Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2310106, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38746966

RESUMEN

Metal-Organic Frameworks (MOFs) recently emerged as a new platform for the realization of integrated devices for artificial photosynthesis. However, there remain few demonstrations of rational tuning of such devices for improved performance. Here, a fast molecular water oxidation catalyst working via water nucleophilic attack is integrated into the MOF MIL-142, wherein Fe3O nodes absorb visible light, leading to charge separation. Materials are characterized by a range of structural and spectroscopic techniques. New, [Ru(tpy)(Qc)(H2O)]+ (tpy = 2,2':6',2″-terpyridine and Qc = 8-quinolinecarboxylate)-doped Fe MIL-142 achieved a high photocurrent (1.6 × 10-3 A·cm-2) in photo-electrocatalytic water splitting at pH = 1. Unassisted photocatalytic H2 evolution is also reported with Pt as the co-catalyst (4.8 µmol g-1 min-1). The high activity of this new system enables hydrogen gas capture from an easy-to-manufacture, scaled-up prototype utilizing MOF deposited on FTO glass as a photoanode. These findings provide insights for the development of MOF-based light-driven water-splitting assemblies utilizing a minimal amount of precious metals and Fe-based photosensitizers.

2.
Heliyon ; 9(10): e20875, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37867862

RESUMEN

The catalytic wet air oxidation (CWAO) of p-hydroxybenzoic acid (p-HBA) was conducted in a batch reactor at 140 °C, and at a total air pressure of 50 bar over Ru-based catalysts. Four materials were selected as supports - TiO2, CeO2-TiO2, ZrO2-TiO2, and La2O3-TiO2 - all of which had mesopores in their texture and pollutant adsorption capacities. The supports were prepared by the sol-gel method, and then impregnated with 3 wt% of Ru precursor. Such characterization techniques as N2-sorption, XRD, XPS, H2-TPR, NH3-TPD, TEM, and HAADF-STEM were used to analyze the different solids. The correlation between catalytic activities and physicochemical properties was discussed. A significant specific surface area (SBET), a large amount of surface-active oxygen, and Lewis acidity sites were observed on cerium-containing catalysts (Ru/CeTi). Fresh Ru catalysts containing cerium showed higher activity than Ru/TiO2, Ru/ZrTi, and Ru/LaTi catalysts. It is assumed that the acidic sites and surface oxygen trap the p-HBA molecule, thus increasing the catalytic properties of the Ru particles which interact with the surface oxygen through the cerium redox process (Ce3+/Ce4+). As the presence of cerium increases surface-active oxygen, it inhibits the deposition of carbon on the surface of the Ru catalyst. The pseudo-second order (PSO) model adequately described the kinetic data of the p-HBA oxidation reaction using Ru catalysts.

3.
ChemistryOpen ; 8(4): 532-538, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31061778

RESUMEN

Anodized aluminum oxides (AAOs) are synthesized and used as catalyst support in combination with Ru as metal in hydrogenation catalysis. SEM and TEM analysis of the as-synthesized AAOs reveal uniform, ordered nanotubes with pore diameters of 18 nm, which are further characterized with Kr physisorption, XRD and FTIR spectroscopy. After impregnation of the AAOs with Ru, the presence of Ru nanoparticles inside the tubular pores is evidenced clearly for the first time via HAADF-STEM-EDX. The Ru-AAOs have been tested for catalytic activity, which showed high conversion and selectivity for the hydrogenation of toluene and butanal.

4.
Chemistry ; 24(57): 15372-15379, 2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30230657

RESUMEN

Three mono-N-heterocyclic carbene (NHC) ruthenium 2-isopropoxybenzylidene (10 a-c) and one bis(NHC) indenylidene complex (8) bearing an unsymmetrical N-heterocyclic carbene ligand were synthesized and structurally characterized by single-crystal X-ray diffraction. The catalytic activity of the newly obtained complexes were evaluated in ring-closing metathesis (RCM) and ene-yne (RCEYM) reactions in toluene and environmentally friendly 2-MeTHF under air. The results confirmed that although all tested reactions can be successfully mediated by catalysts 10 a-c, their general reactivity is lower than the benchmark all-purpose Ru catalysts with symmetrical NHC ligands. However, the latter cannot compete with specialized ruthenium complex 10 a in industrially relevant self-CM of terminal olefins in neat conditions.

5.
J Hazard Mater ; 310: 108-16, 2016 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-26900982

RESUMEN

Sugarcane molasses distillery wastewater contains melanoidins, which are dark brown recalcitrant nitrogenous polymer compounds. Studies were carried out in batch mode to evaluate Pt and Ru supported catalysts in the Catalytic Wet Air Oxidation (CWAO) process of a synthetic melanoidins solution, prepared by stoichiometric reaction of glucose with glycine. The addition of a catalyst slightly improved TOC removal compared with the non-catalytic reaction, and especially promoted the conversion of ammonium produced from organically-bound nitrogen in melanoidins to molecular nitrogen and nitrate. The selectivity to N2 attained 89% in the presence of the Pt catalysts in the reaction conditions used (TOC=2200mgL(-1), TN=280mgL(-1), 0.5g catalyst loaded with 3% metal, 210°C, 70bar total air pressure). To avoid leaching of the active metal by organically-bound nitrogen, the reaction was very efficiently performed in a two-step reaction consisting in WAO to convert nitrogen into ammonium, before the introduction of a catalyst.


Asunto(s)
Carbono/química , Glucosa/química , Glicina/química , Nitrógeno/química , Polímeros/química , Aire , Bebidas Alcohólicas , Catálisis , Residuos Industriales , Oxidación-Reducción , Óxidos/química , Platino (Metal)/química , Rutenio/química , Soluciones , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA