Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107258, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582448

RESUMEN

Mitochondria are membrane-bound organelles of endosymbiotic origin with limited protein-coding capacity. The import of nuclear-encoded proteins and nucleic acids is required and essential for maintaining organelle mass, number, and activity. As plant mitochondria do not encode all the necessary tRNA types required, the import of cytosolic tRNA is vital for organelle maintenance. Recently, two mitochondrial outer membrane proteins, named Tric1 and Tric2, for tRNA import component, were shown to be involved in the import of cytosolic tRNA. Tric1/2 binds tRNAalavia conserved residues in the C-terminal Sterile Alpha Motif (SAM) domain. Here we report the X-ray crystal structure of the Tric1 SAM domain. We identified the ability of the SAM domain to form a helical superstructure with six monomers per helical turn and key amino acid residues responsible for its formation. We determined that the oligomerization of the Tric1 SAM domain may play a role in protein function whereby mutation of Gly241 introducing a larger side chain at this position disrupted the oligomer and resulted in the loss of RNA binding capability. Furthermore, complementation of Arabidopsis thaliana Tric1/2 knockout lines with a mutated Tric1 failed to restore the defective plant phenotype. AlphaFold2 structure prediction of both the SAM domain and Tric1 support a cyclic pentameric or hexameric structure. In the case of a hexameric structure, a pore of sufficient dimensions to transfer tRNA across the mitochondrial membrane is observed. Our results highlight the importance of oligomerization of Tric1 for protein function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Mitocondriales , Dominios Proteicos , ARN de Transferencia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cristalografía por Rayos X , Mitocondrias/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Transporte de ARN , ARN de Transferencia/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética
2.
Molecules ; 29(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474536

RESUMEN

The lipid phosphatase Ship2 interacts with the EphA2 receptor by forming a heterotypic Sam (sterile alpha motif)-Sam complex. Ship2 works as a negative regulator of receptor endocytosis and consequent degradation, and anti-oncogenic effects in cancer cells should be induced by hindering its association with EphA2. Herein, a computational approach is presented to investigate the relationship between Ship2-Sam/EphA2-Sam interaction and cancer onset and further progression. A search was first conducted through the COSMIC (Catalogue of Somatic Mutations in Cancer) database to identify cancer-related missense mutations positioned inside or close to the EphA2-Sam and Ship2-Sam reciprocal binding interfaces. Next, potential differences in the chemical-physical properties of mutant and wild-type Sam domains were evaluated by bioinformatics tools based on analyses of primary sequences. Three-dimensional (3D) structural models of mutated EphA2-Sam and Ship2-Sam domains were built as well and deeply analysed with diverse computational instruments, including molecular dynamics, to classify potentially stabilizing and destabilizing mutations. In the end, the influence of mutations on the EphA2-Sam/Ship2-Sam interaction was studied through docking techniques. This in silico approach contributes to understanding, at the molecular level, the mutation/cancer relationship by predicting if amino acid substitutions could modulate EphA2 receptor endocytosis.


Asunto(s)
Neoplasias , Receptor EphA2 , Motivo alfa Estéril , Receptor EphA2/química , Unión Proteica , Mutación , Monoéster Fosfórico Hidrolasas/metabolismo , Lípidos
3.
Ibrain ; 9(1): 3-12, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37786523

RESUMEN

This article aims to detect the effect of SAM domain, SH3 domain, and nuclear localization signal 1 (SAMSN1) in neonatal rats with neurological dysfunction induced by hypoxia and ischemia (HI). The HI model was created using 7-day postnatal rats. Zea-longa score was utilized to validate the neurological injury after HI. Then, the differentially expressed genes (DEGs) were detected by gene sequencing and bioinformatics analysis methods. The oxygen and glucose deprivation (OGD) models were established in the SY5Y cells and fetal human cortical neurons. In addition, SAMSN1-small interfering RNA, methyl thiazolyl tetrazolium assay, and cell growth curve were employed to evaluate the cell viability variation. Obviously, Zea-longa scores increased in rats with HI insult. Subsequently, SAMSN1 was screened out, and it was found that SAMSN1 was strikingly upregulated in SY5Y cells and fetal neurons post-OGD. Interestingly, we found that SAMSN1 silencing could markedly enhance cell viability and cell growth after OGD. These data suggested that downregulation of SAMSN1 may exert a neuroprotective effect on damaged neurons after HI by improving cell viability and cell survival, which provides a potential theoretical basis for clinical trials in the future to treat neonatal hypoxic-ischemic encephalopathy.

4.
Structure ; 31(12): 1589-1603.e6, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37776857

RESUMEN

Human thirty-eight-negative kinase-1 (TNK1) is implicated in cancer progression. The TNK1 ubiquitin-associated (UBA) domain binds polyubiquitin and plays a regulatory role in TNK1 activity and stability. No experimentally determined molecular structure of this unusual UBA domain is available. We fused the UBA domain to the 1TEL variant of the translocation ETS leukemia protein sterile alpha motif (TELSAM) crystallization chaperone and obtained crystals diffracting as far as 1.53 Å. GG and GSGG linkers allowed the UBA to reproducibly find a productive binding mode against its host 1TEL polymer and crystallize at protein concentrations as low as 0.2 mg/mL. Our studies support a mechanism of 1TEL fusion crystallization and show that 1TEL fusion crystals require fewer crystal contacts than traditional protein crystals. Modeling and experimental validation suggest the UBA domain may be selective for both the length and linkages of polyubiquitin chains.


Asunto(s)
Chaperonas Moleculares , Poliubiquitina , Humanos , Poliubiquitina/química , Unión Proteica , Cristalización , Estructura Terciaria de Proteína , Dominios Proteicos , Chaperonas Moleculares/metabolismo , Proteínas Fetales/metabolismo , Proteínas Tirosina Quinasas/metabolismo
5.
Structure ; 31(6): 713-723.e3, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37119820

RESUMEN

In-frame deletion mutations can result in disease. The impact of these mutations on protein structure and subsequent functional changes remain understudied, partially due to the lack of comprehensive datasets including a structural readout. In addition, the recent breakthrough in structure prediction through deep learning demands an update of computational deletion mutation prediction. In this study, we deleted individually every residue of a small α-helical sterile alpha motif domain and investigated the structural and thermodynamic changes using 2D NMR spectroscopy and differential scanning fluorimetry. Then, we tested computational protocols to model and classify observed deletion mutants. We show a method using AlphaFold2 followed by RosettaRelax performs the best overall. In addition, a metric containing pLDDT values and Rosetta ΔΔG is most reliable in classifying tolerated deletion mutations. We further test this method on other datasets and show they hold for proteins known to harbor disease-causing deletion mutations.


Asunto(s)
Biología Computacional , Proteínas , Proteínas/química , Mutación , Simulación por Computador , Eliminación de Secuencia , Espectroscopía de Resonancia Magnética
6.
Cells ; 12(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36980241

RESUMEN

The nonreceptor tyrosine kinase (NRTK) Ack1 comprises a distinct arrangement of non-catalytic modules. Its SH3 domain has a C-terminal to the kinase domain (SH1), in contrast to the typical SH3-SH2-SH1 layout in NRTKs. The Ack1 is the only protein that shares a region of high homology to the tumor suppressor protein Mig6, a modulator of EGFR. The vertebrate Acks make up the only tyrosine kinase (TK) family known to carry a UBA domain. The GTPase binding and SAM domains are also uncommon in the NRTKs. In addition to being a downstream effector of receptor tyrosine kinases (RTKs) and integrins, Ack1 can act as an epigenetic regulator, modulate the degradation of the epidermal growth factor receptor (EGFR), confer drug resistance, and mediate the progression of hormone-sensitive tumors. In this review, we discuss the domain architecture of Ack1 in relation to other protein kinases that possess such defined regulatory domains.


Asunto(s)
Receptores ErbB , Proteínas Tirosina Quinasas , Receptores ErbB/metabolismo , Dominios Proteicos , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Dominios Homologos src
7.
Cell Biosci ; 13(1): 21, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732864

RESUMEN

SAMD4 protein family is a class of novel RNA-binding proteins that can mediate post-transcriptional regulation and translation repression in eukaryotes, which are highly conserved from yeast to humans during evolution. In mammalian cells, SAMD4 protein family consists of two members including SAMD4A/Smaug1 and SAMD4B/Smaug2, both of which contain common SAM domain that can specifically bind to different target mRNAs through stem-loop structures, also known as Smaug recognition elements (SREs), and regulate the mRNA stability, degradation and translation. In addition, SAMD4 can form the cytoplasmic mRNA silencing foci and regulate the translation of SRE-containing mRNAs in neurons. SAMD4 also can form the cytosolic membrane-less organelles (MLOs), termed as Smaug1 bodies, and regulate mitochondrial function. Importantly, many studies have identified that SAMD4 family members are involved in various pathological processes including myopathy, bone development, neural development, and cancer occurrence and progression. In this review, we mainly summarize the structural characteristics, biological functions and molecular regulatory mechanisms of SAMD4 protein family members, which will provide a basis for further research and clinical application of SAMD4 protein family.

8.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142306

RESUMEN

Among the diverse protein binding modules, Sam (Sterile alpha motif) domains attract attention due to their versatility. They are present in different organisms and play many functions in physiological and pathological processes by binding multiple partners. The EphA2 receptor contains a Sam domain at the C-terminus (EphA2-Sam) that is able to engage protein regulators of receptor stability (including the lipid phosphatase Ship2 and the adaptor Odin). Ship2 and Odin are recruited by EphA2-Sam through heterotypic Sam-Sam interactions. Ship2 decreases EphA2 endocytosis and consequent degradation, producing chiefly pro-oncogenic outcomes in a cellular milieu. Odin, through its Sam domains, contributes to receptor stability by possibly interfering with ubiquitination. As EphA2 is upregulated in many types of tumors, peptide inhibitors of Sam-Sam interactions by hindering receptor stability could function as anticancer therapeutics. This review describes EphA2-Sam and its interactome from a structural and functional perspective. The diverse design strategies that have thus far been employed to obtain peptides targeting EphA2-mediated Sam-Sam interactions are summarized as well. The generated peptides represent good initial lead compounds, but surely many efforts need to be devoted in the close future to improve interaction affinities towards Sam domains and consequently validate their anticancer properties.


Asunto(s)
Antineoplásicos , Receptor EphA2 , Antineoplásicos/farmacología , Lípidos , Péptidos/química , Monoéster Fosfórico Hidrolasas/metabolismo , Unión Proteica , Receptor EphA2/metabolismo
9.
J Tradit Chin Med ; 42(3): 451-457, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35610016

RESUMEN

OBJECTIVE: To investigate the relationship between antiviral restriction factor Sterile Alpha Motif and Histidine-Aspartic acid domain-containing protein 1 (SAMHD1) expression and T cell activation, furthermore, identifying objective indexes of lung-spleen deficiency symptom pattern. METHODS: We assessed the profile of T lymphocyte subsets, characteristics of SAMHD1 and human leukocyte antigen DR (HLA-DR) expression in lung-spleen deficiency patients. At the same time, people living with human immunodeficiency virus / acquired immune deficiency syndrome (HIV/AIDS) (PLWHA) without obvious clinical symptoms and healthy donors in this area were used as controls. RESULTS: Immunohematologic indexes lower CD4 count, lower CD4/CD8 ratio and higher SAMHD1 level were found in lung-spleen deficiency patients. Furthermore, we demonstrated a positive relationship between SAMHD1 and HLA-DR level as well as with interferon factor in lung-spleen deficiency syndrome and patients without obvious clinical signs and symptoms groups. CONCLUSIONS: These data indicated the positive relationship between SAMHD1 and T cell activation which further elucidated the role of SAMHD1 in cellular immune response. Furthermore, combination of T lymphocyte subsets counts and SAMHD1 level may be used as clinical and biological reference basis for the differentiation and diagnosis of HIV / AIDS traditional Chinese medicine syndromes.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , Ácido Aspártico , VIH/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Histidina , Humanos , Pulmón/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Bazo/metabolismo , Motivo alfa Estéril , Linfocitos T
10.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1015676

RESUMEN

The erythropoietin-producing hepatocellular receptor (Eph receptor) family is the largest subfamily in the receptor tyrosine kinase (RTK) families which mediates cell morphology, adhesion, movement, proliferation, survival, and differentiation by its bidirectional signals coupled with Ephrin ligands. EphA2 receptor is an important isoform which is involved in the pathological changes in cataract, breast cancer, etc. Previous studies found that the kinase domain of the EphA2 receptor binds to the plasma membrane, and its kinase activity is regulated by the plasma membrane. However, it is still unclear that the impact of the adjacent SAM domain on the membrane binding and kinase activities of kinase domain. In this study we purified the cytoplasmic kinase-SAM tandem of the EphA2 receptor by co-expression with the phosphatase PTP1B 1-301 fragment. Our results showed that the SAM domain of EphA2 receptor can further enhance the interaction between the kinase domain and liposomes (4 mg/mL) by 6 folds (P<0. 001). And the phosphorylation of kinase-SAM tandem can enhance its lipid (4 mg/mL) binding ability by 2. 5 folds (P < 0. 05). In addition, the lipid binding ability and tyrosine phosphorylation activities of kinase domain are mutual promoted, which creating a positive feedback loop in the two biological processes. In conclusion, our studies indicate that the kinase domain and the adjacent SAM domain can function as an intact unit, whose lipid binding ability and kinase activity are quite different from the individual kinase domain. Therefore, our results provide a biochemical basis for better understanding of the regulation mechanism of other Eph receptors in its kinase domain.

11.
J Biol Chem ; 296: 100284, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33450226

RESUMEN

ETV6 is an E26 transformation specific family transcriptional repressor that self-associates by its PNT domain to facilitate cooperative DNA binding. Chromosomal translocations frequently generate constitutively active oncoproteins with the ETV6 PNT domain fused to the kinase domain of one of many protein tyrosine kinases. Although an attractive target for therapeutic intervention, the propensity of the ETV6 PNT domain to polymerize via the tight head-to-tail association of two relatively flat interfaces makes it challenging to identify suitable small molecule inhibitors of this protein-protein interaction. Herein, we provide a comprehensive biophysical characterization of the ETV6 PNT domain interaction interfaces to aid future drug discovery efforts and help define the mechanisms by which its self-association mediates transcriptional repression. Using NMR spectroscopy, X-ray crystallography, and molecular dynamics simulations, along with amide hydrogen exchange measurements, we demonstrate that monomeric PNT domain variants adopt very stable helical bundle folds that do not change in conformation upon self-association into heterodimer models of the ETV6 polymer. Surface plasmon resonance-monitored alanine scanning mutagenesis studies identified hot spot regions within the self-association interfaces. These regions include both central hydrophobic residues and flanking salt-bridging residues. Collectively, these studies indicate that small molecules targeted to these hydrophobic or charged regions within the relatively rigid interfaces could potentially serve as orthosteric inhibitors of ETV6 PNT domain polymerization.


Asunto(s)
Alanina/química , Ácido Aspártico/química , Ácido Glutámico/química , Proteínas Proto-Oncogénicas c-ets/química , Proteínas Represoras/química , Transcripción Genética , Valina/química , Alanina/metabolismo , Sustitución de Aminoácidos , Ácido Aspártico/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ácido Glutámico/metabolismo , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Termodinámica , Valina/metabolismo , Proteína ETS de Variante de Translocación 6
12.
Balkan J Med Genet ; 23(1): 95-98, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32953416

RESUMEN

Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome is a rare genetic disease with an autosomal dominant transmission, characterized by several congenital anomalies. Clinical features include ectodermal defects affecting the skin, hair, teeth, nails and sweat glands, associated with typical eyelid fusion in addition to a cleft lip and/or palate. The diagnosis is based on clinical criteria and molecular genetic testing of TP63 gene, the gene related to AEC syndrome. In this context, most reported mutations induce an amino acid change in the sterile alpha motif (SAM) domain, and are predicted to disrupt protein-protein interactions. We here describe the case of a 2-year-old Moroccan girl diagnosed with AEC syndrome on the basis of clinical features. The molecular studies and bioinformatics tools revealed a novel heterozygous missense mutation c.1798G>C (p.Gly600Arg) in exon 14 of the TP63 gene, that was not found in her parents. The molecular analysis and the early diagnosis of this syndrome are important to offer appropriate genetic counseling and management to patients and their families.

13.
J Biol Chem ; 295(13): 4252-4264, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32075911

RESUMEN

SAM and HD domain-containing protein 1 (SAMHD1) is a host factor that restricts reverse transcription of lentiviruses such as HIV in myeloid cells and resting T cells through its dNTP triphosphohydrolase (dNTPase) activity. Lentiviruses counteract this restriction by expressing the accessory protein Vpx or Vpr, which targets SAMHD1 for proteasomal degradation. SAMHD1 is conserved among mammals, and the feline and bovine SAMHD1 proteins (fSAM and bSAM) restrict lentiviruses by reducing cellular dNTP concentrations. However, the functional regions of fSAM and bSAM that are required for their biological functions are not well-characterized. Here, to establish alternative models to investigate SAMHD1 in vivo, we studied the restriction profile of fSAM and bSAM against different primate lentiviruses. We found that both fSAM and bSAM strongly restrict primate lentiviruses and that Vpx induces the proteasomal degradation of both fSAM and bSAM. Further investigation identified one and five amino acid sites in the C-terminal domain (CTD) of fSAM and bSAM, respectively, that are required for Vpx-mediated degradation. We also found that the CTD of bSAM is directly involved in mediating bSAM's antiviral activity by regulating dNTPase activity, whereas the CTD of fSAM is not. Our results suggest that the CTDs of fSAM and bSAM have important roles in their antiviral functions. These findings advance our understanding of the mechanism of fSAM- and bSAM-mediated viral restriction and might inform strategies for improving HIV animal models.


Asunto(s)
VIH/genética , Lentivirus/genética , Transcripción Reversa/genética , Proteína 1 que Contiene Dominios SAM y HD/genética , Animales , Gatos , Bovinos , Células HEK293 , VIH/patogenicidad , Interacciones Huésped-Patógeno/genética , Humanos , Lentivirus/patogenicidad , Células Mieloides/virología , Dominios Proteicos/genética , Proteína 1 que Contiene Dominios SAM y HD/química , Linfocitos T/virología , Replicación Viral/genética
14.
J Biol Chem ; 295(6): 1575-1586, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31914403

RESUMEN

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphohydrolase (dNTPase) with a nuclear localization signal (NLS). SAMHD1 suppresses innate immune responses to viral infection and inflammatory stimuli by inhibiting the NF-κB and type I interferon (IFN-I) pathways. However, whether the dNTPase activity and nuclear localization of SAMHD1 are required for its suppression of innate immunity remains unknown. Here, we report that the dNTPase activity, but not nuclear localization of SAMHD1, is important for its suppression of innate immune responses in differentiated monocytic cells. We generated monocytic U937 cell lines stably expressing WT SAMHD1 or mutated variants defective in dNTPase activity (HD/RN) or nuclear localization (mNLS). WT SAMHD1 in differentiated U937 cells significantly inhibited lipopolysaccharide-induced expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) mRNAs, as well as IFN-α, IFN-ß, and TNF-α mRNA levels induced by Sendai virus infection. In contrast, the HD/RN mutant did not exhibit this inhibition in either U937 or THP-1 cells, indicating that the dNTPase activity of SAMHD1 is important for suppressing NF-κB activation. Of note, in lipopolysaccharide-treated or Sendai virus-infected U937 or THP-1 cells, the mNLS variant reduced TNF-α or IFN-ß mRNA expression to a similar extent as did WT SAMHD1, suggesting that SAMHD1-mediated inhibition of innate immune responses is independent of SAMHD1's nuclear localization. Moreover, WT and mutant SAMHD1 similarly interacted with key proteins in NF-κB and IFN-I pathways in cells. This study further defines the role and mechanisms of SAMHD1 in suppressing innate immunity.


Asunto(s)
Inmunidad Innata , Monocitos/inmunología , Proteína 1 que Contiene Dominios SAM y HD/inmunología , Núcleo Celular/inmunología , Humanos , Infecciones por Respirovirus/inmunología , Proteína 1 que Contiene Dominios SAM y HD/análisis , Virus Sendai/inmunología , Células THP-1 , Células U937
15.
J Biol Chem ; 295(2): 645-656, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31806702

RESUMEN

Deleted-in-liver cancer 1 (DLC1) exerts its tumor suppressive function mainly through the Rho-GTPase-activating protein (RhoGAP) domain. When activated, the domain promotes the hydrolysis of RhoA-GTP, leading to reduced cell migration. DLC1 is kept in an inactive state by an intramolecular interaction between its RhoGAP domain and the DLC1 sterile α motif (SAM) domain. We have shown previously that this autoinhibited state of DLC1 may be alleviated by tensin-3 (TNS3) or PTEN. We show here that the TNS3/PTEN-DLC1 interactions are mediated by the C2 domains of the former and the SAM domain of the latter. Intriguingly, the DLC1 SAM domain was capable of binding to specific peptide motifs within the C2 domains. Indeed, peptides containing the binding motifs were highly effective in blocking the C2-SAM domain-domain interaction. Importantly, when fused to the tat protein-transduction sequence and subsequently introduced into cells, the C2 peptides potently promoted the RhoGAP function in DLC1, leading to decreased RhoA activation and reduced tumor cell growth in soft agar and migration in response to growth factor stimulation. To facilitate the development of the C2 peptides as potential therapeutic agents, we created a cyclic version of the TNS3 C2 domain-derived peptide and showed that this peptide readily entered the MDA-MB-231 breast cancer cells and effectively inhibited their migration. Our work shows, for the first time, that the SAM domain is a peptide-binding module and establishes the framework on which to explore DLC1 SAM domain-binding peptides as potential therapeutic agents for cancer treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proliferación Celular , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Femenino , Proteínas Activadoras de GTPasa/química , Células HEK293 , Humanos , Modelos Moleculares , Fosfohidrolasa PTEN/química , Fosfohidrolasa PTEN/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Motivo alfa Estéril , Tensinas/química , Tensinas/metabolismo , Proteínas Supresoras de Tumor/química , Proteína de Unión al GTP rhoA/química
16.
J Biol Chem ; 295(2): 657-666, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31806704

RESUMEN

Unlike activated CD4+ T cells, nondividing macrophages have an extremely small dNTP pool, which restricts HIV-1 reverse transcription. However, rNTPs are equally abundant in both of these cell types and reach much higher concentrations than dNTPs. The greater difference in concentration between dNTPs and rNTPs in macrophages results in frequent misincorporation of noncanonical rNTPs during HIV-1 reverse transcription. Here, we tested whether the highly abundant SAM domain- and HD domain-containing protein 1 (SAMHD1) deoxynucleoside triphosphorylase in macrophages is responsible for frequent rNTP incorporation during HIV-1 reverse transcription. We also assessed whether Vpx (viral protein X), an accessory protein of HIV-2 and some simian immunodeficiency virus strains that targets SAMHD1 for proteolytic degradation, can counteract the rNTP incorporation. Results from biochemical simulation of HIV-1 reverse transcriptase-mediated DNA synthesis confirmed that rNTP incorporation is reduced under Vpx-mediated dNTP elevation. Using HIV-1 vector, we further demonstrated that dNTP pool elevation by Vpx or deoxynucleosides in human primary monocyte-derived macrophages reduces noncanonical rNTP incorporation during HIV-1 reverse transcription, an outcome similarly observed with the infectious HIV-1 89.6 strain. Furthermore, the simian immunodeficiency virus mac239 strain, encoding Vpx, displayed a much lower level of rNTP incorporation than its ΔVpx mutant in macrophages. Finally, the amount of rNMPs incorporated in HIV-1 proviral DNAs remained unchanged for ∼2 weeks in macrophages. These findings suggest that noncanonical rNTP incorporation is regulated by SAMHD1 in macrophages, whereas rNMPs incorporated in HIV-1 proviral DNA remain unrepaired. This suggests a potential long-term DNA damage impact of SAMHD1-mediated rNTP incorporation in macrophages.


Asunto(s)
Infecciones por VIH/metabolismo , VIH/metabolismo , Macrófagos/virología , Transcripción Reversa , Ribonucleótidos/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Células Cultivadas , Desoxirribonucleótidos/genética , Desoxirribonucleótidos/metabolismo , VIH/genética , Transcriptasa Inversa del VIH/metabolismo , VIH-1/genética , VIH-1/metabolismo , VIH-2/genética , VIH-2/metabolismo , Humanos , Células Jurkat , Macrófagos/metabolismo , Mutagénesis , Ribonucleótidos/genética , Proteína 1 que Contiene Dominios SAM y HD/metabolismo
17.
Cell Signal ; 68: 109499, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31838063

RESUMEN

Polycystic kidneys frequently associate with mutations in individual components of cilia, basal bodies or centriolar satellites that perturb complex protein networks. In this review, we focus on the RNA-binding protein Bicaudal-C1 (BICC1) which was found mutated in renal cystic dysplasia, and on its interactions with the ankyrin repeat and sterile α motif (SAM)-containing proteins ANKS3 and ANKS6 and associated kinases and their partially overlapping ciliopathy phenotypes. After reviewing BICC1 homologs in model organisms and their functions in mRNA and cell metabolism during development and in renal tubules, we discuss recent insights from cell-based assays and from structure analysis of the SAM domains, and how SAM domain oligomerization might influence multivalent higher order complexes that are implicated in ciliary signal transduction.


Asunto(s)
Enfermedades Renales Quísticas/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Animales , Desarrollo Embrionario , Gluconeogénesis , Humanos , Riñón/metabolismo , Riñón/patología , Riñón/fisiopatología , Enfermedades Renales Quísticas/fisiopatología , ARN/metabolismo , Proteínas de Unión al ARN/química
18.
World Allergy Organ J ; 12(11): 100077, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31871532

RESUMEN

CLCA1 is a member of the CLCA (calcium-activated chloride channel regulator) family and plays an essential role in goblet cell mucus production from the respiratory tract epithelium. CLCA1 also regulates Ca2+-dependent Cl- transport that involves the channel protein transmembrane protein 16A (TMEM16A) and its accessary molecules. CLCA1 modulates epithelial cell chloride current and participates in the pathogenesis of mucus hypersecretory-associated respiratory and gastrointestinal diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, pneumonia, colon colitis, cystic fibrosis intestinal mucous disease, ulcerative colitis, and gastrointestinal parasitic infection. Most studies have been focused on the expression regulation of CLCA1 in human specimens. Limited studies used the CLCA1-deficient mice and CLCA1 blocking agents and yielded inconsistent conclusions regarding its role in these diseases. CLCA1 not only regulates mucin expression, but also participates in innate immune responses by binding to yet unidentified molecules on inflammatory cells for cytokine and chemokine production. CLCA1 also targets lymphatic endothelial cells and cancer cells by regulating lymphatic cell proliferation and lymphatic sinus growth in the lymphatic organs and controlling cancer cell differentiation, proliferation, and apoptosis, all which depend on the location of the lymphatic vessels, the type of cancers, the presence of Th2 cytokines, and possibly the availability and type of CLCA1-binding proteins. Here we summarize available studies related to these different activities of CLCA1 to assist our understanding of how this secreted modifier of calcium-activated chloride channels (CaCCs) affects mucus production and innate immunity during the pathogenesis of respiratory, gastrointestinal, and malignant diseases.

19.
J Mol Biol ; 431(19): 3591-3605, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31278906

RESUMEN

SARM1 induces axonal degeneration in response to various insults and is therefore considered an attractive drug target for the treatment of neuro-degenerative diseases as well as for brain and spinal cord injuries. SARM1 activity depends on the integrity of the protein's SAM domains, as well as on the enzymatic conversion of NAD+ to ADPR (ADP Ribose) products by the SARM1's TIR domain. Therefore, inhibition of either SAM or TIR functions may constitute an effective therapeutic strategy. However, there is currently no SARM1-directed therapeutic approach available because of an insufficient structural and mechanistic understanding of this protein. In this study, we found that SARM1 assembles into an octameric ring. This arrangement was not described before in other SAM proteins, but is reminiscent of the apoptosome and inflammasome-well-known apoptotic ring-like oligomers. We show that both SARM1 and the isolated tandem SAM1-2 domains form octamers in solution, and electron microscopy analysis reveals an octameric ring of SARM1. We determined the crystal structure of SAM1-2 and found that it also forms a closed octameric ring in the crystal lattice. The SAM1-2 ring interactions are mediated by complementing "lock and key" hydrophobic grooves and inserts and electrostatic charges between the neighboring protomers. We have mutated several interacting SAM1-2 interfaces and measured how these mutations affect SARM1 apoptotic activity in cultured cells, and in this way identified critical oligomerization sites that facilitate cell death. These results highlight the importance of oligomerization for SARM1 function and reveal critical epitopes for future targeted drug development.


Asunto(s)
Proteínas del Dominio Armadillo/química , Proteínas del Citoesqueleto/química , Multimerización de Proteína , Secuencia de Aminoácidos , Proteínas del Dominio Armadillo/ultraestructura , Cristalografía por Rayos X , Proteínas del Citoesqueleto/ultraestructura , Humanos , Modelos Moleculares , Dominios Proteicos , Soluciones
20.
J Cell Sci ; 131(19)2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30209138

RESUMEN

Arrestins are key adaptor proteins that control the fate of cell-surface membrane proteins and modulate downstream signaling cascades. The Dictyostelium discoideum genome encodes six arrestin-related proteins, harboring additional modules besides the arrestin domain. Here, we studied AdcB and AdcC, two homologs that contain C2 and SAM domains. We showed that AdcC - in contrast to AdcB - responds to various stimuli (such as the chemoattractants cAMP and folate) known to induce an increase in cytosolic calcium by transiently translocating to the plasma membrane, and that calcium is a direct regulator of AdcC localization. This response requires the calcium-dependent membrane-targeting C2 domain and the double SAM domain involved in AdcC oligomerization, revealing a mode of membrane targeting and regulation unique among members of the arrestin clan. AdcB shares several biochemical properties with AdcC, including in vitro binding to anionic lipids in a calcium-dependent manner and auto-assembly as large homo-oligomers. AdcB can interact with AdcC; however, its intracellular localization is insensitive to calcium. Therefore, despite their high degree of homology and common characteristics, AdcB and AdcC are likely to fulfill distinct functions in amoebae.


Asunto(s)
Arrestinas/metabolismo , Calcio/metabolismo , Factores Quimiotácticos/farmacología , Dictyostelium/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Arrestinas/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , AMP Cíclico/farmacología , Dictyostelium/efectos de los fármacos , Ácido Fólico/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Espacio Intracelular/metabolismo , Liposomas , Fosfolípidos/metabolismo , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Multimerización de Proteína , Transporte de Proteínas/efectos de los fármacos , Proteínas Protozoarias/química , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA