Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Neurosci Res ; 102(8): e25373, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39101281

RESUMEN

The master control of mammalian circadian rhythms is the suprachiasmatic nucleus (SCN), which is formed by the ventral and dorsal regions. In SCN neurons, GABA has an important function and even excitatory actions in adulthood. However, the physiological role of this neurotransmitter in the developing SCN is unknown. Here, we recorded GABAergic postsynaptic currents (in the perforated-patch configuration using gramicidin) to determine the chloride reversal potential (ECl) and also assessed the immunological expression of the Na-K-Cl cotransporter 1 (NKCC1) at early ages of the rat (postnatal days (P) 3 to 25), during the day and night, in the two SCN regions. We detected that ECl greatly varied with age and depending on the SCN region and time of day. Broadly speaking, ECl was more hyperpolarized with age, except for the oldest age studied (P20-25) in both day and night in the ventral SCN, where it was less negative. Likewise, ECl was more hyperpolarized in the dorsal SCN both during the day and at night; while ECl was more negative at night both in the ventral and the dorsal SCN. Moreover, the total NKCC1 fluorescent expression was higher during the day than at night. These results imply that NKCC1 regulates the circadian and developmental fluctuations in the [Cl-]i to fine-tune ECl, which is crucial for either excitatory or inhibitory GABAergic actions to occur in the SCN.


Asunto(s)
Cloruros , Ritmo Circadiano , Miembro 2 de la Familia de Transportadores de Soluto 12 , Núcleo Supraquiasmático , Animales , Núcleo Supraquiasmático/metabolismo , Ritmo Circadiano/fisiología , Ratas , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Masculino , Cloruros/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ratas Wistar , Técnicas de Placa-Clamp , Envejecimiento/fisiología
2.
J Neurosci Res ; 102(4): e25327, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588037

RESUMEN

Despite evidence of the beneficial effects of cannabidiol (CBD) in animal models of cocaine use disorder (CUD), CBD neuronal mechanisms remain poorly understood. This study investigated the effects of CBD treatment on brain glucose metabolism, in a CUD animal model, using [18F]FDG positron emission tomography (PET). Male C57Bl/6 mice were injected with cocaine (20 mg/kg, i.p.) every other day for 9 days, followed by 8 days of CBD administration (30 mg/kg, i.p.). After 48 h, animals were challenged with cocaine. Control animals received saline/vehicle. [18F]FDG PET was performed at four time points: baseline, last day of sensitization, last day of withdrawal/CBD treatment, and challenge. Subsequently, the animals were euthanized and immunohistochemistry was performed on the hippocampus and amygdala to assess the CB1 receptors, neuronal nuclear protein, microglia (Iba1), and astrocytes (GFAP). Results showed that cocaine administration increased [18F]FDG uptake following sensitization. CBD treatment also increased [18F]FDG uptake in both saline and cocaine groups. However, animals that were sensitized and challenged with cocaine, and those receiving only an acute cocaine injection during the challenge phase, did not exhibit increased [18F]FDG uptake when treated with CBD. Furthermore, CBD induced modifications in the integrated density of NeuN, Iba, GFAP, and CB1R in the hippocampus and amygdala. This is the first study addressing the impact of CBD on brain glucose metabolism in a preclinical model of CUD using PET. Our findings suggest that CBD disrupts cocaine-induced changes in brain energy consumption and activity, which might be correlated with alterations in neuronal and glial function.


Asunto(s)
Cannabidiol , Cocaína , Ratones , Animales , Masculino , Cannabidiol/farmacología , Cannabidiol/metabolismo , Glucosa/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Encéfalo/metabolismo , Cocaína/farmacología , Ratones Endogámicos C57BL
3.
J Neurosci Res ; 102(4): e25331, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38651314

RESUMEN

Circadian rhythms synchronize to light through the retinohypothalamic tract (RHT), which is a bundle of axons coming from melanopsin retinal ganglion cells, whose synaptic terminals release glutamate to the ventral suprachiasmatic nucleus (SCN). Activation of AMPA-kainate and NMDA postsynaptic receptors elicits the increase in intracellular calcium required for triggering the signaling cascade that ends in phase shifts. During aging, there is a decline in the synchronization of circadian rhythms to light. With electrophysiological (whole-cell patch-clamp) and immunohistochemical assays, in this work, we studied pre- and postsynaptic properties between the RHT and ventral SCN neurons in young adult (P90-120) and old (P540-650) C57BL/6J mice. Incremental stimulation intensities (applied on the optic chiasm) induced much lesser AMPA-kainate postsynaptic responses in old animals, implying a lower recruitment of RHT fibers. Conversely, a higher proportion of old SCN neurons exhibited synaptic facilitation, and variance-mean analysis indicated an increase in the probability of release in RHT terminals. Moreover, both spontaneous and miniature postsynaptic events displayed larger amplitudes in neurons from aged mice, whereas analysis of the NMDA and AMPA-kainate components (evoked by RHT electrical stimulation) disclosed no difference between the two ages studied. Immunohistochemistry revealed a bigger size in the puncta of vGluT2, GluN2B, and GluN2A of elderly animals, and the number of immunopositive particles was increased, but that of PSD-95 was reduced. All these synaptic adaptations could be part of compensatory mechanisms in the glutamatergic signaling to ameliorate the loss of RHT terminals in old animals.


Asunto(s)
Envejecimiento , Ácido Glutámico , Ratones Endogámicos C57BL , Núcleo Supraquiasmático , Transmisión Sináptica , Animales , Ratones , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/metabolismo , Transmisión Sináptica/fisiología , Envejecimiento/fisiología , Ácido Glutámico/metabolismo , Masculino , Potenciales Postsinápticos Excitadores/fisiología , Vías Visuales/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Técnicas de Placa-Clamp , Receptores de N-Metil-D-Aspartato/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo
4.
J Neurosci Res ; 102(1): e25269, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284851

RESUMEN

This study aimed to evaluate the effects of inhibitors of the fractalkine pathway in hyperalgesia in inflammatory and neuropathic orofacial pain in male rats and the morphological changes in microglia and satellite glial cells (SGCs). Rats were submitted to zymosan-induced arthritis of the temporomandibular joint or infraorbital nerve constriction, and treated intrathecally with a P2 X7 antagonist, a cathepsin S inhibitor or a p-38 mitogen-activated protein kinase (MAPK) inhibitor. Mechanical hyperalgesia was evaluated 4 and 6 h following arthritis induction or 7 and 14 days following nerve ligation. The expression of the receptor CX3 CR1 , phospho-p-38 MAPK, ionized calcium-binding adapter molecule-1 (Iba-1), and glutamine synthetase and the morphological changes in microglia and SGCs were evaluated by confocal microscopy. In both inflammatory and neuropathic models, untreated animals presented a higher expression of CX3 CR1 and developed hyperalgesia and up-regulation of phospho-p-38 MAPK, which was prevented by all drugs (p < .05). The number of microglial processes endpoints and the total branch length were lower in the untreated animals, but the overall immunolabeling of Iba-1 was altered only in neuropathic rats (p < .05). The mean area of SGCs per neuron was significantly altered only in the inflammatory model (p < .05). All morphological alterations were reverted by modulating the fractalkine pathway (p < .05). In conclusion, the blockage of the fractalkine pathway seemed to be a possible therapeutic strategy for inflammatory and neuropathic orofacial pain, reducing mechanical hyperalgesia by impairing the phosphorylation of p-38 MAPK and reverting morphological alterations in microglia and SGCs.


Asunto(s)
Artritis , Neuralgia , Masculino , Animales , Ratas , Hiperalgesia/tratamiento farmacológico , Quimiocina CX3CL1 , Neuroglía , Neuralgia/tratamiento farmacológico , Proteínas Quinasas Activadas por Mitógenos , Inhibidores de Proteínas Quinasas , Dolor Facial/tratamiento farmacológico , Proteínas Quinasas p38 Activadas por Mitógenos
5.
JTCVS Open ; 11: 161-175, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36172431

RESUMEN

Objectives: The study objectives were to describe the incidence, risk factors, and outcomes of acute kidney injury after cardiopulmonary bypass in Jamaica. Method: We performed a review of the medical records of adult patients (aged ≥ 18 years) with no prior dialysis requirement undergoing cardiopulmonary bypass at the University Hospital of the West Indies, Mona, between January 1, 2016, and June 30, 2019. Demographic, preoperative, intraoperative, and postoperative data were abstracted. Acute kidney injury was defined using Kidney Disease Improving Global Outcomes criteria. The primary outcomes were acute kidney injury incidence and all-cause 30-day mortality. Multivariable logistic regression and Cox proportional analyses were used to examine the association between the acute kidney injury risk factors and the primary outcome. Results: Data for 210 patients (58% men, mean age 58.1 ± 12.9 years) were analyzed. Acute kidney injury occurred in 80 patients (38.1%), 44% with Kidney Disease Improving Global Outcomes I, 33% with Kidney Disease Improving Global Outcomes II, and 24% with Kidney Disease Improving Global Outcomes III. From multivariable logistic regression models, European System for Cardiac Operative Risk Evaluation II (odds ratio, 1.19; 95% confidence interval, 1.01-1.39 per unit), bypass time (odds ratio, 1.94; 95% confidence interval, 1.40-2.67 per hour), perioperative red cell transfusion (odds ratio, 3.03; 95% confidence interval, 1.36-6.76), and postoperative neutrophil lymphocyte ratio (odds ratio, 1.65; 95% confidence interval, 1.01-2.68 per 10-unit difference) were positively associated with acute kidney injury. Acute kidney injury resulted in greater median hospital stay (18 vs 11 days, P < .001) and intensive care unit stay (5 vs 3 days, P < .001), and an 8-fold increase in 30-day mortality (hazard ratio, 8.15; 95% confidence interval, 2.76-24.06, P < .001). Conclusions: Acute kidney injury after cardiopulmonary bypass surgery occurs frequently in Jamaica and results in poor short-term outcomes. Further studies coupled with quality interventions to reduce the mortality of those with acute kidney injury are needed in the Caribbean.

6.
Soc Cogn Affect Neurosci ; 17(12): 1101-1117, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35434733

RESUMEN

Attention helps us to be aware of the external world, and this may be especially important when a threat stimulus predicts an aversive outcome. Electroencephalogram (EEG) alpha-band suppression has long been considered as a neural signature of attentional engagement. The present study was designed to test whether attentional engagement, as indexed by alpha-band suppression, is increased in a sustained manner following a conditioned stimulus (CS) that is paired with an aversive (CS+) vs neutral (CS-) outcome. We tested 70 healthy young adults in aversive conditioning and extinction paradigms. One of three colored circles served as the CS+, which was paired in 50% of the trials with a noise burst (unconditioned stimulus, US). The other colored circles (CS-) were never paired with the US. For conditioning, we found greater alpha-band suppression for the CS+ compared to the CS-; this suppression was sustained through the time of the predicted US. This effect was significantly reduced for extinction. These results indicate that conditioned threat stimuli trigger an increase in attentional engagement as subjects monitor the environment for the predicted aversive stimulus. Moreover, this alpha-band suppression effect may be valuable for future studies examining normal or pathological increases in attentional monitoring following threat stimuli.


Asunto(s)
Condicionamiento Clásico , Extinción Psicológica , Adulto Joven , Humanos , Atención , Electroencefalografía , Condicionamiento Operante
7.
J Neurosci Res ; 99(11): 2932-2947, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510532

RESUMEN

Mitochondria-associated ER membranes (MAMs) are formed by close and specific components in the contact sites between the endoplasmic reticulum (ER) and mitochondria, which participate in several cell functions, including lipid metabolism, autophagy, and Ca2+ signaling. Particularly, the presence of α-synuclein (α-syn) in MAMs was previously demonstrated, indicating a physical interaction among some proteins in this region and a potential involvement in cell dysfunctions. MAMs alterations are associated with neurodegenerative diseases such as Parkinson's disease (PD) and contribute to the pathogenesis features. Here, we investigated the effects of α-syn on MAMs and Ca2+ transfer from the ER to mitochondria in WT- and A30P α-syn-overexpressing SH-SY5Y or HEK293 cells. We observed that α-syn potentiates the mitochondrial membrane potential (Δψm ) loss induced by rotenone, increases mitophagy and mitochondrial Ca2+ overload. Additionally, in α-syn-overexpressing cells, we found a reduction in ER-mitochondria contact sites through the impairment of the GRP75-IP3R interaction, however, with no alteration in VDAC1-GRP75 interaction. Consequently, after Ca2+ release from the ER, α-syn-overexpressing cells demonstrated a reduction in Ca2+ buffering by mitochondria, suggesting a deregulation in MAM activity. Taken together, our data highlight the importance of the α-syn/MAMs/Ca2+ axis that potentially affects cell functions in PD.


Asunto(s)
Calcio , alfa-Sinucleína , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Proteínas HSP70 de Choque Térmico , Humanos , Proteínas de la Membrana , Mitocondrias/metabolismo , alfa-Sinucleína/metabolismo
8.
J Neurosci Res ; 99(10): 2592-2609, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34288039

RESUMEN

The cytoskeleton of ependymal cells is fundamental to organize and maintain the normal architecture of the central canal (CC). However, little is known about the plasticity of cytoskeletal components after spinal cord injury. Here, we focus on the structural organization of the cytoskeleton of ependymal cells in the normal and injured spinal cord of mice (both females and males) using immunohistochemical and electron microscopy techniques. We found that in uninjured animals, the actin cytoskeleton (as revealed by phalloidin staining) was arranged following the typical pattern of polarized epithelial cells with conspicuous actin pools located in the apical domain of ependymal cells. Transmission electron microscopy images showed microvilli tufts, long cilia, and characteristic intercellular membrane specializations. After spinal cord injury, F-actin rearrangements paralleled by fine structural modifications of the apical domain of ependymal cells were observed. These changes involved disruptions of the apical actin pools as well as fine structural modifications of the microvilli tufts. When comparing the control and injured spinal cords, we also found modifications in the expression of vimentin and glial fibrillary acidic protein (GFAP). After injury, vimentin expression disappeared from the most apical domains of ependymal cells but the number of GFAP-expressing cells within the CC increased. As in other polarized epithelia, the plastic changes in the cytoskeleton may be critically involved in the reaction of ependymal cells following a traumatic injury of the spinal cord.


Asunto(s)
Citoesqueleto/metabolismo , Epéndimo/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Vértebras Torácicas/lesiones , Animales , Citoesqueleto/patología , Epéndimo/citología , Epéndimo/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Médula Espinal/citología , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología
9.
J Neurosci Res ; 99(1): 392-406, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32652719

RESUMEN

Axonal outgrowth is a fundamental process during the development of central (CNS) and peripheral (PNS) nervous system as well as in nerve regeneration and requires accurate axonal navigation and extension to the correct target. These events need proper coordination between membrane trafficking and cytoskeletal rearrangements and are under the control of the small GTPases of the Rho family, among other molecules. Reelin, a relevant protein for CNS development and synaptic function in the adult, is also present in the PNS. Upon sciatic nerve damage, Reelin expression increases and, on the other hand, mice deficient in Reelin exhibit an impaired nerve regeneration. However, the mechanism(s) involved the Reelin-dependent axonal growth is still poorly understood. In this work, we present evidence showing that Reelin stimulates dorsal root ganglia (DRG) regeneration after axotomy. Moreover, dissociated DRG neurons express the Reelin receptor Apolipoprotein E-receptor 2 and also require the presence of TC10 to develop their axons. TC10 is a Rho GTPase that promotes neurite outgrowth through the exocytic fusion of vesicles at the growth cone. Here, we demonstrate for the first time that Reelin controls TC10 activation in DRG neurons. Besides, we confirmed that the known CNS Reelin target Cdc42 is also activated in DRG and controls TC10 activity. Finally, in the process of membrane addition, we found that Reelin stimulates the fusion of membrane carriers containing the v-SNARE protein VAMP7 in vesicles that contain TC10. Altogether, our work shows a new role of Reelin in PNS, opening the option of therapeutic interventions to improve the regeneration process.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Regeneración Nerviosa/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proyección Neuronal/fisiología , Proteínas R-SNARE/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Ganglios Espinales/metabolismo , Ratones , Neuronas/metabolismo , Ratas Sprague-Dawley , Proteína Reelina
10.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167404

RESUMEN

Poly(ADP-ribosyl)polymerase (PARP) synthesizes poly(ADP-ribose) (PAR), which is anchored to proteins. PAR facilitates multiprotein complexes' assembly. Nuclear PAR affects chromatin's structure and functions, including transcriptional regulation. In response to stress, particularly genotoxic stress, PARP activation facilitates DNA damage repair. The PARP inhibitor Olaparib (OLA) displays synthetic lethality with mutated homologous recombination proteins (BRCA-1/2), base excision repair proteins (XRCC1, Polß), and canonical nonhomologous end joining (LigIV). However, the limits of synthetic lethality are not clear. On one hand, it is unknown whether any limiting factor of homologous recombination can be a synthetic PARP lethality partner. On the other hand, some BRCA-mutated patients are not responsive to OLA for still unknown reasons. In an effort to help delineate the boundaries of synthetic lethality, we have induced DNA damage in VERO cells with the radiomimetic chemotherapeutic agent bleomycin (BLEO). A VERO subpopulation was resistant to BLEO, BLEO + OLA, and BLEO + OLA + ATM inhibitor KU55933 + DNA-PK inhibitor KU-0060648 + LigIV inhibitor SCR7 pyrazine. Regarding the mechanism(s) behind the resistance and lack of synthetic lethality, some hypotheses have been discarded and alternative hypotheses are suggested.


Asunto(s)
Bleomicina/farmacología , Cromonas/farmacología , Morfolinas/farmacología , Ftalazinas/farmacología , Piperazinas/farmacología , Pirimidinas/farmacología , Pironas/farmacología , Bases de Schiff/farmacología , Tiofenos/farmacología , Animales , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Chlorocebus aethiops , ADN Ligasa (ATP)/antagonistas & inhibidores , Reparación del ADN/efectos de los fármacos , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Combinación de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Células Vero
11.
J Neurosci Res ; 98(10): 2045-2071, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32530066

RESUMEN

Melanin-concentrating hormone (MCH) is a ubiquitous vertebrate neuropeptide predominantly synthesized by neurons of the diencephalon that can act through two G protein-coupled receptors, called MCHR1 and MCHR2. The expression of Mchr1 has been investigated in both rats and mice, but its synthesis remains poorly described. After identifying an antibody that detects MCHR1 with high specificity, we employed immunohistochemistry to map the distribution of MCHR1 in the CNS of rats and mice. Multiple neurochemical markers were also employed to characterize some of the neuronal populations that synthesize MCHR1. Our results show that MCHR1 is abundantly found in a subcellular structure called the primary cilium, which has been associated, among other functions, with the detection of free neurochemical messengers present in the extracellular space. Ciliary MCHR1 was found in a wide range of areas, including the olfactory bulb, cortical mantle, striatum, hippocampal formation, amygdala, midline thalamic nuclei, periventricular hypothalamic nuclei, midbrain areas, and in the spinal cord. No differences were observed between male and female mice, and interspecies differences were found in the caudate-putamen nucleus and the subgranular zone. Ciliary MCHR1 was found in close association with several neurochemical markers, including tyrosine hydroxylase, calretinin, kisspeptin, estrogen receptor, oxytocin, vasopressin, and corticotropin-releasing factor. Given the role of neuronal primary cilia in sensing free neurochemical messengers in the extracellular fluid, the widespread distribution of ciliary MCHR1, and the diverse neurochemical populations who synthesize MCHR1, our data indicate that nonsynaptic communication plays a prominent role in the normal function of the MCH system.


Asunto(s)
Encéfalo/metabolismo , Cilios/metabolismo , Receptores de Somatostatina/biosíntesis , Caracteres Sexuales , Animales , Cilios/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Receptores de Somatostatina/genética
12.
J Mol Neurosci ; 70(9): 1338-1344, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32388800

RESUMEN

The CR1 gene has been widely studied in Alzheimer's disease (AD), since its first association with the disease in 2009. Even after 11 years of this discovery, the role of this gene in AD has not yet been fully elucidated and the association of its variants was not validated in Latin American populations. We genotyped five CR1 single nucleotide polymorphisms (SNPs rs6656401, rs3849266, rs2274567, rs4844610, and rs12034383) in up to 162 AD patients and 137 controls through PCR-SSP and iPLEX MassARRAY Platform (Sequenom), and measured soluble CR1 (sCR1) levels in plasma of 40 AD patients and 39 controls with an enzyme-linked immunosorbent assay (ELISA). Homozygosity for haplotype rs3849266*C_rs2274567*A (CA/CA genotype) was associated with susceptibility to AD (OR = 2.94, p = 0.018). Patients presented higher sCR1 levels in plasma than controls (p = 0.038). Furthermore, patients that carry the rs2274567*G allele (p.1208Arg) presented higher sCR1 levels than A/A (p.1208His/His) homozygotes (p = 0.036). This is the first study to validate the association of CR1 polymorphisms with late-onset Alzheimer's disease, as well as to evaluate sCR1 levels in a Latin American population. SNPs present in the regulatory and coding regions of this gene may be playing a key role in the observed association, probably by interfering in Aß plaques clearance. Inhibition may be due to the increase in local sCR1 levels observed in patients, which may result from polymorphisms leading to larger isoforms of CR1 and/or structural alterations of the protein that makes it less functional, as well as increased vesiculation of the molecules.


Asunto(s)
Enfermedad de Alzheimer/genética , Polimorfismo de Nucleótido Simple , Receptores de Complemento 3b/genética , Enfermedad de Alzheimer/sangre , Haplotipos , Homocigoto , Humanos , América Latina , Receptores de Complemento 3b/sangre
13.
Environ Sci Pollut Res Int ; 27(24): 30649-30660, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32472510

RESUMEN

Selective catalytic reduction of NO with CO (CO-SCR) was investigated based on optimizing the operating conditions by response surface methodology (RSM) and by appropriately choosing the supported SBA-15 catalysts. The effects of the CO-SCR reaction parameters such as NO:CO molar ratios and oxygen concentrations on the catalytic performance were determined by RSM to evaluate the NO conversion using a first-order polynomial model. The CuO/SBA-15 and Fe2O3/SBA-15 catalysts were synthesized by a hydrothermal method and characterized by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), N2 adsorption-desorption (BET), scanning electron microscopy coupled to energy dispersive X-Ray spectroscopy (SEM-EDS), and Fourier transform infrared spectroscopy (FTIR) to investigate the physicochemical properties of the solids. The RSM showed a very good agreement between predicted values and experimental results with the Pareto analysis confirming the accuracy and reliability of the model. The optimized results indicated the maximum NO conversion at 500 °C with using the NO to CO molar ratio of 1:2 (500:1000 ppm) in the absence of oxygen. Under these conditions, CuO/SBA-15 catalyst achieved 99.7% of NO conversion, whereas Fe2O3/SBA-15 had 98.1% of the catalytic parameter. Catalytic tests in CO-SCR reaction were performed on both catalysts at optimum operating conditions with CuO/SBA-15 exhibiting better performance compared to that of Fe2O3/SBA-15. The results revealed that CuO/SBA-15 was a promising catalyst for CO-SCR of NO due to the well-dispersed CuO phase on SBA-15 surface that allows the solid being more tolerant to the presence of oxygen.


Asunto(s)
Dióxido de Silicio , Catálisis , Oxidación-Reducción , Reproducibilidad de los Resultados
14.
J Comp Neurol ; 528(6): 989-1002, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31674018

RESUMEN

One of the tissues of the central nervous system most affected by diabetes is the retina. Despite a growing understanding of the biochemical processes involved in glucose toxicity, little is known about the physiological consequences of chronic high glucose (HG) on individual neurons and neuronal circuits. Electroretinogram recordings suggest that retinal bipolar cells (BCs), which filter and transmit photoreceptor output to the inner retina, are among the first cells affected by diabetic conditions, and may therefore serve as sensitive early biomarkers for incipient neuronal damage caused in diabetes. Here, we comparatively assessed retinal integrity, calcium responses, and the electrophysiological profiles of specific BC types of mouse and rat organotypic retinal explants after 1 to 3 weeks in tissue culture, under moderate glucose (MG) and HG conditions. While the retinal layers of both rodent species displayed a progressively reduced thickness in culture, BCs retained their electrophysiological profiles and remained morphologically identifiable for up to 2 weeks. Responses to glutamate and endogenous inhibitory responses were routinely observed, indicating that the retinal circuitry remained intact during this period. Significant physiological differences between MG and HG conditions were evident in calcium signals and in the time course of responses to glutamate, but the voltage-gated current profiles of BCs displayed only minor variations. Overall, rat retina appeared slightly more sensitive to HG levels compared with mouse. In conclusion, electrophysiological analysis of neuronal function in rodent retinal explants is useful for the study of early damage due to HG neurotoxicity.


Asunto(s)
Glucosa/toxicidad , Síndromes de Neurotoxicidad/fisiopatología , Retina/efectos de los fármacos , Retina/fisiopatología , Animales , Retinopatía Diabética/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
15.
J Comp Neurol ; 528(8): 1307-1320, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31765000

RESUMEN

The entorhinal cortex (EC) is associated with impaired cognitive function such as in the case of Alzheimer's disease, Parkinson's disease and Huntington's disease. The present study provides a detailed analysis of the cytoarchitectural and myeloarchitectural organization of the EC in the common marmoset Callithrix jacchus. Data were collected using Nissl and fiber stained preparations, supplemented with acetylcholinesterase and parvalbumin immunohistochemistry. The EC layers and subfields in the marmoset seem to be architectonically similar to those that have been proposed in nonhuman primates and humans to date; however, slight differences could be revealed using the present techniques. Throughout its rostrocaudal length, the entorhinal cortex presents a clear six-layered pattern. The entorhinal cortex is divided into six fields, named mainly in accordance to their rostrocaudal and mediolateral positions. At rostral levels, the neurons tend to be organized in patches that are surrounded by large, thick, radially oriented bundles of fibers, and the deep layers are poorly developed. At caudal levels, the divisions are more laminated in appearance. AChE staining at the borders of adjacent fields are consistent with the changes in layering revealed in Nissl-stained sections, of which the lateral regions of the EC display denser AChE staining than that of the medial banks. PV immunoreactivity was found in the labeled somata, dendrites, and axons in all layers and subdivisions. Additionally, we distinguished three subtypes of PV-immunoreactive neurons: multipolar, bipolar and spherical-shaped neurons, based on the shape of the somata and the disposition of the dendrites.


Asunto(s)
Corteza Entorrinal/química , Corteza Entorrinal/citología , Neuronas/química , Animales , Callithrix , Corteza Entorrinal/anatomía & histología , Femenino , Masculino , Coloración y Etiquetado/métodos
16.
J Neurosci Res ; 97(9): 1095-1109, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31119788

RESUMEN

Parkinson's disease (PD) is a disabling and highly costly neurodegenerative condition with worldwide prevalence. Despite advances in treatments that slow progression and minimize locomotor impairments, its clinical management is still a challenge. Previous preclinical studies, using mesenchymal stem cell (MSC) transplantation and isolated physical exercise (EX), reported beneficial results for treatment of PD. Therefore, this experimental randomized study aimed to elucidate the therapeutic potential of combined therapy using adipose-derived human MSCs (ADSCs) grafted into the striatum in conjunction with aerobic treadmill training, specifically in terms of locomotor performance in a unilateral PD rat model induced by 6-hydroxydopamine (6-OHDA). Forty-one male Wistar rats were categorized into five groups in accordance with the type of treatment to which they were subjected (Sham, 6-OHDA - injury, 6-OHDA + exercise, 6-OHDA + cells, and 6-OHDA + combined). Subsequently, dopaminergic depletion was assessed by the methylphenidate challenge and the specified therapeutic intervention was conducted in each group. The foot fault task was performed at the end of the experiment to serve as an assessment of motor skills. The results showed that despite disturbances in motor balance and coordination, locomotor dysfunction was ameliorated in all treatment categories in comparison to the injury group (sign test, p < 0.001, effect size: 0.71). The exercise alone and combined groups were the categories that exhibited the best recovery in terms of movement performance (p < 0.001). Overall, this study confirms that exercise is a powerful option to improve motor function and a promising adjuvant intervention for stem cell transplantation in the treatment of PD motor symptoms. OPEN PRACTICES: This article has been awarded Open Data. All materials and data are publicly accessible at https://figshare.com/s/18a543c101a17a1d5560. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Enfermedad de Parkinson Secundaria/terapia , Condicionamiento Físico Animal , Animales , Neuronas Dopaminérgicas/metabolismo , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Metilfenidato , Actividad Motora/efectos de los fármacos , Oxidopamina , Enfermedad de Parkinson Secundaria/inducido químicamente , Ratas , Ratas Wistar , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/metabolismo
17.
Phytomedicine ; 56: 27-34, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30668348

RESUMEN

BACKGROUND: Deoxymikanolide is a sesquiterpene lactone isolated from Mikania micrantha and M. variifolia which, has previously demonstrated in vitro activity on Trypanosoma cruzi and in vivo activity on an infected mouse model. PURPOSE: Based on these promising findings, the aim of this study was to investigate the mechanism of action of this compound on different parasite targets. METHODS: The interaction of deoxymikanolide with hemin was examined under reducing and non- reducing conditions by measuring modifications in the Soret absorption band of hemin; the thiol interaction was determined spectrophotometrically through its reaction with 5,5'-dithiobis-2-nitrobenzoate in the presence of glutathione; activity on the parasite antioxidant system was evaluated by measuring the activity of the superoxide dismutase and trypanothione reductase enzymes, together with the intracellular oxidative state by flow cytometry. Superoxide dismutase and trypanothione reductase activities were spectrophotometrically tested. Cell viability, phosphatidylserine exposure and mitochondrial membrane potential were assessed by means of propidium iodide, annexin-V and rhodamine 123 staining, respectively; sterols were qualitatively and quantitatively tested by TLC; ultrastructural changes were analyzed by transmission electron microscopy. Autophagic cells were detected by staining with monodansylcadaverine. RESULTS: Deoxymikanolide decreased the number of reduced thiol groups within the parasites, which led to their subsequent vulnerability to oxidative stress. Treatment of the parasites with the compound produced a depolarization of the mitochondrial membrane even though the plasma membrane permeabilization was not affected. Deoxymikanolide did not affect the intracellular redox state and so the mitochondrial dysfunction produced by this compound could not be attributed to ROS generation. The antioxidant defense system was affected by deoxymikanolide at twenty four hours of treatment, when both an increased oxidative stress and decreased activity of superoxide dismutase and trypanothione reductase (40 and 60% respectively) were observed. Both the oxidative stress and mitochondrial dysfunction induce parasite death by apoptosis and autophagy. CONCLUSION: Based on our results, deoxymikanolide would exert its anti-T cruzi activity as a strong thiol blocking agent and by producing mitochondrial dysfunction.


Asunto(s)
Lactonas/farmacología , Sesquiterpenos de Germacrano/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Glutatión/metabolismo , Hemina/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mikania/química , NADH NADPH Oxidorreductasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Esteroles/biosíntesis , Superóxido Dismutasa/metabolismo , Trypanosoma cruzi/patogenicidad , Trypanosoma cruzi/ultraestructura
18.
J Comp Neurol ; 527(3): 651-667, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30113069

RESUMEN

Cytochrome oxidase histochemistry reveals large-scale cortical modules in area V2 of primates known as thick, thin, and interstripes. Anatomical, electrophysiological, and tracing studies suggest that V2 cytochrome oxidase stripes participate in functionally distinct streams of visual information processing. However, there is controversy whether the different V2 compartments indeed correlate with specialized neuronal response properties. We used multiple-electrode arrays (16 × 2, 8 × 4 and 4 × 4 matrices) to simultaneously record the spiking activity (N = 190 single units) across distinct V2 stripes in anesthetized and paralyzed capuchin monkeys (N = 3 animals, 6 hemispheres). Visual stimulation consisted of moving bars and full-field gratings with different contrasts, orientations, directions of motion, spatial frequencies, velocities, and color contrasts. Interstripe neurons exhibited the strongest orientation and direction selectivities compared to the thick and thin stripes, with relatively stronger coding for orientation. Additionally, they responded best to higher spatial frequencies and to lower stimulus velocities. Thin stripes showed the highest proportion (80%) of neurons selective to color contrast (compared to 47% and 21% for thick and interstripes, respectively). The great majority of the color selective cells (86%) were also orientation selective. Additionally, thin stripe neurons continued to increase their firing rate for stimulus contrasts above 50%, while thick and interstripe neurons already exhibited some degree of response saturation at this point. Thick stripes best coded for lower spatial frequencies and higher stimulus velocities. In conclusion, V2 CytOx stripes exhibit a mixed degree of segregation and integration of information processing, shedding light into the early mechanisms of vision.


Asunto(s)
Complejo IV de Transporte de Electrones , Neuronas/fisiología , Estimulación Luminosa/métodos , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Mapeo Encefálico/métodos , Complejo IV de Transporte de Electrones/análisis , Electrorretinografía/métodos , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Neuronas/química , Sapajus apella , Corteza Visual/química , Corteza Visual/citología , Vías Visuales/química , Vías Visuales/citología
19.
J Comp Neurol ; 526(17): 2776-2801, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30156296

RESUMEN

The human cortical amygdaloid nucleus (CoA) receives exteroceptive sensory stimuli, modulates the functions coded by the intrinsic amygdaloid circuit, and constitutes the beginning of the limbic lobe continuum with direct and indirect connections toward subcortical, allocortical, and higher order neocortical areas. To provide basic data on the human CoA, we characterized and classified the neurons using the thionin and the "single-section" Golgi method adapted for postmortem brain tissue and light microscopy. We found 10 different types of neurons named according to the morphological features of the cell body, dendritic branches, and spine distribution. Most cells are multipolar spiny neurons with two or more primary dendrites, including pyramidal-like ones. Three-dimensional reconstructions evidenced the types and diversity of the dendritic spines in each neuron. The unlike density of spines along dendritic branches, from proximal to distal ones, indicate that the synaptic processing and plasticity can be different in each CoA neuron. Our study provides novel data on the neuronal composition of the human CoA indicating that the variety of cells in this region can have phylogenetic, ontogenetic, morphological, and likely functional implications for the integrated human brain function. This can reflect both a more complex subcortical synaptic processing of sensory and emotional information and an adaptation for species-specific social behavior display.


Asunto(s)
Complejo Nuclear Corticomedial/citología , Neuronas/fisiología , Adulto , Anciano , Dendritas/ultraestructura , Espinas Dendríticas/ultraestructura , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Células Piramidales/ultraestructura , Olfato/fisiología , Sinapsis/fisiología
20.
Sci Total Environ ; 644: 675-682, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-29990915

RESUMEN

Among the new technologies developed for the heavy-duty fleet, the use of Selective Catalytic Reduction (SCR) aftertreatment system in standard Diesel engines associated with biodiesel/diesel mixtures is an alternative in use to control the legislated pollutants emission. Nevertheless, there is an absence of knowledge about the synergic behaviour of these devices and biodiesel blends regarding the emissions of unregulated substances as the Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs, both recognized for their carcinogenic and mutagenic effects on humans. Therefore, the goal of this study is the quantification of PAHs and Nitro-PAHs present to total particulate matter (PM) emitted from the Euro V engine fuelled with ultra-low sulphur diesel and soybean biodiesel in different percentages, B5 and B20. PM sampling was performed using a Euro V - SCR engine operating in European Stationary Cycle (ESC). The PAHs and Nitro-PAHs were extracted from PM using an Accelerated Solvent Extractor and quantified by GC-MS. The results indicated that the use of SCR and the largest fraction of biodiesel studied may suppress the emission of total PAHs. The Toxic Equivalent (TEQ) was lower when using 20% biodiesel, in comparison with 5% biodiesel on the SCR system, reaffirming the low toxicity emission using higher percentage biodiesel. The data also reveal that use of SCR, on its own, suppress the Nitro-PAHs compounds. In general, the use of larger fractions of biodiesel (B20) coupled with the SCR aftertreatment showed the lowest PAHs and Nitro-PAHs emissions, meaning lower toxicity and, consequently, a potential lower risk to human health. From the emission point of view, the results of this work also demonstrated the viability of the Biodiesel programs, in combination with the SCR systems, which does not require any engine adaptation and is an economical alternative for the countries (Brazil, China, Russia, India) that have not adopted Euro VI emission standards.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA