Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72.270
Filtrar
1.
J. bras. nefrol ; 46(2): e20230056, Apr.-June 2024. tab
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1550498

RESUMEN

Abstract Introduction: Acute kidney injury (AKI) occurs frequently in COVID-19 patients and is associated with greater morbidity and mortality. Knowing the risks of AKI allows for identification, prevention, and timely treatment. This study aimed to identify the risk factors associated with AKI in hospitalized patients. Methods: A descriptive, retrospective, cross-sectional, and analytical component study of adult patients hospitalized with COVID-19 from March 1 to December 31, 2020 was carried out. AKI was defined by the creatinine criteria of the KDIGO-AKI guidelines. Information, regarding risk factors, was obtained from electronic medical records. Results: Out of the 934 patients, 42.93% developed AKI, 60.59% KDIGO-1, and 9.9% required renal replacement therapy. Patients with AKI had longer hospital stay, higher mortality, and required more intensive care unit (ICU) admission, mechanical ventilation, and vasopressor support. Multivariate analysis showed that age (OR 1.03; 95% CI 1.02-1.04), male sex (OR 2.13; 95% CI 1.49-3.04), diabetes mellitus (DM) (OR 1.55; 95% CI 1.04-2.32), chronic kidney disease (CKD) (OR 2.07; 95% CI 1.06-4.04), C-reactive protein (CRP) (OR 1.02; 95% CI 1.00-1.03), ICU admission (OR 1.81; 95% CI 1.04-3.16), and vasopressor support (OR 7.46; 95% CI 3.34-16.64) were risk factors for AKI, and that bicarbonate (OR 0.89; 95% CI 0.84-0.94) and partial pressure arterial oxygen/inspired oxygen fraction index (OR 0.99; 95% CI 0.98-0.99) could be protective factors. Conclusions: A high frequency of AKI was documented in COVID-19 patients, with several predictors: age, male sex, DM, CKD, CRP, ICU admission, and vasopressor support. AKI occurred more frequently in patients with higher disease severity and was associated with higher mortality and worse outcomes.


RESUMO Introdução: Lesão renal aguda (LRA) ocorre frequentemente em pacientes com COVID-19 e associa-se a maior morbidade e mortalidade. Conhecer riscos da LRA permite a identificação, prevenção e tratamento oportuno. Este estudo teve como objetivo identificar fatores de risco associados à LRA em pacientes hospitalizados. Métodos: Realizou-se estudo descritivo, retrospectivo, transversal e de componente analítico de pacientes adultos hospitalizados com COVID-19 de 1º de março a 31 de dezembro, 2020. Definiu-se a LRA pelos critérios de creatinina das diretrizes KDIGO-LRA. Informações sobre fatores de risco foram obtidas de prontuários eletrônicos. Resultados: Dos 934 pacientes, 42,93% desenvolveram LRA, 60,59% KDIGO-1 e 9,9% necessitaram de terapia renal substitutiva. Pacientes com LRA apresentaram maior tempo de internação, maior mortalidade e necessitaram de mais internações em UTIs, ventilação mecânica e suporte vasopressor. A análise multivariada mostrou que idade (OR 1,03; IC 95% 1,02-1,04), sexo masculino (OR 2,13; IC 95% 1,49-3,04), diabetes mellitus (DM) (OR 1,55; IC 95% 1,04-2,32), doença renal crônica (DRC) (OR 2,07; IC 95% 1,06-4,04), proteína C reativa (PCR) (OR 1,02; IC 95% 1,00-1,03), admissão em UTI (OR 1,81; IC 95% 1,04-3,16) e suporte vasopressor (OR 7,46; IC 95% 3,34-16,64) foram fatores de risco para LRA, e que bicarbonato (OR 0,89; IC 95% 0,84-0,94) e índice de pressão parcial de oxigênio arterial/fração inspirada de oxigênio (OR 0,99; IC 95% 0,98-0,99) poderiam ser fatores de proteção. Conclusões: Documentou-se alta frequência de LRA em pacientes com COVID-19, com diversos preditores: idade, sexo masculino, DM, DRC, PCR, admissão em UTI e suporte vasopressor. LRA ocorreu mais frequentemente em pacientes com maior gravidade da doença e associou-se a maior mortalidade e piores desfechos.

2.
Front Vet Sci ; 11: 1329656, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770189

RESUMEN

Epidemiological data on SARS-CoV-2 infection in companion animals have been thoroughly investigated in many countries. However, information on the neutralizing cross-reactivity against SARS-CoV-2 variants in companion animals is still limited. Here, we explored the neutralizing antibodies against SARS-CoV-2 in cats and dogs between May 2020 and December 2021 during the first wave (a Wuhan-Hu-1-dominant period) and the fourth wave (a Delta-dominant period) of the Thailand COVID-19 outbreak. Archival plasma samples of 1,304 cats and 1,795 dogs (total = 3,099) submitted for diagnosis and health checks were collected at the Prasu-Arthorn Veterinary Teaching Hospital, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom. A microneutralization test was used to detect neutralizing antibodies against the ancestral Wuhan-Hu-1 and the Delta variants. A plasma sample with neutralizing titers ≥10 was considered positive. Our results showed relatively low seroprevalence with seropositive samples detected in 8 out of 3,099 individuals (0.26, 95% CI 0.11-0.51%). Among these cases, SARS-CoV-2 neutralizing antibodies from both the ancestral Wuhan-Hu-1 and the Delta variants were found in three out of eight cases in two cats (n = 2) and one dog (n = 1). Furthermore, neutralizing antibodies specific to only the ancestral Wuhan-Hu-1 variant were exclusively found in one cat (n = 1), while antibodies against only the Delta variant were detected in four dogs (n = 4). Additionally, the neutralizing cross-activities against SARS-CoV-2 variants (Alpha, Beta, and Omicron BA.2) were observed in the seropositive cats with limited capacity to neutralize the Omicron BA.2 variant. In summary, the seropositivity among cats and dogs in households with an unknown COVID-19 status was relatively low in Thailand. Moreover, the neutralizing antibodies against SARS-CoV-2 found in the seropositive cats and dogs had limited or no ability to neutralize the Omicron BA.2 variant. Thus, monitoring SARS-CoV-2 infection and sero-surveillance, particularly in cats, is imperative for tracking virus susceptibility to the emergence of new SARS-CoV-2 variants.

3.
Clin Transl Immunology ; 13(5): e1514, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770238

RESUMEN

Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected 700 million people worldwide since its outbreak in 2019. The current pandemic strains, including Omicron and its large subvariant series, exhibit strong transmission and stealth. After entering the human body, the virus first infects nasal epithelial cells and invades host cells through the angiotensin-converting enzyme 2 receptor and transmembrane serine protease 2 on the host cell surface. The nasal cavity is an important body part that protects against the virus. Immunisation of the nasal mucosa produces immunoglobulin A antibodies that effectively neutralise viruses. Saline nasal irrigation, a type of physical therapy, can reduce the viral load in the nasal cavity and prevent viral infections to some extent. As a commonly used means to fight SARS-CoV-2, the intramuscular (IM) vaccine can induce the human body to produce a systemic immune response and immunoglobulin G antibody; however, the antibody is difficult to distribute to the nasal mucosa in time and cannot achieve a good preventive effect. Intranasal (IN) vaccines compensate for the shortcomings of IM vaccines, induce mucosal immune responses, and have a better effect in preventing infection. In this review, we discuss the nasal defence barrier, the harm caused by SARS-CoV-2, the mechanism of its invasion into host cells, nasal cleaning, IM vaccines and IN vaccines, and suggest increasing the development of IN vaccines, and use of IN vaccines as a supplement to IM vaccines.

4.
Heliyon ; 10(10): e31011, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38770337

RESUMEN

Objective: Genomic surveillance and seroprevalence of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) in Bangladesh is paramount for COVID-19 pandemic preparedness yet lagging the high-income countries due to limited resources. Methods: SARS-CoV-2 variants, COVID-19 symptoms, and serology were prospectively evaluated in a cross-sectional study of Bangladeshi adults testing RT-PCR positive in 2021 and 2022. Results: SARS CoV-2 Omicron variants of asymptomatic or mild COVID-19 in 2022 replaced Delta variant infections requiring hospitalization and oxygen support. The omicron XBB became predominant in July 2022 and associated with cough, headache or body ache and loss of smell; 47 of 68 (69 %), 30 of 68 (44 %) and 27 of 68 (40 %) respectively at higher frequency than BA.1/BA.2; 16 of 88 (18 %), 13 of 88 (15 %) and 0 of 88 (0 %) p < 0.01, p < 0.01 and p < 0.0001. Linear regression analysis reveals no associations between the number of previous infections and the number of symptoms, r = -0.084, p = 0.68. The anti-nucleoprotein (N)-protein IgG post COVID-19 and anti-Spike (S) protein IgG post-COVID-19 vaccination were similar between BA.2, BA.4/BA.5 and XBB and significantly lower than the levels in delta variant infections (p < 0.001). Conclusions: Omicron XBB subvariants emerged in Bangladesh two months prior to previous reports and include unique patterns of S-protein mutations not assigned in PANGO lineage. The SARS CoV-2 omicron break-through infections persist in the presence of sustained antibody responses and vaccinations, underscoring the importance of molecular surveillance in low-income countries.

5.
J Hazard Mater ; 473: 134635, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38772110

RESUMEN

How to address public health priorities after COVID-19 is becoming a critical task. To this end, we conducted wastewater surveillance for six leading pathogens, namely, SARS-CoV-2, norovirus, rotavirus, influenza A virus (IAV), enteroviruses and respiratory syncytial virus (RSV), in Nanchang city from January to April 2023. Metaviromic sequencing was conducted at the 1st, 4th, 7th, 9th, 12th and 14th weeks to reveal the dynamics of viral pathogens that were not covered by qPCR. Amplicon sequencing of the conserved region of norovirus GI and GII and the rotavirus and region encoding nonstructural protein of RSV was also conducted weekly. The results showed that after a rapid decrease in SARS-CoV-2 sewage concentrations occurred in January 2023, surges of norovirus, rotavirus, IAV and RSV started at the 6th, 7th, 8th and 11th weeks, respectively. The dynamics of the sewage concentrations of norovirus, rotavirus, IAV and RSV were consistent with the off-season resurgence of the above infectious diseases. Notably, peak sewage concentrations of norovirus GI, GII, rotavirus, IAV and RSV were found at the 6th, 3rd, 7th, 7th and 8th weeks, respectively. Astroviruses also resurge after the 7th week, as revealed by metaviromic data, suggesting that wastewater surveillance together with metaviromic data provides an essential early warning tool for revealing patterns of infectious disease resurgence.

6.
Int Immunopharmacol ; 135: 112291, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772300

RESUMEN

BACKGROUND: The impact of COVID-19 on reproductive health is controversial. The association between female SARS-CoV-2 infection and laboratory and pregnancy outcomes following subsequent in vitro fertilization (IVF) treatment remains unclear. This study aimed to investigate the relationship between IVF treatment at different time intervals after SARS-CoV-2 infection and reproductive outcomes. METHODS: A prospective cohort study of 920 IVF cycles post-SARS-CoV-2 infection was conducted. Modified Poisson regression and logistic regression models were utilized to evaluate oocyte- and embryo-related outcomes as well as clinical outcomes. Stratified analyses were also performed based on the vaccination status of the female participants. RESULTS: SARS-CoV-2 infection within three months was associated with reduced available [Adjusted RR (aRR): 0.96, 95 %CI: 0.91-1.00] and top-quality embryos (aRR: 0.90, 95 %CI: 0.83-0.98) in subsequent IVF treatment. Among patients failing to finish the three-dose vaccination, the interval between SARS-CoV-2 infection and cycle initiation of less than 90 days was associated with a lower number of oocytes retrieval (aRR: 8.81, 95 %CI: 8.24-9.41 vs aRR: 9.64, 95 %CI: 9.06-10.25), available embryos (aRR: 0.93, 95 %CI: 0.88-0.99), and top-quality embryos (aRR: 0.81, 95 %CI: 0.72-0.91) rather than among fully vaccinated women. Moreover, COVID-19 infection was not associated with biochemical pregnancy, clinical pregnancy, embryo implantation, and early abortion either in fresh embryo transfer (ET) or frozen ET. CONCLUSIONS: This study indicated that initiating IVF treatment within 90 days of SARS-CoV-2 infection might reduce the likelihood of obtaining available and top-quality embryos, especially among those who had not completed the three-dose vaccination. Nevertheless, female COVID-19 infection did not affect pregnancy or early abortion. Further rigorously designed studies are required to support these findings.

7.
Anal Chim Acta ; 1309: 342693, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772660

RESUMEN

BACKGROUND: CRISPR-Cas12a based one-step assays are widely used for nucleic acid detection, particularly for pathogen detection. However, the detection capability of the one-step assay is reduced because the Cas12a protein competes with the isothermal amplification enzymes for the target DNA and cleaves it. Therefore, the key to improving the sensitivity of the one-step assay is to address the imbalance between isothermal amplification and CRISPR detection. In previous study, we developed a Cas12a one-step assay using single-stranded DNA (ssDNA)-modified crRNA (mD-crRNA) and applied this method for the detection of pathogenic DNA. RESULTS: Here, we utilized mD-crRNA to establish a sensitive one-step assay that enables the visual detection of SARS-CoV-2 under ultraviolet light, achieving a detection limit of 5 aM without cross-reactivity. The sensitivity of mD-crRNA in the one-step assay was 100-fold higher than that of wild-type crRNA. Mechanistic studies revealed that the addition of ssDNA at the 3' end of mD-crRNA attenuates the binding affinity between the Cas12a-mD-crRNA complex and the target DNA. Consequently, this reduction in binding affinity decreases the cis-cleavage activity of Cas12a, mitigating its cleavage of the target DNA in the one-step assay. As a result, there is an augmentation in the amplification and accumulation of target DNA, thereby enhancing detection sensitivity. In the clinical testing of 40 SARS-CoV-2 RNA samples, the concordance between the results of the one-step assay and known qPCR results was 97.5 %. SIGNIFICANCE: The one-step assay using mD-crRNA proves to be highly sensitive and specificity and visually effective for the detection of SARS-CoV-2. Our study delves into the application of the mD-crRNA-mediated one-step assay in nucleic acid detection and its associated reaction mechanism. This holds great significance in addressing the inherent incompatibility issues between isothermal amplification and CRISPR detection.


Asunto(s)
COVID-19 , ADN de Cadena Simple , Técnicas de Amplificación de Ácido Nucleico , ARN Viral , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , ARN Viral/análisis , ARN Viral/genética , COVID-19/diagnóstico , COVID-19/virología , Límite de Detección , Sistemas CRISPR-Cas/genética , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Bacterianas
8.
Vaccine ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772834

RESUMEN

INTRODUCTION: Although COVID-19 vaccine safety in 5-11-year-old children has been documented, half of Ontarian children this age remain unvaccinated. This study aimed to assess caregivers' vaccine acceptance for 5-11-year-old children and identify factors associated with vaccine non-acceptance. METHODS: A multi-language self-administered survey was sent to caregivers of 5-11-year-old children through schools and community health centers within the Greater Toronto Area from April-July 2022. Sociodemographic characteristics and immunization behaviours were collected for caregivers, their 5-11-year-old children, and any older siblings. The primary outcome, COVID-19 vaccine acceptance, was previous uptake of COVID-19 vaccine or caregiver intent to vaccinate for their 5-11-year-old child. Data were analyzed using descriptive statistics and multivariable logistic regression. RESULTS: In total, 807 caregivers were included in analysis. Although 93 % of caregivers had received two doses of COVID-19 vaccine, 77 % had a 5-11-year-old child who received at least one dose of vaccine. Caregivers age was associated with vaccine acceptance (vs. < 40 years; adjusted odds ratio [aOR] 2.1, 95 % confidence interval [CI] 1.4-3.1 for ages 40-49; aOR 2.8, 95 % CI 1.1-7.1 for ages ≥50 years). Immunization factors associated with vaccine acceptance included caregiver COVID-19 vaccination (aOR 38.1 vs. unvaccinated caregivers; 95 % CI 15.8-92.3), older siblings COVID-19 vaccination (aOR 49.2 vs. unvaccinated siblings; 95 % CI 18.3-132.3), and recent influenza vaccination for the child (aOR 6.9 vs. no influenza vaccine; 95 % CI 4.6-10.5). Among 189 caregivers with unvaccinated 5-11-year-old children, the most common reasons for non-acceptance were concerns about long-term side effects (59 %), lack of experience vaccinating children (41 %), and concerns that vaccines were developed too quickly (39 %). CONCLUSION: Acceptance of COVID-19 vaccination for 5-11-year-old children were associated with caregiver vaccine behaviors and sociodemographic factors. These findings highlight groups of caregivers that can be targeted for educational interventions and concerns that may be addressed to increase vaccine confidence.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38772969

RESUMEN

Blood transfusion capacity in low- and middle-income countries (LMICs), encompassing both the safety and adequacy of the blood supply, is limited. The challenges facing blood banks in LMICs include regulatory oversight, blood donor selection, collection procedures, laboratory testing, and post-transfusion surveillance. A high proportion of LMICs are unable to fully meet clinical demands for blood products, and many do not meet even the minimum threshold of collection (10 units per 1000 population). Suboptimal clinical transfusion practices, in large part due to a lack of training in transfusion medicine, contribute to blood wastage. During the COVID-19 pandemic, high- and LMICs alike experienced blood shortages, in large part due to quarantine and containment measures that impeded donor mobility. COVID-19 convalescent plasma (CCP) was particularly appealing for the treatment of patients with COVID-19 in LMICs, as it is a relatively inexpensive intervention and makes use of the existing blood collection infrastructure. Nonetheless, the challenges of using CCP in LMICs need to be contextualized among broad concerns surrounding blood safety and availability. Specifically, reliance on first time, family replacement and paid donors, coupled with deficient infectious disease testing and quality oversight, increase the risk of transfusion transmitted infections from CCP in LMICs. Furthermore, many LMICs are unable to meet general transfusion needs; therefore, CCP collection also risked exacerbation of pervasive blood shortages.

10.
Neurol Sci ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772979

RESUMEN

INTRODUCTION: Identifying coronavirus disease 2019 (COVID-19)-related encephalitis without clear etiological evidence is clinically challenging. The distinctions between this condition and other prevalent encephalitis types remain unknown. Therefore, we aimed to explore the similarities and differences in the clinical characteristics of COVID-19-related encephalitis and other encephalitis types. METHODS: Adult patients with encephalitis admitted to the neurology department at Xuanwu Hospital were enrolled and categorized into the following six groups based on the results of metagenomic next-generation sequencing and autoimmune antibody detection in cerebrospinal fluid (CSF): COVID-19-related encephalitis (n = 36), herpes simplex virus type 1 encephalitis (HSV-1 encephalitis; n = 28), human herpesvirus 3 encephalitis (HHV-3 encephalitis; n = 10), NMDAR-antibody encephalitis (n = 18), LGI1-antibody encephalitis (n = 12), and GABAB-antibody encephalitis (n = 8). RESULTS: The predominant characteristics of COVID-19-related encephalitis include a low incidence of seizures (38.9%), cognitive defects (30.6%), and meningeal irritation signs (8.3%). Compared with HSV-1 and HHV-3 encephalitis, COVID-19-related encephalitis exhibited lower white blood cell count (2.5 count/mm3), protein (32.2 mg/dL), and immunoglobulin M, G, and A levels (0.09, 3.2, and 0.46 mg/dL, respectively) in the CSF tests. Abnormal imaging findings were present in only 36.1% of COVID-19-related encephalitis cases, mostly showing diffuse inflammation scattered in various parts, which differed from HSV-1 encephalitis. Additionally, COVID-19-related encephalitis exhibited significant differences in clinical symptoms and CSF white blood cell counts compared with NMDAR-antibody encephalitis; however, it showed limited differences compared with LGI1-antibody and GABAB-antibody encephalitis. DISCUSSION: COVID-19-related encephalitis and herpes virus or autoimmune encephalitis differ clinically. Symptoms and auxiliary examinations can be used as distinguishing tools.

11.
J Mol Recognit ; : e3091, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773782

RESUMEN

The development of effective therapeutics against COVID-19 requires a thorough understanding of the receptor recognition mechanism of the SARS-CoV-2 spike (S) protein. Here the multidomain collective dynamics on the trimer of the spike protein has been analyzed using normal mode analysis (NMA). A common nanomechanical profile was identified in the spike proteins of SARS-CoV-2 and its variants. The profile involves collective vibrations of the receptor-binding domain (RBD) and the N-terminal domain (NTD), which may mediate the physical interaction process. Quantitative analysis of the collective modes suggests a nanomechanical property involving large-scale conformational changes, which explains the difference in receptor binding affinity among different variants. These results support the use of intrinsic global dynamics as a valuable perspective for studying the allosteric and functional mechanisms of the S protein. This approach also provides a low-cost theoretical toolkit for screening potential pathogenic mutations and drug targets.

12.
ACS Sens ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773960

RESUMEN

The global COVID-19 pandemic has highlighted the need for rapid, reliable, and efficient detection of biological agents and the necessity of tracking changes in genetic material as new SARS-CoV-2 variants emerge. Here, we demonstrate that RNA-based, single-molecule conductance experiments can be used to identify specific variants of SARS-CoV-2. To this end, we (i) select target sequences of interest for specific variants, (ii) utilize single-molecule break junction measurements to obtain conductance histograms for each sequence and its potential mutations, and (iii) employ the XGBoost machine learning classifier to rapidly identify the presence of target molecules in solution with a limited number of conductance traces. This approach allows high-specificity and high-sensitivity detection of RNA target sequences less than 20 base pairs in length by utilizing a complementary DNA probe capable of binding to the specific target. We use this approach to directly detect SARS-CoV-2 variants of concerns B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron) and further demonstrate that the specific sequence conductance is sensitive to nucleotide mismatches, thus broadening the identification capabilities of the system. Thus, our experimental methodology detects specific SARS-CoV-2 variants, as well as recognizes the emergence of new variants as they arise.

13.
Am J Epidemiol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775290

RESUMEN

Electronic medical records (EMR) are important for rapidly compiling information to determine disease characteristics (e.g., symptoms) and risk factors (e.g., underlying comorbidities, medications) for disease-related outcomes. To assess EMR data accuracy, agreement between EMR abstractions and patient interviews was evaluated. Symptoms, medical history, and medication usage among COVID-19 patients collected from EMR and patient interviews were compared using overall agreement (same answer in EMR and interview), reported agreement (yes answer in both EMR and interview among those who reported yes in either), and Kappa statistics. Overall, patients reported more symptoms in interviews than in EMR abstractions. Overall agreement was high (≥50% for 20/23 symptoms), but only subjective fever and dyspnea had reported agreement of ≥50%. Kappa statistics for symptoms were generally low. Reported medical conditions had greater agreement with all condition categories (10/10) having ≥50% overall agreement and half (5/10) having ≥50% reported agreement. More non-prescription medications were reported in interviews than in EMR abstractions leading to low reported agreement (28%). Discordance was observed for symptoms, medical history, and medication usage between EMR abstractions and patient interviews. Investigations utilizing EMR to describe clinical characteristics and identify risk factors should consider the potential for incomplete data, particularly for symptoms and medications.

14.
Clin Microbiol Rev ; : e0012423, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775460

RESUMEN

SUMMARYThis narrative review and meta-analysis summarizes a broad evidence base on the benefits-and also the practicalities, disbenefits, harms and personal, sociocultural and environmental impacts-of masks and masking. Our synthesis of evidence from over 100 published reviews and selected primary studies, including re-analyzing contested meta-analyses of key clinical trials, produced seven key findings. First, there is strong and consistent evidence for airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory pathogens. Second, masks are, if correctly and consistently worn, effective in reducing transmission of respiratory diseases and show a dose-response effect. Third, respirators are significantly more effective than medical or cloth masks. Fourth, mask mandates are, overall, effective in reducing community transmission of respiratory pathogens. Fifth, masks are important sociocultural symbols; non-adherence to masking is sometimes linked to political and ideological beliefs and to widely circulated mis- or disinformation. Sixth, while there is much evidence that masks are not generally harmful to the general population, masking may be relatively contraindicated in individuals with certain medical conditions, who may require exemption. Furthermore, certain groups (notably D/deaf people) are disadvantaged when others are masked. Finally, there are risks to the environment from single-use masks and respirators. We propose an agenda for future research, including improved characterization of the situations in which masking should be recommended or mandated; attention to comfort and acceptability; generalized and disability-focused communication support in settings where masks are worn; and development and testing of novel materials and designs for improved filtration, breathability, and environmental impact.

15.
J Clin Microbiol ; : e0014424, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775470

RESUMEN

The 4th Clinical Microbiology Open (CMO) took place in Carlsbad, California, on 10 and 11 February 2023. This event facilitated discussion between clinical and public health laboratory directors, government agencies, and industry representatives from the companies that make up ASM's Corporate Council. While many topics were discussed, much of the discussion focused on pandemic preparedness. There were four major questions addressed: (i) When is the perfect the enemy of good in pandemic testing? (ii) What other types of pathogens might cause another pandemic and how would this affect laboratory response? (iii) What research is needed to better understand the effectiveness of the pandemic response? (iv) What have we learned about the utility of self and at-home testing in future pandemics? This review serves as a summary of these discussions.

16.
Elife ; 122024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716629

RESUMEN

SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αß sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR- and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). After the 2nd vaccination, T cell clonotypes highly responsive to recall S stimulation were polarized to follicular helper T (Tfh)-like cells in donors exhibiting sustained anti-S antibody titers (designated as 'sustainers'), but not in 'decliners'. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic microbes. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh-like cells upon vaccination may contribute to the longevity of anti-S antibody titers.


Asunto(s)
Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunación , Humanos , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacuna BNT162/inmunología , Vacuna BNT162/administración & dosificación , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Femenino , Masculino , Epítopos de Linfocito T/inmunología , Adulto , Linfocitos T Colaboradores-Inductores/inmunología , Persona de Mediana Edad
17.
One Health ; 18: 100741, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38721143

RESUMEN

Due to the impact respiratory viruses have on human health, a lot of data has been collected and visualised in tools such as dashboards that provide retrospective insights into the course of an epidemic or pandemic. Two well-known respiratory viruses, influenza virus and SARS-CoV-2, are the causative agents of influenza and COVID-19, respectively. A scoping review was performed using Embase including data from January 2000 until April 2021 to identify individual and environmental health parameters that affect transmission of influenza virus and SARS-CoV-2, as well as disease severity (morbidity (hospitalisation) and mortality) of influenza and COVID-19. Summary data was extracted from published articles. A total of 2280 unique articles were identified by the search, 484 articles were analysed, and 149 articles were included. The information of included articles was combined with data from Dutch databases to create prospective interactive maps that visualise risk areas in the Netherlands on health region, municipality, and neighbourhood-level. Included health parameters are contacts per day, mixing patterns, household composition, presence of certain indoor public spaces, urbanity, meteorological values, average income, age, ethnicity, comorbidity, sex, and smoking habits. The impact and input of these parameters are adjustable by users allowing a fit-for-purpose approach. These maps can be used to corroborate local policy decisions in times of health crisis, or in pandemic preparedness plans, serving as an instant visualisation tool of risk areas in the country. Despite limitations caused by data unavailability, simplification steps, and lack of validation, these interactive maps provide an important basis that can be elaborated on by further research that integrates both individual and environmental parameters.

18.
Cureus ; 16(4): e57860, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38721172

RESUMEN

During the COVID-19 pandemic, excess deaths including cancer have become a concern in Japan, which has a rapidly aging population. Thus, this study aimed to evaluate how age-adjusted mortality rates (AMRs) for different types of cancer in Japan changed during the COVID-19 pandemic (2020-2022). Official statistics from Japan were used to compare observed annual and monthly AMRs with predicted rates based on pre-pandemic (2010-2019) figures using logistic regression analysis. No significant excess mortality was observed during the first year of the pandemic (2020). However, some excess cancer mortalities were observed in 2021 after mass vaccination with the first and second vaccine doses, and significant excess mortalities were observed for all cancers and some specific types of cancer (including ovarian cancer, leukemia, prostate cancer, lip/oral/pharyngeal cancer, pancreatic cancer, and breast cancer) after mass vaccination with the third dose in 2022. AMRs for the four cancers with the most deaths (lung, colorectal, stomach, and liver) showed a decreasing trend until the first year of the pandemic in 2020, but the rate of decrease slowed in 2021 and 2022. This study discusses possible explanations for these increases in age-adjusted cancer mortality rates.

19.
Cureus ; 16(4): e57798, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38721205

RESUMEN

BACKGROUND: The ABO blood group has long been recognized as a significant factor influencing susceptibility to infectious diseases. Numerous studies have explored the links between ABO blood types and both the likelihood of contracting COVID-19 and the severity of the infection, yielding conflicting results. AIM: This study intends to determine the influence of age, gender, the ABO blood group, and Rh factor on the potential development of COVID-19 infection. METHODOLOGY: A cross-sectional, observational study collected data including age, gender, the ABO blood group, and Rh factor from 80 healthcare professionals at R. R. Dental College and Hospital in Udaipur with a positive history of COVID-19 infection via Google Forms (Google LLC, Mountain View, California, United States). Chi-square statistics assessed the distribution of blood types and antibodies within the samples. Odds ratio (OR) assays were used to assess the probability of a certain blood type or Rh factor with version 21.0 of the IBM Statistical Package for Social Sciences (SPSS) for Windows (IBM Corp, Armonk, NY). RESULTS: In this study, the blood group type O was 45.2% (n = 33), type A was 21.9% (n = 16), type B was 24.7% (n = 18), and type AB was 8.2% (n = 6). Rh-positive samples were 87.7% (n = 64) and Rh-negative samples were 12.3% (n = 9). There was a statistically significant correlation between Type A (p = 0.001) and Type O (p = 0.049). Thirty-one participants (42.5%) were aged 20-30 years, 26 (35.6%) were aged 31-40 years, and 16 (21.9%) were aged 41-50 years. The statistical analysis revealed no statistically significant distinction among the age groups (p > 0.05). CONCLUSION: The patients' gender, age, and concurrent disorders are crucial risk variables that determine the severity of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. There is growing data indicating that the ABO blood group has a significant role in disease biology at physiological and biochemical levels. Hence, this study adds valuable information to strengthen and establish the potential role of factors, such as age and gender, in the possible pathogenicity of COVID-19 infection.

20.
Clin Case Rep ; 12(5): e8850, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721551

RESUMEN

Key Clinical Message: Forced inspiration during mechanical ventilation risks self-inflicted lung injury. However, controlling it with sedation or paralysis may cause polyneuropathy and myopathy. We tested bilateral phrenic nerve paralysis with local anesthetic in a patient, showing reduced inspiratory force. This offers an alternative to drug-induced muscle paralysis. Abstract: Mechanical ventilation, although a life-saving measure, can also pose a risk of causing lung injury known as "ventilator-induced lung injury" or VILI. Patients undergoing mechanical ventilation sometimes exhibit heightened inspiratory efforts, wherein the negative pressure generated by the respiratory muscles adds to the positive pressure generated by the ventilator. This combination of high pressures can lead to a syndrome similar to VILI, referred to as "patient self-inflicted lung injury" or P-SILI. Prevention of P-SILI requires the administration of deep sedation and muscle paralysis to the patients, but both these measures can have undesired effects on their health. In this case report, we demonstrate the effect of a bilateral phrenic nerve block aiming to reduce excessive inspiratory respiratory efforts in a patient suffering from COVID-19 pneumonitis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...