Sliding Mode Control for stabilizing the optical flow sensor downwards independently of the aerial vehicle attitude. This method improves the estimation of the position and velocity of the quadrotor. We present experimental results to show the performance of the proposed sensor and algorithms.

2.
Sensors (Basel) ; 23(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005600

RESUMEN

Detecting people in images and videos captured from an aerial platform in wooded areas for search and rescue operations is a current problem. Detection is difficult due to the relatively small dimensions of the person captured by the sensor in relation to the environment. The environment can generate occlusion, complicating the timely detection of people. There are currently numerous RGB image datasets available that are used for person detection tasks in urban and wooded areas and consider the general characteristics of a person, like size, shape, and height, without considering the occlusion of the object of interest. The present research work focuses on developing a thermal image dataset, which considers the occlusion situation to develop CNN convolutional deep learning models to perform detection tasks in real-time from an aerial perspective using altitude control in a quadcopter prototype. Extended models are proposed considering the occlusion of the person, in conjunction with a thermal sensor, which allows for highlighting the desired characteristics of the occluded person.

3.
Front Neurorobot ; 11: 43, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28883790

RESUMEN

The human-robot interaction has played an important role in rehabilitation robotics and impedance control has been used in the regulation of interaction forces between the robot actuator and human limbs. Series elastic actuators (SEAs) have been an efficient solution in the design of this kind of robotic application. Standard implementations of impedance control with SEAs require an internal force control loop for guaranteeing the desired impedance output. However, nonlinearities and uncertainties hamper such a guarantee of an accurate force level in this human-robot interaction. This paper addresses the dependence of the impedance control performance on the force control and proposes a control approach that improves the force control robustness. A unified model of the human-robot system that considers the ankle impedance by a second-order dynamics subject to uncertainties in the stiffness, damping, and inertia parameters has been developed. Fixed, resistive, and passive operation modes of the robotics system were defined, where transition probabilities among the modes were modeled through a Markov chain. A robust regulator for Markovian jump linear systems was used in the design of the force control. Experimental results show the approach improves the impedance control performance. For comparison purposes, a standard [Formula: see text] force controller based on the fixed operation mode has also been designed. The Markovian control approach outperformed the [Formula: see text] control when all operation modes were taken into account.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA