Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Artículo en Chino | MEDLINE | ID: mdl-39223046

RESUMEN

Objective: To explore the potential evidence of active peripheral nerve necrosis when n-hexane produces toxic effects on peripheral nerves. Methods: In May 2023, 36 SPF grade SD male rats with a body weight of 200-220 g were divided into 4 groups with 9 rats in each group and given normal saline and different doses of n-hexane (168, 675, 2 700 mg/kg) by gavage for 6 consecutive weeks (5 days/week). Three rats in each group were killed at the 2nd, 4th and 6th week, respectively. The spinal cord to sciatic nerve tissue was broken and the supernatant was extracted for SDS-PAGE protein isolation. The expression level of Sarm1 protein was analyzed with the ß-Actin color strip of internal reference protein by Western blot. The expression of Sarm1 protein was analyzed by the gray ratio of the two. At the 6th week, the sciatic nerve sections of the each group were observed by light microscope and electron microscope. Results: The number of axons was obviously reduced by light microscopy. According to electron microscope, myelin lesions were mainly local disintegration, deformation, and different thickness. The deformation of axonal surface became smaller. The axons in the nerve bundle membrane showed degeneration and reduction. The gray ratio of Sarm1 protein and internal reference protein bands in each group had no significant change at the second week of exposure, and the ratio of SARM1 protein to internal reference protein bands was 1.47 in the high dose group at the fourth week, and 1.51 and 1.89 in the middle and high dose group at the sixth week, respectively. Conclusion: Waller's degeneration was observed in sciatic neuropathologic manifestations of n-hexane-poisoned rats, and the expression level of Sarm1 protein increased.


Asunto(s)
Hexanos , Ratas Sprague-Dawley , Nervio Ciático , Animales , Ratas , Masculino , Nervio Ciático/metabolismo , Proteínas del Citoesqueleto/metabolismo , Sarín/toxicidad , Sarín/envenenamiento , Proteínas del Dominio Armadillo/metabolismo , Axones/metabolismo , Axones/patología
2.
J Nutr Sci Vitaminol (Tokyo) ; 70(4): 295-304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39218690

RESUMEN

Cellular NAD+ is continuously degraded and synthesized under resting conditions. In mammals, NAD+ synthesis is primarily initiated from nicotinamide (Nam) by Nam phosphoribosyltransferase, whereas poly(ADP-ribose) polymerase 1 (PARP1) and 2 (PARP2), sirtuin1 (SIRT1), CD38, and sterile alpha and TIR motif containing 1 (SARM1) are involved in NAD+ breakdown. Using flux analysis with 2H-labeled Nam, we found that when mammalian cells were cultured in the absence of Nam, cellular NAD+ levels were maintained and NAD+ breakdown was completely suppressed. In the presence of Nam, the rate of NAD+ breakdown (RB) did not significantly change upon PARP1, PARP2, SIRT1, or SARM1 deletion, whereas stable expression of CD38 did not increase RB. However, RB in PARP1-deleted cells was much higher compared with that in wild-type cells, in which PARP1 activity was blocked with a selective inhibitor. In contrast, RB in CD38-overexpressing cells in the presence of a specific CD38 inhibitor was much lower compared with that in control cells. The results indicate that PARP1 deletion upregulates the activity of other NADases, whereas CD38 expression downregulates the activity of endogenous NADases, including PARP1 and PARP2. The rate of cellular NAD+ breakdown and the resulting NAD+ concentration may be maintained at a constant level, despite changes in the NAD+-degrading enzyme expression, through the compensatory regulation of NADase activity.


Asunto(s)
ADP-Ribosil Ciclasa 1 , NAD , Poli(ADP-Ribosa) Polimerasa-1 , Sirtuina 1 , NAD/metabolismo , ADP-Ribosil Ciclasa 1/metabolismo , ADP-Ribosil Ciclasa 1/genética , Animales , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/genética , Niacinamida/farmacología , Niacinamida/metabolismo , Ratones , Poli(ADP-Ribosa) Polimerasas/metabolismo , Humanos , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Eliminación de Gen
3.
Environ Pollut ; 360: 124651, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094998

RESUMEN

2,5-hexanedione (HD) is the γ-diketone metabolite of industrial organic solvent n-hexane, primarily responsible for n-hexane neurotoxicity. Previous studies have shown that the formation of pyrrole adducts (PAs) is crucial for the toxic axonopathy induced by HD. However, the exact mechanism underlying PAs-induced axonal degeneration remains unclear. Recently, Sterile α and toll/interleukin 1 receptor motif-containing protein 1 (SARM1) has been identified as the central executor of axon degeneration. This study was designed to investigate the role of SARM1-mediated axon degeneration in rats exposed to HD. Furthermore, the causal relationship between PAs and SARM1-mediated axon degeneration was further explored using Sarm1 KO mice. Our findings suggest that HD causes axon degeneration and neuronal loss in animals. Mechanistic studies revealed that HD activates SARM1-dependent axonal degeneration machinery. In contrast, Sarm1 KO attenuates motor dysfunction and rescues neuron loss following HD exposure. Interestingly, the PAs formed by the binding of HD to proteins primarily accumulate on mitochondria, leading to mitochondrial dysfunction. This dysfunction serves as an upstream event in HD-induced nerve injuries. Our findings highlight the crucial role of PAs formation in the major pathological changes during n-hexane poisoning, providing a potential therapeutic target for n-hexane neuropathy.

4.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38692735

RESUMEN

Sterile alpha and TIR motif containing 1 (SARM1) is an inducible NADase that localizes to mitochondria throughout neurons and senses metabolic changes that occur after injury. Minimal proteomic changes are observed upon either SARM1 depletion or activation, suggesting that SARM1 does not exert broad effects on neuronal protein homeostasis. However, whether SARM1 activation occurs throughout the neuron in response to injury and cell stress remains largely unknown. Using a semiautomated imaging pipeline and a custom-built deep learning scoring algorithm, we studied degeneration in both mixed-sex mouse primary cortical neurons and male human-induced pluripotent stem cell-derived cortical neurons in response to a number of different stressors. We show that SARM1 activation is differentially restricted to specific neuronal compartments depending on the stressor. Cortical neurons undergo SARM1-dependent axon degeneration after mechanical transection, and SARM1 activation is limited to the axonal compartment distal to the injury site. However, global SARM1 activation following vacor treatment causes both cell body and axon degeneration. Context-specific stressors, such as microtubule dysfunction and mitochondrial stress, induce axonal SARM1 activation leading to SARM1-dependent axon degeneration and SARM1-independent cell body death. Our data reveal that compartment-specific SARM1-mediated death signaling is dependent on the type of injury and cellular stressor.


Asunto(s)
Proteínas del Dominio Armadillo , Corteza Cerebral , Proteínas del Citoesqueleto , Células Madre Pluripotentes Inducidas , Neuronas , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Dominio Armadillo/genética , Animales , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Ratones , Neuronas/metabolismo , Neuronas/patología , Masculino , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Humanos , Femenino , Células Madre Pluripotentes Inducidas/metabolismo , Degeneración Nerviosa/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/genética , Células Cultivadas , Ratones Endogámicos C57BL , Estrés Fisiológico/fisiología , Axones/metabolismo , Axones/patología , Mitocondrias/metabolismo
5.
Int Immunopharmacol ; 134: 112193, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723372

RESUMEN

Retinal neurodegenerative diseases are a category of refractory blinding eye conditions closely associated with oxidative stress induced by mitochondrial dysfunction in retinal cells. SARM1, a core driver molecule leading to axonal degeneration, possesses NAD+ enzyme (NADase) activity. However, the role of the SARM1-NAD+ axis in oxidative stress-induced retinal cell death remains unclear. Here, we employed the SARM1 NADase inhibitor DSRM-3716 and established a glucose oxidase (GOx)-induced oxidative stress cell model. We found that compared to the GOx group, the DSRM-3716 pre-treated group reduced the hydrolysis of NAD+, inhibited the elevation of oxidative stress markers induced by GOx, decreased mitochondrial dysfunction, lowered the phosphorylation level of JNK, and attenuated the occurrence of pyroptosis in retinal and nerve cells, thereby providing protection for neurite growth. Further utilization of the JNK activator Anisomycin activated JNK, revealed that the JNK/c-Jun pathway down-regulated NMNAT2 expression. Consequently, it reduced cellular NAD+ synthesis, exacerbated mitochondrial dysfunction and cell pyroptosis, and reversed the protective effect of DSRM-3716 on cells. In summary, the inhibition of SARM1 NADase activity substantially mitigates oxidative damage to retinal cells and mitochondrial damage. Additionally, JNK simultaneously serves as both an upstream and downstream regulator in the SARM1-NAD+ axis, regulating retinal cell pyroptosis and neurite injury. Thus, this study provides new insights into the pathological processes of retinal cell oxidative stress and identifies potential therapeutic targets for retinal neurodegenerative diseases.


Asunto(s)
Proteínas del Dominio Armadillo , Proteínas del Citoesqueleto , NAD , Estrés Oxidativo , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Dominio Armadillo/genética , Estrés Oxidativo/efectos de los fármacos , Animales , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , NAD/metabolismo , Retina/patología , Retina/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Línea Celular , Piroptosis/efectos de los fármacos , Humanos , NAD+ Nucleosidasa/metabolismo
6.
Immunol Invest ; 53(5): 800-812, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38651786

RESUMEN

BACKGROUND: Sterile alpha and TIR motif-containing 1 (Sarm1) is known as a negative regulator of inflammatory responses. However, its role in inflammatory bowel disease (IBD) is still unclear. OBJECTIVE: This study aimed to explore the function of Sarm1 in IBD and its underlying mechanisms. Sarm1 and tumor necrosis factor (TNF) receptor associated factor 3 (TRAF3) knockout (KO) micewere established. METHODS: The colitis was induced using dextran sulfate sodium (DSS). Bone marrow-derived macrophages (BMDMs) were isolated and stimulated with lipopolysaccharides (LPS) or cytidine phosphate guanosine(CpG). Inflammatory cytokines were measured viaELISA. qPCR and Western blotting were used to determine the levels of the mRNA and protein expression, respectively. RESULTS: It was demonstrated that reduced expression of Sarm1 was correlated with the severity of IBD in ulcerative colitis patients, and also with the reduction of pro-inflammatory cytokines in the mouse model induced by DSS. It was further observed that Sarm1 KO enhanced the induction of pro-inflammatory cytokines in both animal and in vitro cell models. Sarm1 deficiency in macrophages increased the severity of colitis in the mouse model induced by DSS. Moreover, Sarm1 regulatedTRAF3 recruitment to myeloid differentiation primary response protein 88 (MyD88), which in turn controlled the MYD88-mediated inflammatory responses. CONCLUSIONS: In summary, our data suggest that Sarm1 controls the MYD88-mediated inflammatory responses in IBD via its regulation of TRAF3 recruitment.


1. Sarm1 KO enhances the induction of pro-inflammatory cytokines in both animal and in vitro cell models.2. Sarm1 deficiency in macrophages increases the severity of colitis in the mouse model.3. Sarm1 regulates TRAF3 recruitment to MyD88.


Asunto(s)
Proteínas del Dominio Armadillo , Proteínas del Citoesqueleto , Sulfato de Dextran , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino , Macrófagos , Ratones Noqueados , Factor 88 de Diferenciación Mieloide , Factor 3 Asociado a Receptor de TNF , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Ratones , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Dominio Armadillo/genética , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Masculino , Femenino , Ratones Endogámicos C57BL , Citocinas/metabolismo , Transducción de Señal , Adulto , Colitis/inmunología , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/genética , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/genética , Colitis Ulcerosa/inducido químicamente
7.
Chem Biol Interact ; 394: 110971, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521455

RESUMEN

Selective Androgen Receptor Modulators (SARMs), particularly (17α,20E)-17,20-[(1-methoxyethylidene)bis(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic-acid-methyl-ester (YK11), are increasingly popular among athletes seeking enhanced performance. Serving as an Androgen Receptor (AR) agonist, YK11 stimulates muscle growth while inhibiting myostatin. Our study delved into the impact of YK11 on the rat hippocampus, analyzing potential alterations in neurochemical mechanisms and investigating its synergistic effects with exercise (EXE), based on the strong relationship between SARM users and regular exercise. Utilizing Physiologically Based Pharmacokinetic (PBPK) modeling, we demonstrated YK11 remarkable brain permeability, with molecular docking analysis revealing YK11 inhibitory effects on 5-alpha-reductase type II (5αR2), suggesting high cell bioavailability. Throughout a 5-week experiment, we divided the animals into the following groups: Control, YK11 (0.35 g/kg), EXE (swimming exercise), and EXE + YK11. Our findings showed that YK11 displayed a high binding affinity with AR in the hippocampus, influencing neurochemical function and modulating aversive memory consolidation, including the downregulation of the BDNF/TrkB/CREB signaling, irrespective of EXE combination. In the hippocampus, YK11 increased pro-inflammatory IL-1ß and IL-6 cytokines, while reducing anti-inflammatory IL-10 levels. However, the EXE + YK11 group counteracted IL-6 effects and elevated IL-10. Analysis of apoptotic proteins revealed heightened p38 MAPK activity in response to YK11-induced inflammation, initiating the apoptotic cascade involving Bax/Bcl-2/cleaved caspase-3. Notably, the EXE + YK11 group mitigated alterations in Bcl-2 and cleaved caspase-3 proteins. In conclusion, our findings suggest that YK11, at anabolic doses, significantly alters hippocampal neurochemistry, leading to impairments in memory consolidation. This underscore concerns about the misuse risks of SARMs among athletes and challenges common perceptions of their minimal side effects.


Asunto(s)
Hipocampo , Simulación del Acoplamiento Molecular , Receptores Androgénicos , Animales , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Receptores Androgénicos/metabolismo , Masculino , Ratas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Apoptosis/efectos de los fármacos , Ratas Sprague-Dawley , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Condicionamiento Físico Animal , Colestenona 5 alfa-Reductasa/metabolismo , Receptor trkB/metabolismo
8.
Molecules ; 29(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38398599

RESUMEN

Here, we report an adapted protocol using the Promega NAD/NADH-Glo™ Assay kit. The assay normally allows quantification of trace amounts of both oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD) by enzymatic cycling, but we now show that the NAD analog 3-acetylpyridine adenine dinucleotide (AcPyrAD) also acts as a substrate for this enzyme-cycling assay. In fact, AcPyrAD generates amplification signals of a larger amplitude than those obtained with NAD. We exploited this finding to devise and validate a novel method for assaying the base-exchange activity of SARM1 in reactions containing NAD and an excess of the free base 3-acetylpyridine (AcPyr), where the product is AcPyrAD. We then used this assay to study competition between AcPyr and other free bases to rank the preference of SARM1 for different base-exchange substrates, identifying isoquinoline as a highly effect substrate that completely outcompetes even AcPyr. This has significant advantages over traditional HPLC methods for assaying SARM1 base exchange as it is rapid, sensitive, cost-effective, and easily scalable. This could represent a useful tool given current interest in the role of SARM1 base exchange in programmed axon death and related human disorders. It may also be applicable to other multifunctional NAD glycohydrolases (EC 3.2.2.6) that possess similar base-exchange activity.


Asunto(s)
Proteínas del Citoesqueleto , NAD , Humanos , Cromatografía Líquida de Alta Presión , Proteínas del Dominio Armadillo
9.
J Med Virol ; 96(2): e29455, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38323709

RESUMEN

Severe acute respiratory coronavirus 2 (SARS-CoV-2) causes neurological disease in the peripheral and central nervous system (PNS and CNS, respectively) of some patients. It is not clear whether SARS-CoV-2 infection or the subsequent immune response are the key factors that cause neurological disease. Here, we addressed this question by infecting human induced pluripotent stem cell-derived CNS and PNS neurons with SARS-CoV-2. SARS-CoV-2 infected a low number of CNS neurons and did not elicit a robust innate immune response. On the contrary, SARS-CoV-2 infected a higher number of PNS neurons. This resulted in expression of interferon (IFN) λ1, several IFN-stimulated genes and proinflammatory cytokines. The PNS neurons also displayed alterations characteristic of neuronal damage, as increased levels of sterile alpha and Toll/interleukin receptor motif-containing protein 1, amyloid precursor protein and α-synuclein, and lower levels of cytoskeletal proteins. Interestingly, blockade of the Janus kinase and signal transducer and activator of transcription pathway by Ruxolitinib did not increase SARS-CoV-2 infection, but reduced neuronal damage, suggesting that an exacerbated neuronal innate immune response contributes to pathogenesis in the PNS. Our results provide a basis to study coronavirus disease 2019 (COVID-19) related neuronal pathology and to test future preventive or therapeutic strategies.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Humanos , SARS-CoV-2 , Inmunidad Innata , Neuronas
10.
Cell Rep ; 43(2): 113721, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38310514

RESUMEN

Inflammation is closely associated with many neurodegenerative disorders. Yet, whether inflammation causes, exacerbates, or responds to neurodegeneration has been challenging to define because the two processes are so closely linked. Here, we disentangle inflammation from the axon damage it causes by individually blocking cytotoxic T cell function and axon degeneration. We model inflammatory damage in mouse skin, a barrier tissue that, despite frequent inflammation, must maintain proper functioning of a dense array of axon terminals. We show that sympathetic axons modulate skin inflammation through release of norepinephrine, which suppresses activation of γδ T cells via the ß2 adrenergic receptor. Strong inflammatory stimulation-modeled by application of the Toll-like receptor 7 agonist imiquimod-causes progressive γδ T cell-mediated, Sarm1-dependent loss of these immunosuppressive sympathetic axons. This removes a physiological brake on T cells, initiating a positive feedback loop of enhanced inflammation and further axon damage.


Asunto(s)
Dermatitis , Inflamación , Animales , Ratones , Retroalimentación , Axones , Terminales Presinápticos
11.
J Neurosci ; 44(16)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38423763

RESUMEN

Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular makeup of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely nonoverlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.


Asunto(s)
Células Receptoras Sensoriales , Pez Cebra , Animales , Pez Cebra/metabolismo , Animales Modificados Genéticamente , Supervivencia Celular , Células Receptoras Sensoriales/fisiología , Axones/fisiología , Análisis de la Célula Individual , Mamíferos
12.
Cells ; 13(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38334594

RESUMEN

We evaluated whether inhibiting sterile alpha and (Toll/interleukin receptor (TIR)) motif-containing 1 (SARM1) activity protects retinal ganglion cells (RGCs) following ischemic axonopathy (rodent nonarteritic anterior ischemic optic neuropathy: rNAION) by itself and combined with ciliary neurotrophic factor (CNTF). Genetically modified SARM1(-) rats were rNAION-induced in one eye and compared against equivalently induced wild-type animals of the same background. Optic nerve (ON) diameters were quantified using optical coherence tomography (SD-OCT). RGCs were quantified 30 d post-induction using retinal stereology for Brn3a(+) nuclei. ON sections were analyzed by TEM and immunohistochemistry. SARM1(-)(-) and WT animals were then bilaterally sequentially rNAION-induced. One eye received intravitreal vehicle injection following induction; the contralateral side received CNTF and was analyzed 30 d post-induction. Inhibiting SARM1 activity suppressed axonal collapse following ischemic axonopathy. SARM1(-) animals significantly reduced RGC loss, compared with WT animals (49.4 ± 6.8% RGC loss in SARM1(-) vs. 63.6 ± 3.2% sem RGC loss in WT; Mann-Whitney one-tailed U-test, (p = 0.049)). IVT-CNTF treatment vs. IVT-vehicle in SARM1(-) animals further reduced RGC loss by 24% at 30 d post-induction, but CNTF did not, by itself, improve long-term RGC survival in WT animals compared with vehicle (Mann-Whitney one-tailed t-test; p = 0.033). While inhibiting SARM1 activity is itself neuroprotective, combining SARM1 inhibition and CNTF treatment generated a long-term, synergistic neuroprotective effect in ischemic neuropathy. Combinatorial treatments for NAION utilizing independent neuroprotective mechanisms may thus provide a greater effect than individual treatment modalities.


Asunto(s)
Neuropatía Óptica Isquémica , Células Ganglionares de la Retina , Animales , Ratas , Animales Salvajes , Factor Neurotrófico Ciliar , Retina , Roedores
13.
Acta Neuropathol Commun ; 12(1): 23, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331947

RESUMEN

Glaucoma is one of the leading causes of irreversible blindness worldwide and vision loss in the disease results from the deterioration of retinal ganglion cells (RGC) and their axons. Metabolic dysfunction of RGC plays a significant role in the onset and progression of the disease in both human patients and rodent models, highlighting the need to better define the mechanisms regulating cellular energy metabolism in glaucoma. This study sought to determine if Sarm1, a gene involved in axonal degeneration and NAD+ metabolism, contributes to glaucomatous RGC loss in a mouse model with chronic elevated intraocular pressure (IOP). Our data demonstrate that after 16 weeks of elevated IOP, Sarm1 knockout (KO) mice retain significantly more RGC than control animals. Sarm1 KO mice also performed significantly better when compared to control mice during optomotor testing, indicating that visual function is preserved in this group. Our findings also indicate that Sarm1 KO mice display mild ocular developmental abnormalities, including reduced optic nerve axon diameter and lower visual acuity than controls. Finally, we present data to indicate that SARM1 expression in the optic nerve is most prominently associated with oligodendrocytes. Taken together, these data suggest that attenuating Sarm1 activity through gene therapy, pharmacologic inhibition, or NAD+ supplementation, may be a novel therapeutic approach for patients with glaucoma.


Asunto(s)
Glaucoma , Células Ganglionares de la Retina , Humanos , Ratones , Animales , Células Ganglionares de la Retina/metabolismo , Presión Intraocular , NAD/metabolismo , Glaucoma/genética , Nervio Óptico/metabolismo , Axones/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo
14.
J Biol Chem ; 300(2): 105620, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176648

RESUMEN

Sterile alpha and HEAT/armadillo motif-containing protein (SARM1) was recently described as a NAD+-consuming enzyme and has previously been shown to regulate immune responses in macrophages. Neuronal SARM1 is known to contribute to axon degeneration due to its NADase activity. However, how SARM1 affects macrophage metabolism has not been explored. Here, we show that macrophages from Sarm1-/- mice display elevated NAD+ concentrations and lower cyclic ADP-ribose, a known product of SARM1-dependent NAD+ catabolism. Further, SARM1-deficient macrophages showed an increase in the reserve capacity of oxidative phosphorylation and glycolysis compared to WT cells. Stimulation of macrophages to a proinflammatory state by lipopolysaccharide (LPS) revealed that SARM1 restricts the ability of macrophages to upregulate glycolysis and limits the expression of the proinflammatory gene interleukin (Il) 1b, but boosts expression of anti-inflammatory Il10. In contrast, we show macrophages lacking SARM1 induced to an anti-inflammatory state by IL-4 stimulation display increased oxidative phosphorylation and glycolysis, and reduced expression of the anti-inflammatory gene, Fizz1. Overall, these data show that SARM1 fine-tunes immune gene transcription in macrophages via consumption of NAD+ and altered macrophage metabolism.


Asunto(s)
Proteínas del Dominio Armadillo , Proteínas del Citoesqueleto , Neuronas , Animales , Ratones , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Axones/metabolismo , ADP-Ribosa Cíclica/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , NAD/metabolismo , Neuronas/metabolismo
15.
J Neurosci Res ; 102(1): e25292, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284842

RESUMEN

Autophagic dysfunction in neurodegenerative diseases is being extensively studied, yet the exact mechanism of macroautophagy/autophagy in axon degeneration is still elusive. A recent study by Kim et al. links autophagic stress to the sterile α and toll/interleukin 1 receptor motif containing protein 1 (SARM1)-dependent core axonal degeneration program, providing a new insight into the role of autophagy in axon degeneration. In the classical Wallerian axon degeneration model of axotomy, disruption of axonal transport destroys the coordinated activity of pro-survival and pro-degenerative factors in the axoplasm and activates the NADase activity of SARM1, thus triggering the axonal self-destruction program. However, the mechanism for SARM1 activation in the chronic neurodegenerative disorders is more complex. Mitochondrial defects and oxidative stress contribute to the activation of SARM1, while mitophagy can inhibit mitochondrial dysfunction and promote the clearance of SARM1 on mitochondria, thus protecting against neuronal degeneration. Therefore, in-depth elucidation of the underlying mechanisms of mitophagy during axonal degeneration can help develop promising strategies for the prevention and treatment of various neurodegenerative disorders.


Asunto(s)
Autofagia , Enfermedades Neurodegenerativas , Humanos , Axones , Mitocondrias , Proteínas del Citoesqueleto , Proteínas del Dominio Armadillo
16.
J Biol Chem ; 300(2): 105630, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199568

RESUMEN

Sterile alpha and toll/interleukin receptor motif-containing 1 (SARM1) is a critical regulator of axon degeneration that acts through hydrolysis of NAD+ following injury. Recent work has defined the mechanisms underlying SARM1's catalytic activity and advanced our understanding of SARM1 function in axons, yet the role of SARM1 signaling in other compartments of neurons is still not well understood. Here, we show in cultured hippocampal neurons that endogenous SARM1 is present in axons, dendrites, and cell bodies and that direct activation of SARM1 by the neurotoxin Vacor causes not just axon degeneration, but degeneration of all neuronal compartments. In contrast to the axon degeneration pathway defined in dorsal root ganglia, SARM1-dependent hippocampal axon degeneration in vitro is not sensitive to inhibition of calpain proteases. Dendrite degeneration downstream of SARM1 in hippocampal neurons is dependent on calpain 2, a calpain protease isotype enriched in dendrites in this cell type. In summary, these data indicate SARM1 plays a critical role in neurodegeneration outside of axons and elucidates divergent pathways leading to degeneration in hippocampal axons and dendrites.


Asunto(s)
Proteínas del Dominio Armadillo , Proteínas del Citoesqueleto , Neuronas , Animales , Ratones , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Axones/metabolismo , Calpaína/metabolismo , Proteínas del Citoesqueleto/metabolismo , Dendritas/metabolismo , Neuronas/metabolismo , Transducción de Señal
17.
Biology (Basel) ; 13(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275737

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) commonly arises as a side effect of diverse cancer chemotherapy treatments. This condition presents symptoms such as numbness, tingling, and altered sensation in patients, often accompanied by neuropathic pain. Pathologically, CIPN is characterized by an intensive "dying-back" axonopathy, starting at the intra-epidermal sensory innervations and advancing retrogradely. The lack of comprehensive understanding regarding its underlying mechanisms explains the absence of effective treatments for CIPN. Recent investigations into axon degeneration mechanisms have pinpointed nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha and TIR motif-containing 1 protein (SARM1) as pivotal mediators of injury-induced axonal degeneration. In this review, we aim to explore various studies shedding light on the interplay between NMNAT2 and SARM1 proteins and their roles in the progression of CIPN.

18.
J Cereb Blood Flow Metab ; 44(2): 224-238, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37898107

RESUMEN

Ischemic stroke causes secondary neurodegeneration in the thalamus ipsilateral to the infarction site and impedes neurological recovery. Axonal degeneration of thalamocortical fibers and autophagy overactivation are involved in thalamic neurodegeneration after ischemic stroke. However, the molecular mechanisms underlying thalamic neurodegeneration remain unclear. Sterile /Armadillo/Toll-Interleukin receptor homology domain protein (SARM1) can induce Wallerian degeneration. Herein, we aimed to investigate the role of SARM1 in thalamic neurodegeneration and autophagy activation after photothrombotic infarction. Neurological deficits measured using modified neurological severity scores and adhesive-removal test were ameliorated in Sarm1-/- mice after photothrombotic infarction. Compared with wild-type mice, Sarm1-/- mice exhibited unaltered infarct volume; however, there were markedly reduced neuronal death and gliosis in the ipsilateral thalamus. In parallel, autophagy activation was attenuated in the thalamus of Sarm1-/- mice after cerebral infarction. Thalamic Sarm1 re-expression in Sarm1-/- mice increased thalamic neurodegeneration and promoted autophagy activation. Auotophagic inhibitor 3-methyladenine partially alleviated thalamic damage induced by SARM1. Moreover, autophagic initiation through rapamycin treatment aggravated post-stroke neuronal death and gliosis in Sarm1-/- mice. Taken together, SARM1 contributes to secondary thalamic neurodegeneration after cerebral infarction, at least partly through autophagy inhibition. SARM1 deficiency is a potential therapeutic strategy for secondary thalamic neurodegeneration and functional deficits after stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Gliosis , Infarto Cerebral/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Tálamo/metabolismo , Axones/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo
19.
Mol Neurobiol ; 61(7): 4783-4803, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38135853

RESUMEN

Subarachnoid hemorrhage (SAH) is a devastating disease associated with a high mortality and morbidity. Exosomes have been considered as a potential therapeutic target for SAH. However, the effect of exosomes in SAH remains to be elucidated. In this study, we focused on investigating the effect of plasma exosomal lncRNA TM7SF3-AU1 in white matter injury after SAH. The SAH model was established by means of endovascular perforation. Exosomes were extracted from rat plasma samples. The expression of RNAs in the exosomes was detected by the transcriptomic microarray. Differentially expressed circRNA, lncRNA, and mRNA were obtained. The ceRNA network showed that the lncRNA TM7SF3-AU1 and miR-702-3p were closely associated with SARM1. Knocking down TM7SF3-AU1 promoted the expression of miR-702-3p and suppressed the expression of SARM1, and knocking down TM7SF3-AU1 also attenuated white matter injury after SAH. In addition, knocking down TM7SF3-AU1 improved the neurological deficits in locomotion, anxiety, learning, memory, and electrophysiological activity after SAH. Mechanistically, TM7SF3-AU1 was able to absorb miR-702-3p, which directly bind the SARM1 mRNA. Furthermore, the white matter injury attenuated by knockdown of TM7SF3-AU1 was partially reversed by the miR-702-3p antagomir in SAH rats. Taken together, this study showed that TM7SF3-AU1 acts as a sponge for miR-702-3p, reducing the inhibitory effect of miR-702-3p on SARM1, resulting in increased SARM1 expression and thus leading to white matter injury after SAH. Our study provides new insights into exosome-associated white matter injury. It also highlights TM7SF3-AU1 as a potential therapeutic target for white matter injury after SAH.


Asunto(s)
Proteínas del Citoesqueleto , Exosomas , MicroARNs , ARN Largo no Codificante , Ratas Sprague-Dawley , Transducción de Señal , Hemorragia Subaracnoidea , Sustancia Blanca , Animales , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Exosomas/metabolismo , Masculino , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/genética , Hemorragia Subaracnoidea/patología , Hemorragia Subaracnoidea/complicaciones , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Dominio Armadillo/genética , Ratas
20.
Zool Res ; 45(1): 25-35, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38114430

RESUMEN

Long non-coding RNAs (lncRNAs) function as key modulators in mammalian immunity, particularly due to their involvement in lncRNA-mediated competitive endogenous RNA (ceRNA) crosstalk. Despite their recognized significance in mammals, research on lncRNAs in lower vertebrates remains limited. In the present study, we characterized the first immune-related lncRNA (pol-lnc78) in the teleost Japanese flounder ( Paralichthys olivaceus). Results indicated that pol-lnc78 acted as a ceRNA for pol-miR-n199-3p to target the sterile alpha and armadillo motif-containing protein (SARM), the fifth discovered member of the Toll/interleukin 1 (IL-1) receptor (TIR) adaptor family. This ceRNA network regulated the antibacterial responses of flounder via the Toll-like receptor (TLR) signaling pathway. Specifically, SARM acted as a negative regulator and exacerbated bacterial infection by inhibiting the expression of inflammatory cytokines IL-1ß and tumor necrosis factor-α (TNF-α). Pol-miR-n199-3p reduced SARM expression by specifically interacting with the 3' untranslated region (UTR), thereby promoting SARM-dependent inflammatory cytokine expression and protecting the host against bacterial dissemination. Furthermore, pol-lnc78 sponged pol-miR-n199-3p to ameliorate the inhibition of SARM expression. During infection, the negative regulators pol-lnc78 and SARM were significantly down-regulated, while pol-miR-n199-3p was significantly up-regulated, thus favoring host antibacterial defense. These findings provide novel insights into the mechanisms underlying fish immunity and open new horizons to better understand ceRNA crosstalk in lower vertebrates.


Asunto(s)
Lenguado , MicroARNs , ARN Largo no Codificante , Animales , Citocinas/metabolismo , Regulación hacia Abajo , Lenguado/genética , Lenguado/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Endógeno Competitivo , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA