Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102831

RESUMEN

AIMS: Na+-activated Slack potassium (K+) channels are increasingly recognized as regulators of neuronal activity, yet little is known about their role in the cardiovascular system. Slack activity increases when intracellular Na+ concentration ([Na+]i) reaches pathophysiological levels. Elevated [Na+]i is a major determinant of the ischemia and reperfusion (I/R)-induced myocardial injury, thus we hypothesized that Slack plays a role under these conditions. METHODS: and results: K+ currents in cardiomyocytes (CMs) obtained from wildtype (WT) but not from global Slack knockout (KO) mice were sensitive to electrical inactivation of voltage-sensitive Na+-channels. Live-cell imaging demonstrated that K+ fluxes across the sarcolemma rely on Slack, while the depolarized resting membrane potential in Slack-deficient CMs led to excessive cytosolic Ca2+ accumulation and finally to hypoxia/reoxygenation-induced cell death. Cardiac damage in an in vivo model of I/R was exacerbated in global and CM-specific conditional Slack mutants and largely insensitive to mechanical conditioning maneuvers. Finally, the protection conferred by mitochondrial ATP-dependent K+ channels required functional Slack in CMs. CONCLUSIONS: Collectively, our study provides evidence for Slack's crucial involvement in the ion homeostasis of no or low O2-stressed CMs. Thereby, Slack activity opposes the I/R-induced fatal Ca2+-uptake to CMs supporting the cardioprotective signaling widely attributed to mitoKATP function.

2.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38853884

RESUMEN

At the end of pregnancy, the uterus transitions from a quiescent to a highly contractile state. This is partly due to depolarization of the resting membrane potential in uterine (myometrial) smooth muscle cells (MSMCs). Experiments with human MSMCs showed that the membrane potential is regulated by a functional complex between the sodium (Na+)-activated potassium (K+) channel SLO2.1 and the Na+ Leak Channel Non-Selective (NALCN). In human MSMCs, Na+ entering through NALCN activates SLO2.1, leading to K+ efflux, membrane hyperpolarization (cells become more negative inside), and reduced contractility. Decreased SLO2.1/NALCN activity results in reduced K+ efflux, leading to membrane depolarization, Ca2+ influx via voltage-dependent calcium channels, and increased MSMC contractility. However, all of these experiments were performed with MSMCs isolated from women at term, so the role of the SLO2.1/NALCN complex early in pregnancy was speculative. To address this question here, we examined the role of the SLO2.1/NALCN complex in regulating mouse MSMC membrane potential across pregnancy. We report that Slo2.1 and Nalcn expression change along pregnancy, being more highly expressed in MSMCs from non-pregnant and early pregnant mice than in those from late-pregnant mice. Functional studies revealed that SLO2.1 channels mediate a significant portion of the K+ current in mouse MSMCs, particularly in cells from non-pregnant and early pregnant mice. Activation of SLO2.1 by Na+ influx through NALCN led to membrane hyperpolarization in MSMCs from early pregnancy but not in MSMCs from later pregnancy. Moreover, we found that the NALCN/SLO2.1 complex regulates intracellular Ca2+ responses more in MSMCs from non-pregnant and early pregnancy mice than in MSMCs from late pregnancy. Together, these findings reveal that the SLO2.1/NALCN functional complex is conserved between mouse and humans and functions throughout pregnancy. This work could open avenues for targeted pharmacological interventions in pregnancy-related complications.

3.
Molecules ; 29(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38893312

RESUMEN

Gain-of-function mutations in the KCNT1 gene, which encodes the sodium-activated potassium channel known as SLACK, are associated with the rare but devastating developmental and epileptic encephalopathy known as epilepsy of infancy with migrating focal seizures (EIMFS). The design of small molecule inhibitors of SLACK channels represents a potential therapeutic approach to the treatment of EIMFS, other childhood epilepsies, and developmental disorders. Herein, we describe a hit optimization effort centered on a xanthine SLACK inhibitor (8) discovered via a high-throughput screen. Across three distinct regions of the chemotype, we synthesized 58 new analogs and tested each one in a whole-cell automated patch-clamp assay to develop structure-activity relationships for inhibition of SLACK channels. We further evaluated selected analogs for their selectivity versus a variety of other ion channels and for their activity versus clinically relevant SLACK mutants. Selectivity within the series was quite good, including versus hERG. Analog 80 (VU0948578) was a potent inhibitor of WT, A934T, and G288S SLACK, with IC50 values between 0.59 and 0.71 µM across these variants. VU0948578 represents a useful in vitro tool compound from a chemotype that is distinct from previously reported small molecule inhibitors of SLACK channels.


Asunto(s)
Bloqueadores de los Canales de Potasio , Relación Estructura-Actividad , Humanos , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Canales de potasio activados por Sodio , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Xantina/química , Xantina/farmacología , Técnicas de Placa-Clamp , Células HEK293 , Estructura Molecular , Xantinas/química , Xantinas/farmacología
4.
Brain Res Bull ; 212: 110966, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670469

RESUMEN

Intraoperative remifentanil administration has been linked to increased postoperative pain sensitivity. Recent studies have identified the involvement of euchromatic histone-lysine N-methyltransferase 2 (Ehmt2/G9a) in neuropathic pain associated with the transcriptional silencing of many potassium ion channel genes. This study investigates whether G9a regulates the potassium sodium-activated channel subfamily T member 1 (Slo2.2) in remifentanil-induced post-incisional hyperalgesia (RIH) in rodents. We performed remifentanil infusion (1 µg·kg-1·min-1 for 60 min) followed by plantar incision to induce RIH in rodents. Our results showed that RIH was accompanied by increased G9a and H3K9me2 production and decreased Slo2.2 expression 48 h postoperatively. Deletion of G9a rescued Slo2.2 expression in DRG and reduced RIH intensity. Slo2.2 overexpression also reversed this hyperalgesia phenotype. G9a overexpression decreased Slo2.2-mediated leak current and increased excitability in the small-diameter DRG neurons and laminal II small-diameter neurons in the spinal dorsal horn, which was implicated in peripheral and central sensitization. These results suggest that G9a contributes to the development of RIH by epigenetically silencing Slo2.2 in DRG neurons, leading to decreased central sensitization in the spinal cord. The findings may have implications for the development of novel therapeutic targets for the treatment of postoperative pain.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Hiperalgesia , Remifentanilo , Células Receptoras Sensoriales , Animales , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Masculino , Remifentanilo/farmacología , Hiperalgesia/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Canales de potasio activados por Sodio , Ratones , Analgésicos Opioides/farmacología , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Neuralgia/metabolismo , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/metabolismo , Ratas , Umbral del Dolor/efectos de los fármacos , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso
5.
Bioorg Med Chem ; 95: 117487, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37812884

RESUMEN

Malignant migrating partial seizure of infancy (MMPSI) is a devastating and pharmacoresistant form of infantile epilepsy. MMPSI has been linked to multiple gain-of-function (GOF) mutations in the KCNT1 gene, which encodes for a potassium channel often referred to as SLACK. SLACK channels are sodium-activated potassium channels distributed throughout the central nervous system (CNS) and the periphery. The investigation described here aims to discover SLACK channel inhibitor tool compounds and profile their pharmacokinetic and pharmacodynamic properties. A SLACK channel inhibitor VU0531245 (VU245) was identified via a high-throughput screen (HTS) campaign. Structure-activity relationship (SAR) studies were conducted in five distinct regions of the hit VU245. VU245 analogs were evaluated for their ability to affect SLACK channel activity using a thallium flux assay in HEK-293 cells stably expressing wild-type (WT) human SLACK. Selected analogs were tested for metabolic stability in mouse liver microsomes and plasma-protein binding in mouse plasma. The same set of analogs was tested via thallium flux for activity versus human A934T SLACK and other structurally related potassium channels, including SLICK and Maxi-K. In addition, potencies for selected VU245 analogs were obtained using whole-cell electrophysiology (EP) assays in CHO cells stably expressing WT human SLACK through an automated patch clamp system. Results revealed that this scaffold tolerates structural changes in some regions, with some analogs demonstrating improved SLACK inhibitory activity, good selectivity against the other channels tested, and modest improvements in metabolic clearance. Analog VU0935685 represents a new, structurally distinct small-molecule inhibitor of SLACK channels that can serve as an in vitro tool for studying this target.


Asunto(s)
Canales de Potasio , Talio , Animales , Cricetinae , Humanos , Ratones , Cricetulus , Células HEK293 , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , Canales de potasio activados por Sodio/genética , Canales de potasio activados por Sodio/metabolismo , Convulsiones , Talio/metabolismo , Oxadiazoles/química , Oxadiazoles/metabolismo
6.
Adv Neurobiol ; 33: 305-331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37615872

RESUMEN

K+ channels play potent roles in the process of neurotransmitter release by influencing the action potential waveform and modulating neuronal excitability and release probability. These diverse effects of K+ channel activation are ensured by the wide variety of K+ channel genes and their differential expression in different cell types. Accordingly, a variety of K+ channels have been implicated in regulating neurotransmitter release, including the Ca2+- and voltage-gated K+ channel Slo1 (also known as BK channel), voltage-gated K+ channels of the Kv3 (Shaw-type), Kv1 (Shaker-type), and Kv7 (KCNQ) families, G-protein-gated inwardly rectifying K+ (GIRK) channels, and SLO-2 (a Ca2+-. Cl-, and voltage-gated K+ channel in C. elegans). These channels vary in their expression patterns, subcellular localization, and biophysical properties. Their roles in neurotransmitter release may also vary depending on the synapse and physiological or experimental conditions. This chapter summarizes key findings about the roles of K+ channels in regulating neurotransmitter release.


Asunto(s)
Caenorhabditis elegans , Transmisión Sináptica , Humanos , Animales , Transporte Biológico , Sinapsis , Neurotransmisores
7.
Cell Rep ; 42(8): 112858, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37494189

RESUMEN

The sodium-activated Slo2.2 channel is abundantly expressed in the brain, playing a critical role in regulating neuronal excitability. The Na+-binding site and the underlying mechanisms of Na+-dependent activation remain unclear. Here, we present cryoelectron microscopy (cryo-EM) structures of human Slo2.2 in closed, open, and inhibitor-bound form at resolutions of 2.6-3.2 Å, revealing gating mechanisms of Slo2.2 regulation by cations and a potent inhibitor. The cytoplasmic gating ring domain of the closed Slo2.2 harbors multiple K+ and Zn2+ sites, which stabilize the channel in the closed conformation. The open Slo2.2 structure reveals at least two Na+-sensitive sites where Na+ binding induces expansion and rotation of the gating ring that opens the inner gate. Furthermore, a potent inhibitor wedges into a pocket formed by pore helix and S6 helix and blocks the pore. Together, our results provide a comprehensive structural framework for the investigation of Slo2.2 channel gating, Na+ sensation, and inhibition.


Asunto(s)
Canales de Potasio , Sodio , Humanos , Canales de Potasio/metabolismo , Microscopía por Crioelectrón , Canales de potasio activados por Sodio , Sodio/metabolismo
8.
J Neurosci ; 43(15): 2665-2681, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36898835

RESUMEN

The Slack channel (KCNT1, Slo2.2) is a sodium-activated and chloride-activated potassium channel that regulates heart rate and maintains the normal excitability of the nervous system. Despite intense interest in the sodium gating mechanism, a comprehensive investigation to identify the sodium-sensitive and chloride-sensitive sites has been missing. In the present study, we identified two potential sodium-binding sites in the C-terminal domain of the rat Slack channel by conducting electrophysical recordings and systematic mutagenesis of cytosolic acidic residues in the rat Slack channel C terminus. In particular, by taking advantage of the M335A mutant, which results in the opening of the Slack channel in the absence of cytosolic sodium, we found that among the 92 screened negatively charged amino acids, E373 mutants could completely remove sodium sensitivity of the Slack channel. In contrast, several other mutants showed dramatic decreases in sodium sensitivity but did not abolish it altogether. Furthermore, molecular dynamics (MD) simulations performed at the hundreds of nanoseconds timescale revealed one or two sodium ions at the E373 position or an acidic pocket composed of several negatively charged residues. Moreover, the MD simulations predicted possible chloride interaction sites. By screening predicted positively charged residues, we identified R379 as a chloride interaction site. Thus, we conclude that the E373 site and the D863/E865 pocket are two potential sodium-sensitive sites, while R379 is a chloride interaction site in the Slack channel.SIGNIFICANCE STATEMENT The research presented here identified two distinct sodium and one chloride interaction sites located in the intracellular C-terminal domain of the Slack (Slo2.2, KCNT1) channel. Identification of the sites responsible for the sodium and chloride activation of the Slack channel sets its gating property apart from other potassium channels in the BK channel family. This finding sets the stage for future functional and pharmacological studies of this channel.


Asunto(s)
Canales de potasio activados por Sodio , Animales , Ratas , Cloruros/metabolismo , Canales de potasio activados por Sodio/metabolismo , Sodio/metabolismo
9.
Bioorg Med Chem Lett ; 76: 129013, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36184030

RESUMEN

In this Letter we describe structure-activity relationship (SAR) studies conducted in five distinct regions of a new 2-amino-N-phenylacetamides series of Slack potassium channel inhibitors exemplified by recently disclosed high-throughput screening (HTS) hit VU0606170 (4). New analogs were screened in a thallium (Tl+) flux assay in HEK-293 cells stably expressing wild-type human (WT) Slack. Selected analogs were screened in Tl+ flux versus A934T Slack and other Slo family members Slick and Maxi-K and evaluated in whole-cell electrophysiology (EP) assays using an automated patch clamp system. Results revealed the series to have flat SAR with significant structural modifications resulting in a loss of Slack activity. More minor changes led to compounds with Slack activity and Slo family selectivity similar to the HTS hit.


Asunto(s)
Canales de Potasio , Talio , Humanos , Células HEK293 , Proteínas del Tejido Nervioso/metabolismo , Canales de potasio activados por Sodio , Relación Estructura-Actividad
10.
Pharm Pat Anal ; 11(2): 45-56, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35369761

RESUMEN

Slack channels are sodium-activated potassium channels that are encoded by the KCNT1 gene. Several KCNT1 gain of function mutations have been linked to malignant migrating partial seizures of infancy. Quinidine is an anti-arrhythmic drug that functions as a moderately potent inhibitor of Slack channels; however, quinidine use is limited by its poor selectivity, safety and pharmacokinetic profile. Slack channels represent an interesting target for developing novel therapeutics for the treatment of malignant migrating partial seizures of infancy and other childhood epilepsies; thus, ongoing efforts are directed toward the discovery of small-molecules that inhibit Slack currents. This review summarizes patent applications published in 2020-2021 that describe the discovery of novel small-molecule Slack inhibitors.


Asunto(s)
Epilepsia , Proteínas del Tejido Nervioso , Bloqueadores de los Canales de Potasio , Canales de potasio activados por Sodio , Niño , Epilepsia/tratamiento farmacológico , Humanos , Mutación , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/uso terapéutico , Canales de potasio activados por Sodio/antagonistas & inhibidores , Quinidina/uso terapéutico , Convulsiones/tratamiento farmacológico
11.
Elife ; 112022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35266450

RESUMEN

Mutations altering the scaffolding protein Shank are linked to several psychiatric disorders, and to synaptic and behavioral defects in mice. Among its many binding partners, Shank directly binds CaV1 voltage activated calcium channels. Here, we show that the Caenorhabditis elegans SHN-1/Shank promotes CaV1 coupling to calcium activated potassium channels. Mutations inactivating SHN-1, and those preventing SHN-1 binding to EGL-19/CaV1 all increase action potential durations in body muscles. Action potential repolarization is mediated by two classes of potassium channels: SHK-1/KCNA and SLO-1 and SLO-2 BK channels. BK channels are calcium-dependent, and their activation requires tight coupling to EGL-19/CaV1 channels. SHN-1's effects on AP duration are mediated by changes in BK channels. In shn-1 mutants, SLO-2 currents and channel clustering are significantly decreased in both body muscles and neurons. Finally, increased and decreased shn-1 gene copy number produce similar changes in AP width and SLO-2 current. Collectively, these results suggest that an important function of Shank is to promote microdomain coupling of BK with CaV1.


Asunto(s)
Proteínas de Caenorhabditis elegans , Canales de Potasio de Gran Conductancia Activados por el Calcio , Potenciales de Acción , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Calcio de la Dieta , Proteínas Portadoras/metabolismo , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones
12.
J Neurosci ; 41(43): 9047-9063, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34544836

RESUMEN

Na+ sensitivity is a unique feature of Na+-activated K+ (KNa) channels, making them naturally suited to counter a sudden influx in Na+ ions. As such, it has long been suggested that KNa channels may serve a protective function against excessive excitation associated with neuronal injury and disease. This hypothesis, however, has remained largely untested. Here, we examine KNa channels encoded by the Drosophila Slo2 (dSlo2) gene in males and females. We show that dSlo2/KNa channels are selectively expressed in cholinergic neurons in the adult brain, as well as in glutamatergic motor neurons, where dampening excitation may function to inhibit global hyperactivity and seizure-like behavior. Indeed, we show that effects of feeding Drosophila a cholinergic agonist are exacerbated by the loss of dSlo2/KNa channels. Similar to mammalian Slo2/KNa channels, we show that dSlo2/KNa channels encode a TTX-sensitive K+ conductance, indicating that dSlo2/KNa channels can be activated by Na+ carried by voltage-dependent Na+ channels. We then tested the role of dSlo2/KNa channels in established genetic seizure models in which the voltage-dependent persistent Na+ current (INap) is elevated. We show that the absence of dSlo2/KNa channels increased susceptibility to mechanically induced seizure-like behavior. Similar results were observed in WT flies treated with veratridine, an enhancer of INap Finally, we show that loss of dSlo2/KNa channels in both genetic and pharmacologically primed seizure models resulted in the appearance of spontaneous seizures. Together, our results support a model in which dSlo2/KNa channels, activated by neuronal overexcitation, contribute to a protective threshold to suppress the induction of seizure-like activity.SIGNIFICANCE STATEMENT Slo2/KNa channels are unique in that they constitute a repolarizing K+ pore that is activated by the depolarizing Na+ ion, making them naturally suited to function as a protective "brake" against overexcitation and Na+ overload. Here, we test this hypothesis in vivo by examining how a null mutation of the Drosophila Slo2 (dSlo2)/KNa gene affects seizure-like behavior in genetic and pharmacological models of epilepsy. We show that indeed the loss of dSlo2/KNa channels results in increased incidence and severity of induced seizure behavior, as well as the appearance of spontaneous seizure activity. Our results advance our understanding of neuronal excitability and protective mechanisms that preserve normal physiology and the suppression of seizure susceptibility.


Asunto(s)
Proteínas del Tejido Nervioso/biosíntesis , Canales de potasio activados por Sodio/biosíntesis , Convulsiones/metabolismo , Convulsiones/prevención & control , Animales , Animales Modificados Genéticamente , Drosophila , Femenino , Masculino , Proteínas del Tejido Nervioso/genética , Canales de potasio activados por Sodio/genética , Convulsiones/genética
13.
FASEB J ; 35(5): e21568, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33817875

RESUMEN

The neuronal Na+ -activated K+ channel Slack (aka Slo2.2, KNa 1.1, or Kcnt1) has been implicated in setting and maintaining the resting membrane potential and defining excitability and firing patterns, as well as in the generation of the slow afterhyperpolarization following bursts of action potentials. Slack activity increases significantly under conditions of high intracellular Na+ levels, suggesting this channel may exert important pathophysiological functions. To address these putative roles, we studied whether Slack K+ channels contribute to pathological changes and excitotoxic cell death caused by glutamatergic overstimulation of Ca2+ - and Na+ -permeable N-methyl-D-aspartic acid receptors (NMDAR). Slack-deficient (Slack KO) and wild-type (WT) mice were subjected to intrastriatal microinjections of the NMDAR agonist NMDA. NMDA-induced brain lesions were significantly increased in Slack KO vs WT mice, suggesting that the lack of Slack renders neurons particularly susceptible to excitotoxicity. Accordingly, excessive neuronal cell death was seen in Slack-deficient primary cerebellar granule cell (CGC) cultures exposed to glutamate and NMDA. Differences in neuronal survival between WT and Slack KO CGCs were largely abolished by the NMDAR antagonist MK-801, but not by NBQX, a potent and highly selective competitive antagonist of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors. Interestingly, NMDAR-evoked Ca2+ signals did not differ with regard to Slack genotype in CGCs. However, real-time monitoring of K+ following NMDAR activation revealed a significant contribution of this channel to the intracellular drop in K+ . Finally, TrkB and TrkC neurotrophin receptor transcript levels were elevated in NMDA-exposed Slack-proficient CGCs, suggesting a mechanism by which this K+ channel contributes to the activation of the extracellular-signal-regulated kinase (Erk) pathway and thereby to neuroprotection. Combined, our findings suggest that Slack-dependent K+ signals oppose the NMDAR-mediated excitotoxic neuronal injury by promoting pro-survival signaling via the BDNF/TrkB and Erk axis.


Asunto(s)
Potenciales de Acción , Encefalopatías/prevención & control , Muerte Celular , N-Metilaspartato/toxicidad , Proteínas del Tejido Nervioso/fisiología , Neuronas/citología , Canales de potasio activados por Sodio/fisiología , Animales , Encefalopatías/inducido químicamente , Encefalopatías/metabolismo , Encefalopatías/patología , Células Cultivadas , Agonistas de Aminoácidos Excitadores/toxicidad , Ácido Glutámico/metabolismo , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Transducción de Señal
14.
Elife ; 92020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32314960

RESUMEN

Slo2 potassium channels play important roles in neuronal function, and their mutations in humans may cause epilepsies and cognitive defects. However, it is largely unknown how Slo2 is regulated by other proteins. Here we show that the function of C. elegans Slo2 (SLO-2) depends on adr-1, a gene important to RNA editing. ADR-1 promotes SLO-2 function not by editing the transcripts of slo-2 but those of scyl-1, which encodes an orthologue of mammalian SCYL1. Transcripts of scyl-1 are greatly decreased in adr-1 mutants due to deficient RNA editing at a single adenosine in their 3'-UTR. SCYL-1 physically interacts with SLO-2 in neurons. Single-channel open probability (Po) of neuronal SLO-2 is ~50% lower in scyl-1 knockout mutant than wild type. Moreover, human Slo2.2/Slack Po is doubled by SCYL1 in a heterologous expression system. These results suggest that SCYL-1/SCYL1 is an evolutionarily conserved regulator of Slo2 channels.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/fisiología , Neuronas/metabolismo , Canales de potasio activados por Sodio/metabolismo , Animales , Caenorhabditis elegans , Humanos , Ratones , Edición de ARN/fisiología
15.
J Physiol ; 597(20): 5093-5108, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31444905

RESUMEN

KEY POINTS: We report that a sodium-activated potassium current, IKNa , has been inadvertently overlooked in both conduit and resistance arterial smooth muscle cells. IKNa is a major K+ resting conductance and is absent in cells of IKNa knockout (KO) mice. The phenotype of the IKNa KO is mild hypertension, although KO mice react more strongly than wild-type with raised blood pressure when challenged with vasoconstrictive agents. IKNa is negatively regulated by angiotensin II acting through Gαq protein-coupled receptors. In current clamp, KO arterial smooth muscle cells have easily evoked Ca2+ -dependent action potentials. ABSTRACT: Although several potassium currents have been reported to play a role in arterial smooth muscle (ASM), we find that one of the largest contributors to membrane conductance in both conduit and resistance ASMs has been inadvertently overlooked. In the present study, we show that IKNa , a sodium-activated potassium current, contributes a major portion of macroscopic outward current in a critical physiological voltage range that determines intrinsic cell excitability; IKNa is the largest contributor to ASM cell resting conductance. A genetic knockout (KO) mouse strain lacking KNa channels (KCNT1 and KCNT2) shows only a modest hypertensive phenotype. However, acute administration of vasoconstrictive agents such as angiotensin II (Ang II) and phenylephrine results in an abnormally large increase in blood pressure in the KO animals. In wild-type animals Ang II acting through Gαq protein-coupled receptors down-regulates IKNa , which increases the excitability of the ASMs. The complete genetic removal of IKNa in KO mice makes the mutant animal more vulnerable to vasoconstrictive agents, thus producing a paroxysmal-hypertensive phenotype. This may result from the lowering of cell resting K+ conductance allowing the cells to depolarize more readily to a variety of excitable stimuli. Thus, the sodium-activated potassium current may serve to moderate blood pressure in instances of heightened stress. IKNa may represent a new therapeutic target for hypertension and stroke.


Asunto(s)
Músculo Liso Vascular/fisiología , Canales de potasio activados por Sodio/metabolismo , Angiotensina II , Animales , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Ratones , Ratones Noqueados , Canales de potasio activados por Sodio/genética , Ratas , Ratas Sprague-Dawley
16.
Acta Biochim Biophys Sin (Shanghai) ; 51(3): 301-312, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30883647

RESUMEN

Salinity is one of the major limiting factors in plant growth and productivity. Cucumis melo L. is a widely cultivated plant, but its productivity is significantly influenced by the level of salinity in soil. Symbiotic colonization of plants with Piriformospora indica has shown a promotion in plants growth and tolerance against biotic stress. In this study, physiological markers such as ion analysis, antioxidant determination, proline content, electrolyte leakage and chlorophyll measurement were assessed in melon cultivar under two concentrations (100 and 200 mM) of NaCl with and without P. indica inoculation. Results showed that the endophytic inoculation consistently upregulated the level of antioxidants, enhanced plants to antagonize salinity stress. The expression level of an RNA editing factor (SLO2) which is known to participate in mitochondria electron transport chain was analyzed, and its full mRNA sequence was obtained by rapid amplification of cDNA ends (RACE). Under salinity stress, the expression level of SLO2 was increased, enhancing the plant's capability to adapt to the stress. However, P. indica inoculation further elevated the expression level of SLO2. These findings suggested that the symbiotic association of fungi could help the plants to tolerate the salinity stress.


Asunto(s)
Basidiomycota/fisiología , Cucumis melo/fisiología , Biomasa , Clorofila/análisis , Electrólitos/metabolismo , Prolina/análisis , Edición de ARN , Salinidad , Estrés Fisiológico , Simbiosis
17.
J Physiol ; 597(1): 137-149, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30334255

RESUMEN

KEY POINTS: At the end of pregnancy, the uterus transitions from a quiescent state to a highly contractile state. This transition requires that the uterine (myometrial) smooth muscle cells increase their excitability, although how this occurs is not fully understood. We identified SLO2.1, a potassium channel previously unknown in uterine smooth muscle, as a potential significant contributor to the electrical excitability of myometrial smooth muscle cells. We found that activity of the SLO2.1 channel is negatively regulated by oxytocin via Gαq-protein-coupled receptor activation of protein kinase C. This results in depolarization of the uterine smooth muscle cells and calcium entry, which may contribute to uterine contraction. These findings provide novel insights into a previously unknown mechanism by which oxytocin may act to modulate myometrial smooth muscle cell excitability. Our findings also reveal a new potential pharmacological target for modulating uterine excitability. ABSTRACT: During pregnancy, the uterus transitions from a quiescent state to a more excitable contractile state. This is considered to be at least partly a result of changes in the myometrial smooth muscle cell (MSMC) resting membrane potential. However, the ion channels controlling the myometrial resting membrane potential and the mechanism of transition to a more excitable state have not been fully clarified. In the present study, we show that the sodium-activated, high-conductance, potassium leak channel, SLO2.1, is expressed and active at the resting membrane potential in MSMCs. Additionally, we report that SLO2.1 is inhibited by oxytocin binding to the oxytocin receptor. Inhibition of SLO2.1 leads to membrane depolarization and activation of voltage-dependent calcium channels, resulting in calcium influx. The results of the present study reveal that oxytocin may modulate MSMC electrical activity by inhibiting SLO2.1 potassium channels.


Asunto(s)
Miocitos del Músculo Liso/fisiología , Miometrio/fisiología , Oxitocina/fisiología , Canales de potasio activados por Sodio/antagonistas & inhibidores , Animales , Células Cultivadas , Femenino , Humanos , Oocitos/fisiología , Canales de potasio activados por Sodio/genética , Canales de potasio activados por Sodio/fisiología , Contracción Uterina/fisiología , Xenopus laevis
18.
FASEB J ; : fj201800139R, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29863912

RESUMEN

Controversy surrounds the molecular identity of mitochondrial K+ channels that are important for protection against cardiac ischemia-reperfusion injury. Although KNa1.2 (sodium-activated potassium channel encoded by Kcn2) is necessary for cardioprotection by volatile anesthetics, electrophysiological evidence for a channel of this type in mitochondria is lacking. The endogenous physiological role of a potential mito-KNa1.2 channel is also unclear. In this study, single channel patch-clamp of 27 independent cardiac mitochondrial inner membrane (mitoplast) preparations from wild-type (WT) mice yielded 6 channels matching the known ion sensitivity, ion selectivity, pharmacology, and conductance properties of KNa1.2 (slope conductance, 138 ± 1 pS). However, similar experiments on 40 preparations from Kcnt2-/- mice yielded no such channels. The KNa opener bithionol uncoupled respiration in WT but not Kcnt2-/- cardiomyocytes. Furthermore, when oxidizing only fat as substrate, Kcnt2-/- cardiomyocytes and hearts were less responsive to increases in energetic demand. Kcnt2-/- mice also had elevated body fat, but no baseline differences in the cardiac metabolome. These data support the existence of a cardiac mitochondrial KNa1.2 channel, and a role for cardiac KNa1.2 in regulating metabolism under conditions of high energetic demand.-Smith, C. O., Wang, Y. T., Nadtochiy, S. M., Miller, J. H., Jonas, E. A., Dirksen, R. T., Nehrke, K., Brookes, P. S. Cardiac metabolic effects of KNa1.2 channel deletion and evidence for its mitochondrial localization.

19.
Neuroscience ; 384: 361-374, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29859980

RESUMEN

The sodium-activated potassium channel Slack (Slo2.2) is widely expressed in central and peripheral neurons where it is supposed to shape firing properties important for neuronal excitability. Slack activity is enhanced by interaction with the Fragile-X-Mental-Retardation-Protein (FMRP) and loss of FMRP leads to decreased sodium-activated potassium currents in medial nucleus of the trapezoid body neurons of the Fmr1-knockout (KO) mouse representing a mouse model of the human Fragile-X-Syndrome (FXS) and autism. Autism is a frequent comorbidity of FXS, but it is unclear whether Slack is involved in autistic or related conditions of FXS in vivo. By applying a wide range of behavioral tests, we compared social and autism-related behaviors in Slack- and FMRP-deficient mice. In our hands, as expected, FMRP-deficiency causes autism-related behavioral changes in nesting and in a marble-burying test. In contrast, Slack-deficient males exhibited specific abnormalities in sociability in direct and indirect social interaction tests. Hence, we show for the first time that a proper Slack channel function is mandatory for normal social behavior in mice. Nevertheless, as deficits in social behaviors seem to occur independently from each other in FMRP and Slack null mutants, we conclude that Slack is not involved in the autistic phenotype of FMRP KO mice.


Asunto(s)
Conducta Animal/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio/metabolismo , Conducta Social , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Peso Corporal/fisiología , Ritmo Circadiano/fisiología , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Canales de Potasio/genética , Canales de potasio activados por Sodio
20.
J Neurosci ; 38(5): 1073-1084, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29217678

RESUMEN

Slo2 channels are large-conductance potassium channels abundantly expressed in the nervous system. However, it is unclear how their expression level in neurons is regulated. Here we report that HRPU-2, an RNA-binding protein homologous to mammalian heterogeneous nuclear ribonucleoprotein U (hnRNP U), plays an important role in regulating the expression of SLO-2 (a homolog of mammalian Slo2) in Caenorhabditis elegans Loss-of-function (lf) mutants of hrpu-2 were isolated in a genetic screen for suppressors of a sluggish phenotype caused by a hyperactive SLO-2. In hrpu-2(lf) mutants, SLO-2-mediated delayed outward currents in neurons are greatly decreased, and neuromuscular synaptic transmission is enhanced. These mutant phenotypes can be rescued by expressing wild-type HRPU-2 in neurons. HRPU-2 binds to slo-2 mRNA, and hrpu-2(lf) mutants show decreased SLO-2 protein expression. In contrast, hrpu-2(lf) does not alter the expression of either the BK channel SLO-1 or the Shaker type potassium channel SHK-1. hrpu-2(lf) mutants are indistinguishable from wild type in gross motor neuron morphology and locomotion behavior. Together, these observations suggest that HRPU-2 plays important roles in SLO-2 function by regulating SLO-2 protein expression, and that SLO-2 is likely among a restricted set of proteins regulated by HRPU-2. Mutations of human Slo2 channel and hnRNP U are strongly linked to epileptic disorders and intellectual disability. The findings of this study suggest a potential link between these two molecules in human patients.SIGNIFICANCE STATEMENT Heterogeneous nuclear ribonucleoprotein U (hnRNP U) belongs to a family of RNA-binding proteins that play important roles in controlling gene expression. Recent studies have established a strong link between mutations of hnRNP U and human epilepsies and intellectual disability. However, it is unclear how mutations of hnRNP U may cause such disorders. This study shows that mutations of HRPU-2, a worm homolog of mammalian hnRNP U, result in dysfunction of a Slo2 potassium channel, which is critical to neuronal function. Because mutations of Slo2 channels are also strongly associated with epileptic encephalopathies and intellectual disability in humans, the findings of this study point to a potential mechanism underlying neurological disorders caused by hnRNP U mutations.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo U/fisiología , Proteínas de Transporte de Membrana/fisiología , Transmisión Sináptica/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Epilepsia/genética , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Humanos , Discapacidad Intelectual/genética , Proteínas de Transporte de Membrana/genética , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Neuronas Motoras/ultraestructura , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA