Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39345948

RESUMEN

Purpose: The etiopathogenesis of coronal nonsyndromic craniosynostosis (cNCS), a congenital condition defined by premature fusion of 1 or both coronal sutures, remains largely unknown. Methods: We conducted the largest genome-wide association study of cNCS followed by replication, fine mapping, and functional validation of the most significant region using zebrafish animal model. Results: Genome-wide association study identified 6 independent genome-wide-significant risk alleles, 4 on chromosome 7q21.3 SEM1-DLX5-DLX6 locus, and their combination conferred over 7-fold increased risk of cNCS. The top variants were replicated in an independent cohort and showed pleiotropic effects on brain and facial morphology and bone mineral density. Fine mapping of 7q21.3 identified a craniofacial transcriptional enhancer (eDlx36) within the linkage region of the top variant (rs4727341; odds ratio [95% confidence interval], 0.48[0.39-0.59]; P = 1.2E-12) that was located in SEM1 intron and enriched in 4 rare risk variants. In zebrafish, the activity of the transfected human eDlx36 enhancer was observed in the frontonasal prominence and calvaria during skull development and was reduced when the 4 rare risk variants were introduced into the sequence. Conclusion: Our findings support a polygenic nature of cNCS risk and functional role of craniofacial enhancers in cNCS susceptibility with potential broader implications for bone health.

2.
Cancer Lett ; 577: 216368, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37652287

RESUMEN

INTRODUCTION: SEM1, a 26 S proteasome complex subunit, is an essential regulator of tumor growth. However, the underlying mechanism of SEM1 mediated glioma progression remains to be elucidated. METHODS: Data from bulk-tumor, single-cell, and spatial sequencing were analyzed to reveal correlations between SEM1 and clinical traits, cell types, and functional enrichment in gliomas. Immunohistochemistry was used to assess SEM1 expression. MTT, flow cytometry, apoptosis signature, epithelial-mesenchymal transition signature, Transwell, and organoid assays were used to study SEM1's effect on the malignant behavior of glioma (U251 and LN229) cells. Weighted gene co-expression network analysis (WGCNA) was conducted to construct an SEM1-mediated malignant regulatory network. Accordingly, survival analysis, therapeutic response, drug prediction, and molecular docking analyses were performed. RESULTS: High SEM1 expression was observed in gliomas and correlated with worse clinical features and prognosis. Moreover, SEM1 is mainly localized in malignant cells (glioma cells). SEM1 knockout inhibited the proliferation, invasion, and migration of glioma cells and promoted their apoptosis. We also constructed an SEM1 malignant regulatory network that was bridged by the PI3K-Akt pathway. The network had a high prognostic value. Finally, drugs potentially targeting SEM1 were screened and docked to SEM1. CONCLUSIONS: SEM1 is critically involved in the proliferation, apoptosis, invasion, and migration of glioma cells. The SEM1 malignant regulatory network shows high significance for the prognosis and treatment of gliomas.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Proliferación Celular , Línea Celular Tumoral , Transducción de Señal , Glioma/patología , Apoptosis , Movimiento Celular
3.
Protein Sci ; 32(9): e4733, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37463013

RESUMEN

Intrinsically disordered proteins (IDPs) are often multifunctional and frequently posttranslationally modified. Deleted in split hand/split foot 1 (Dss1-Sem1 in budding yeast) is a highly multifunctional IDP associated with a range of protein complexes. However, it remains unknown if the different functions relate to different modified states. In this work, we show that Schizosaccharomyces pombe Dss1 is a substrate for casein kinase 2 in vitro, and we identify three phosphorylated threonines in its linker region separating two known disordered ubiquitin-binding motifs. Phosphorylations of the threonines had no effect on ubiquitin-binding but caused a slight destabilization of the C-terminal α-helix and mediated a direct interaction with the forkhead-associated (FHA) domain of the RING-FHA E3-ubiquitin ligase defective in mitosis 1 (Dma1). The phosphorylation sites are not conserved and are absent in human Dss1. Sequence analyses revealed that the Txx(E/D) motif, which is important for phosphorylation and Dma1 binding, is not linked to certain branches of the evolutionary tree. Instead, we find that the motif appears randomly, supporting the mechanism of ex nihilo evolution of novel motifs. In support of this, other threonine-based motifs, although frequent, are nonconserved in the linker, pointing to additional functions connected to this region. We suggest that Dss1 acts as an adaptor protein that docks to Dma1 via the phosphorylated FHA-binding motifs, while the C-terminal α-helix is free to bind mitotic septins, thereby stabilizing the complex. The presence of Txx(D/E) motifs in the disordered regions of certain septin subunits may be of further relevance to the formation and stabilization of these complexes.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Ubiquitina-Proteína Ligasas , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilación , Unión Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Int J Mol Sci ; 24(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37240295

RESUMEN

It is known that four peptide fragments of predominant protein in human semen Semenogelin 1 (SEM1) (SEM1(86-107), SEM1(68-107), SEM1(49-107) and SEM1(45-107)) are involved in fertilization and amyloid formation processes. In this work, the structure and dynamic behavior of SEM1(45-107) and SEM1(49-107) peptides and their N-domains were described. According to ThT fluorescence spectroscopy data, it was shown that the amyloid formation of SEM1(45-107) starts immediately after purification, which is not observed for SEM1(49-107). Seeing that the peptide amino acid sequence of SEM1(45-107) differs from SEM1(49-107) only by the presence of four additional amino acid residues in the N domain, these domains of both peptides were obtained via solid-phase synthesis and the difference in their dynamics and structure was investigated. SEM1(45-67) and SEM1(49-67) showed no principal difference in dynamic behavior in water solution. Furthermore, we obtained mostly disordered structures of SEM1(45-67) and SEM1(49-67). However, SEM1(45-67) contains a helix (E58-K60) and helix-like (S49-Q51) fragments. These helical fragments may rearrange into ß-strands during amyloid formation process. Thus, the difference in full-length peptides' (SEM1(45-107) and SEM1(49-107)) amyloid-forming behavior may be explained by the presence of a structured helix at the SEM1(45-107) N-terminus, which contributes to an increased rate of amyloid formation.


Asunto(s)
Amiloide , Péptidos , Humanos , Secuencia de Aminoácidos , Péptidos/química , Amiloide/química , Fragmentos de Péptidos/química , Proteínas Amiloidogénicas , Dicroismo Circular , Pliegue de Proteína , Péptidos beta-Amiloides/química
5.
Molecules ; 28(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36677695

RESUMEN

The widespread and indiscriminate use of broad-spectrum antibiotics leads to microbial resistance, which causes major problems in the treatment of infectious diseases. However, advances in nanotechnology have opened up new domains for the synthesis and use of nanoparticles against multidrug-resistant pathogens. The traditional approaches for nanoparticle synthesis are not only expensive, laborious, and hazardous but also have various limitations. Therefore, new biological approaches are being designed to synthesize economical and environmentally friendly nanoparticles with enhanced antimicrobial activity. The current study focuses on the isolation, identification, and screening of metallotolerant fungal strains for the production of silver nanoparticles, using antimicrobial activity analysis and the characterization of biologically synthesized silver nanoparticles by X-ray diffraction (XRD) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). In total, 11 fungal isolates were isolated and screened for the synthesis of AgNPs, while the Penicillium notatum (K1) strain was found to be the most potent, demonstrating biosynthetic ability. The biologically synthesized silver nanoparticles showed excellent antibacterial activity against the bacteria Escherichia coli (ATCC10536), Bacillus subtilis, Staphylococcus aureus (ATCC9144), Pseudomonas aeruginosa (ATCC10145), Enterococcus faecalis, and Listeria innocua (ATCC13932). Furthermore, three major diffraction peaks in the XRD characterization, located at the 2θ values of 28.4, 34.8, 38.2, 44, 64, and 77°, confirmed the presence of AgNPs, while elemental composition analysis via EDX and spherical surface topology with a scanning electron microscope indicated that its pure crystalline nature was entirely composed of silver. Thus, the current study indicates the enhanced antibacterial capability of mycologically synthesized AgNPs, which could be used to counter multidrug-resistant pathogens.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/química , Bacterias , Espectrometría por Rayos X , Desarrollo de Músculos , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química
6.
Front Endocrinol (Lausanne) ; 13: 1051988, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506071

RESUMEN

Introduction: Germ cell tumors (GCTs) are the most common type of cancer in young men. These tumors usually originate from the testis, but they can occasionally develop from extragonadal sites probably due to primordial germ cells (PGCs) migration errors. Cisplatin-based chemotherapy is usually effective for male GCTs, but the risk of toxicity is high and new therapeutic strategies are needed. Although Metformin (Met) has been widely studied as a potential cancer treatment over the past decades, there is limited evidence to support its use in treating male GCTs. Additionally, the mechanism by which it acts on tumor cells is still not entirely understood. Methods: SEM-1 cells, a newly established human cell line of extragonadal origin, were treated with Met. Cell viability was studied by MTT assay, while cell migration and invasion were studied by the wound healing assay and the transwell assay, respectively. The effect of Met on 3D spheroid formation was determined by seeding SEM-1 cells in appropriate cell suspension culture conditions, and cell cycle was characterized by flow cytometry. Factors involved in PGCs migration and GCT invasion, such as IGFBP1, IGF1R, MMP-11 and c-Kit, together with cyclin D1 (a key regulator of cell cycle progression), and the upstream factor, HMGA1, were determined by immunoblots. Results: Treatment of SEM-1 cells with Met resulted in a potent and dose-dependent reduction of cell proliferation, as evidenced by decreased nuclear abundance of cyclin D1 and cell cycle arrest in G1 phase. Also, Met prevented the formation of 3D spheroids, and blocked cell migration and invasion by reducing the expression of IGFBP1, IGF1R and MMP-11. Both, IGFBP1 and MMP-11 are under control of HMGA1, a chromatin-associated protein that is involved in the regulation of important oncogenic, metabolic and embryological processes. Intriguingly, an early reduction in the nuclear abundance of HMGA1 occurred in SEM-1 cells treated with Met. Conclusions: Our results document the antiproliferative and antimigratory effects of Met in SEM-1 cells, providing new insights into the potential treatments for male GCTs. The anticancer properties of Met in SEM-1 cells are likely related to its ability to interfere with HMGA1 and downstream targets, including cyclin D1, the IGFs system, and MMP-11.


Asunto(s)
Ciclina D1 , Metformina , Masculino , Humanos , Ciclina D1/metabolismo , Metformina/farmacología , Metaloproteinasa 11 de la Matriz , Línea Celular Tumoral , Factores de Transcripción/metabolismo
7.
J Struct Biol ; 214(4): 107900, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36191746

RESUMEN

SEM1(68-107) is a peptide corresponding to the region of semenogelin 1 protein from 68 to 107 amino acid position. SEM1(68-107) is an abundant component of semen, which participates in HIV infection enhanced by amyloid fibrils forming. To understand the causes influencing amyloid fibril formation, it is necessary to determine the spatial structure of SEM1(68-107). It was shown that the determination of SEM1(68-107) structure is complicated by the non-informative NMR spectra due to the high intramolecular mobility of peptides. The complementary approach based on the geometric restrictions of individual peptide fragments and molecular modeling was used for the determination of the spatial structure of SEM1(68-107). The N- (SEM1(68-85)) and C-terminuses (SEM1(86-107)) of SEM1(68-107) were chosen as two individual peptide fragments. SEM1(68-85) and SEM1(86-107) structures were established with NMR and circular dichroism CD spectroscopies. These regions were used as geometric restraints for the SEM1(68-107) structure modeling. Even though most of the SEM1(68-107) peptide is unstructured, our detailed analysis revealed the following structured elements: N-terminus (70His-84Gln) forms an α-helix, (86Asp-94Thr) and (101Gly-103Ser) regions fold into 310-helixes. The absence of a SEM1(68-107) rigid conformation leads to instability of these secondary structure regions. The calculated SEM1(68-107) structure is in good agreement with experimental values of hydrodynamic radius and dihedral angles obtained by NMR spectroscopy. This testifies the adequacy of a combined approach based on the use of peptide fragment structures for the molecular modeling formation of full-size peptide spatial structure.


Asunto(s)
Amiloide , Infecciones por VIH , Humanos , Espectroscopía de Resonancia Magnética , Péptidos , Fragmentos de Péptidos
8.
MethodsX ; 8: 101512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754783

RESUMEN

The semenogelin 1 protein is secreted in the seminal vesicles. After ejaculation it is split into small peptide fragments using internal proteases. It was shown that the fragments SEM1(45-107), SEM1(49-107), SEM1(68-107) (SEM1(86-107) form amyloid fibrils, which increase the possibility of HIV infection. The article presents a protocol for the synthesis and purification of a 15N, 13C-labeled SEM1(68-107) peptide for further structural studies by high-resolution NMR spectroscopy. The work describes cloning, expression of fusion protein GB1-SEM1(68-107) in E.coli, its purification, removal of GB1 and purification of SEM1(68-107). The purity of SEM1(68-107) samples on each purification steps was evaluated by polyacrylamide gel electrophoresis under denaturing conditions (SDS-PAGE) and tricine-SDS-PAGE. The developed protocol allows to obtain SEM1(68-107) peptide for NMR studies (using 3D experiments), instead of costly solid-phase synthesis.

9.
Biol Open ; 4(9): 1206-12, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26319581

RESUMEN

Semen harbors amyloid fibrils formed by proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2) that potently enhance HIV infectivity. Amyloid but not soluble forms of these peptides enhance HIV infection. Thus, agents that remodel these amyloid fibrils could prevent HIV transmission. Here, we confirm that the green tea polyphenol, epigallocatechin-3-gallate (EGCG), slowly remodels fibrils formed by PAP248-286 termed SEVI (semen derived enhancer of viral infection) and also exerts a direct anti-viral effect. We elucidate for the first time that EGCG remodels PAP85-120, SEM1(45-107), and SEM2(49-107) fibrils more rapidly than SEVI fibrils. We establish EGCG as the first small molecule that can remodel all four classes of seminal amyloid. The combined anti-amyloid and anti-viral properties of EGCG could have utility in preventing HIV transmission.

10.
Nucleus ; 1(1): 12-7, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21327099

RESUMEN

The evolutionary conserved protein Sem1/Dss1 is a bona fide subunit of the regulatory particle (RP) of the proteasome and in mammalian cells stabilizes the tumor suppressor protein BRCA2. A recent study from our laboratory has revealed an unexpected non- proteasomal role of Sem1 in mRNA export. We found that Sem1, independent of the RP, is a functional component of the nuclear pore associated TREX-2 complex that is directly involved in the dynamic relocalization of a subset of DNA loci to the nuclear periphery. Like other components of TREX-2, Sem1 is required for proper nuclear export of mRNAs, transcription elongation and preventing transcription-associated genomic instability. Strikingly, Sem1 associates with a third multi-subunit protein complex namely the COP9 signalosome, which is involved in de-neddylation. We propose that Sem1 is a versatile protein that regulates the functional integrity of multiple protein complexes involved in diverse biological pathways.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Acetiltransferasas/metabolismo , Animales , Exodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Oxigenasas de Función Mixta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA