Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.196
Filtrar
1.
Phytomedicine ; 134: 155958, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39241385

RESUMEN

BACKGROUND: Maintaining intracellular equilibrium is essential for the viability of tumor cells, which tend to be particularly vulnerable to environmental stressors. Consequently, targeting the disruption of this homeostasis offers a promising approach for oncological treatments. LW-213, a novel derivative of wogonin, effectively induces apoptosis in cancer cells by initiating endoplasmic reticulum (ER) stress, although the precise molecular pathways involved remain intricate and multifaceted. PURPOSE: This research aimed to explore how LW-213 prompts apoptosis in non-small cell lung cancer (NSCLC) cells and to clarify the detailed mechanisms that govern this process. METHODS: Various NSCLC cell lines were utilized to delineate the apoptotic effects induced by LW-213. Advanced methodologies, including RNA sequencing (RNA-seq), Western blotting (WB), immunofluorescence (IF), immunoprecipitation (IP), flow cytometry (Fc), real-time quantitative polymerase chain reaction (RT-qPCR), and electron microscopy, were employed to investigate the underlying molecular interactions. The efficacy and mechanistic action of LW-213 were also assessed in a xenograft model using nude mice. RESULTS: We demonstrated that LW-213, a small molecule cationic amphiphilic drug (CAD), inhibited Niemann-Pick C1 (NPC1) function and induced lysosomal membrane damage, thereby activating the phosphoinositide-initiated membrane tethering and lipid transport (PITT) pathway. This activation promoted cholesterol transport from the ER to the lysosome, perpetuating a cholesterol-deficient state in the ER, including massive exocytosis of Ca2+ and activation of FAM134B-mediated reticulophagy. Ultimately, excessive reticulophagy induced lethal ER stress. CONCLUSIONS: In summary, our study elucidates an organelle domino reaction initiated by lysosome damage and a series of self-rescue mechanisms that eventually lead to irreversible lethal effects, revealing a potential drug intervention strategy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Estrés del Retículo Endoplásmico , Flavanonas , Neoplasias Pulmonares , Lisosomas , Ratones Desnudos , Humanos , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Flavanonas/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Apoptosis/efectos de los fármacos , Proteína Niemann-Pick C1 , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto , Autofagia/efectos de los fármacos , Flavonoides
2.
Phytomedicine ; 134: 156017, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39265443

RESUMEN

BACKGROUND: Currently, there is a lack of validated pharmacological interventions for non-alcoholic fatty liver disease (NAFLD), which is characterized by the accumulation of hepatic triglyceride. Zhimu-Huangbai (ZH) herb-pair is a traditional Chinese medicine that regulates glucose and lipid metabolism disorders. However, the precise mechanisms underlying the preventive effects of hepatic triglyceride induced by high-fat diet (HFD) remain elusive. PURPOSE: The study aimed to examine the impact of ZH herb-pair on NAFLD in mice and explore the underlying mechanisms, particularly its effects on endoplasmic reticulum (ER) stress and lipid metabolism. METHODS: NAFLD was induced in mice using HFD, and the treated mice were orally administered ZH, metformin (Glucophage) or lovastatin. The lipid metabolism factors, ER stress markers, and the unfolded protein response (UPR) branch factors were measured using immunohistochemistry, western blotting or qRT-PCR. Co-Immunoprecipitation (CoIP) was performed to reveal the connection between SCAP and SREBP-1c. Tunicamycin (TM) and plasmid delivery were used to induce acute ER stress or crease XBP1 gain function models. The main compounds in ZH binding to IRE1α protein were studied by molecular docking and cellular thermal shift assay (CETSA). RESULTS: Treatment with ZH significantly ameliorated hepatic steatosis and reduced lipid synthesis process mainly inhibiting the expression of mature active form of SREBP-1c through relieving ER stress. The expression of IRE1α and XBP1s was inhibited after treatment with ZH. In addition, ZH improved the fatty liver phenotype caused by XBP1 overexpression via decreasing srebp1c transcription. In vitro experimental results suggested that the main compounds in ZH decreased cellular TG contents. Mechanistically, ZH targeted IRE1α and inhibited XBP1s mRNA expression to relieve ER stress and inhibit SREBP-1c production. CONCLUSIONS: ZH herb-pair can protect against NAFLD by reducing the expression of SREBP-1c, in part, via regulating IRE1α/XBP1s pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Estrés del Retículo Endoplásmico , Endorribonucleasas , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Proteínas Serina-Treonina Quinasas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Proteína 1 de Unión a la X-Box , Animales , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Medicamentos Herbarios Chinos/farmacología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Masculino , Endorribonucleasas/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Triglicéridos/metabolismo , Lovastatina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Metformina/farmacología , Transducción de Señal/efectos de los fármacos
3.
Heliyon ; 10(18): e37518, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39323844

RESUMEN

Purpose: This study aimed to explore the effects of quercetin on cholesterol metabolism and cisplatin sensitivity in oral squamous cell carcinoma (OSCC) cell line (CAL27) and investigate the potential molecular mechanisms. Methods: CAL27 cells were exposed to quercetin or cisplatin after upregulation or downregulation of AGR2. The expression of proteins and genes associated with cholesterol metabolism were assessed. The levels of cholesterol and LDL were also measured, and the cisplatin sensitivity of CAL27 cells was analyzed. Results: RNA high-throughput sequencing revealed that after treatment with quercetin, the expression of AGR2 was significantly reduced in cisplatin-resistant CAL27 cells (CAL-27R), which was associated with lipid metabolism. AGR2 deletion ameliorated but its overexpression exacerbated cisplatin resistance and cholesterol metabolism, evidenced by changes in SQLE, HMGCS, LDLR, and n-SREBP2 expression and cholesterol and LDL levels. Moreover, AGR2 promoted cisplatin resistance by activating the AKT signaling pathway and enhancing SREBP2-mediated cholesterol metabolism. Quercetin increased cisplatin sensitivity by repressing cholesterol metabolism but suppressed the AGR2/AKT/SREBP2 signaling pathway in a concentration-dependent manner. These effects were partly reversed by AGR2 overexpression and AKT activation. Conclusion: Our findings demonstrated that quercetin inhibits cholesterol metabolism and cisplatin resistance in CAL27 cells by modulating the AGR2/AKT/SREBP2 axis.

4.
Brain Res ; 1846: 149250, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39313167

RESUMEN

This study delineated the intricate relation between cholesterol metabolism, protein degradation mechanisms, and the pathogenesis of Huntington's disease (HD). Through investigations using both animal models and cellular systems, we have observed significant alterations in cholesterol levels, particularly in the striatum, which is the primary lesion site in HD. Our findings indicate the dysregulation of cholesterol metabolism-related factors, such as LDLR and SREBP2, in HD, which may contribute to disease progression. Additionally, we uncovered disruptions in protein degradation pathways, including decreased neddylated proteins and dysregulated autophagy, which further exacerbated HD pathology. Moreover, our study highlighted the potential therapeutic implications of targeting these pathways. By restoring cholesterol levels and modulating protein degradation mechanisms, particularly through interventions, such as MLN4924, we observed potential improvements in cellular function, as indicated by the increased BDNF levels. These insights underscore the importance of simultaneously addressing cholesterol metabolism and protein degradation to alleviate HD pathology. Collectively, this study provides a basic understanding of the interplay between the decrease of SREBP2 and the dysfunctional protein degradation system derived from disrupted cholesterol metabolism in HD and HD cells.

5.
Ecotoxicol Environ Saf ; 285: 117064, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299205

RESUMEN

Dysregulation of cholesterol metabolism is an important feature of cancer development. There are limited reports on the involvement of lncRNAs in hepatocellular carcinoma (HCC) progression via the cholesterol metabolism pathway. The present study explored the effect of LINC00618 on HCC growth and metastasis, and elucidated the underlying mechanisms involved in cholesterol metabolism. Here, we found that LINC00618 expression was upregulated in cancerous tissues from 30 patients with HCC compared to that in adjacent normal tissues. High expression of LINC00618 was detected in metastatic HCC tissues. LINC00618 is predominantly localized in the nucleus and overexpression of LINC00618 facilitated HCC cell proliferation, migration and EMT progression by promoting cholesterol biosynthesis. Mechanistically, the 1-101nt region of LINC00618 bound to NSUN2. LINC00618 inhibited ubiquitin-proteasome pathway-induced NSUN2 degradation. NSUN2 stabilized by LINC00618 increased m5C modification of SREBP2 and promoted SREBP2 mRNA stability in a YBX1-dependent manner, thereby promoting cholesterol biosynthesis in HCC cells. Moreover, mouse HCC xenograft and lung metastasis models were established by subcutaneous and tail vein injections of MHCC97 cells transfected with or without sh-LINC00618. Silencing LINC00618 impeded HCC growth and metastasis. In conclusion, LINC00618 promoted HCC growth and metastasis by elevating cholesterol synthesis by stabilizing NSUN2 to enhance SREBP2 mRNA stability in an m5C-dependent manner.

6.
Acta Pharm Sin B ; 14(9): 3949-3963, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39309511

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis, is a common metabolic liver disease worldwide. Currently, satisfactory drugs for NAFLD treatment remain lacking. Obesity and diabetes are the leading causes of NAFLD, and compounds with anti-obesity and anti-diabetic activities are considered suitable candidates for treating NAFLD. In this study, biochemical and histological assays revealed that a natural lignan schisanhenol (SAL) effectively decreased lipid accumulation and improved hepatic steatosis in free fatty acid (FFA)-treated HepG2 cells and high-fat diet (HFD)-induced NAFLD mice. Further, molecular analyses, microRNA (miRNA)-seq, and bioinformatics analyses revealed that SAL may improve NAFLD by targeting the miR-802/adenosine monophosphate-activated protein kinase (AMPK) pathway. Liver-specific overexpression of miR-802 in NAFLD mice significantly impaired SAL-mediated liver protection and decreased the protein levels of phosphorylated (p)-AMPK and PRKAB1. Dual-luciferase assay analysis further confirmed that miR-802 inhibits hepatic AMPK expression by binding to the 3' untranslated region of mouse Prkab1 or human PRKAA1. Additionally, genetic silencing of PRKAA1 blocked SAL-induced AMPK pathway activation in FFA-treated HepG2 cells. The results demonstrate that SAL is an effective drug candidate for treating NAFLD through regulating miR-802/AMPK-mediated lipid metabolism.

7.
Adv Sci (Weinh) ; : e2407069, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225567

RESUMEN

Lipid metabolism reprogramming stands as a fundamental hallmark of cancer cells. Unraveling the core regulators of lipid biosynthesis holds the potential to find promising therapeutic targets in pancreatic ductal adenocarcinoma (PDAC). Here, it is demonstrated that platelet-derived growth factor C (PDGFC) orchestrated lipid metabolism, thereby facilitated the malignant progression of PDAC. Expression of PDGFC is upregulated in PDAC cohorts and is corelated with a poor prognosis. Aberrantly high expression of PDGFC promoted proliferation and metastasis of PDAC both in vitro and in vivo. Mechanistically, PDGFC accelerated the malignant progression of PDAC by upregulating fatty acid accumulation through sterol regulatory element-binding protein 1 (SREBP1), a key transcription factor in lipid metabolism. Remarkably, Betulin, an inhibitor of SREBP1, demonstrated the capability to inhibit proliferation and metastasis of PDAC cell lines, along with attenuating the process of liver metastasis in vivo. Overall, the study underscores the pivotal role of PDGFC-mediated lipid metabolism in PDAC progression, suggesting PDGFC as a potential biomarker for PDAC metastasis. Targeting PDGFC-induced lipid metabolism emerges as a promising therapeutic strategy for metastatic PDAC, with the potential to improve clinical outcomes.

8.
Adv Exp Med Biol ; 1460: 97-129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287850

RESUMEN

The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.


Asunto(s)
Adipocitos , Lipólisis , Obesidad , Humanos , Obesidad/metabolismo , Obesidad/patología , Adipocitos/metabolismo , Adipocitos/patología , Animales , Metabolismo de los Lípidos , Adipogénesis , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Resistencia a la Insulina
9.
Adv Exp Med Biol ; 1460: 595-627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287866

RESUMEN

In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.


Asunto(s)
Adipogénesis , Epigénesis Genética , MicroARNs , Obesidad , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/genética , Obesidad/metabolismo , Adipogénesis/genética , Animales , Adipocitos/metabolismo , Exosomas/metabolismo , Exosomas/genética , Regulación de la Expresión Génica
10.
Adv Exp Med Biol ; 1460: 539-574, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287864

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.


Asunto(s)
Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Resistencia a la Insulina , Hígado/patología , Hígado/metabolismo , Progresión de la Enfermedad , Estrés Oxidativo , Índice de Severidad de la Enfermedad , Animales
12.
Biochem Biophys Res Commun ; 733: 150675, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39284268

RESUMEN

BACKGROUND & AIMS: Lipid metabolism disorders contribute to a range of human diseases, including liver-related pathologies. Rabbits, highly sensitive to dietary cholesterol, provide a model for understanding the development of liver disorders. Sterol regulatory element-binding protein isoform 2 (SREBP2) crucially regulates intracellular cholesterol pathways. Extra-virgin olive oil (EVOO) has shown reducing cholesterol levels and restoring liver parameters affected by HFD. The aim was to investigate the molecular impact of an HFD and supplemented with EVOO on rabbit liver cholesterol metabolism. APPROACH & RESULTS: Male rabbits were assigned to dietary cohorts, including control, acute/chronic HFD, sequential HFD with EVOO, and EVOO. Parameters such as serum lipid profiles, hepatic enzymes, body weight, and molecular analyses. After 6 months of HFD, plasma and hepatic cholesterol increased with decreased SREBP2 and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) expression. Prolonged HFD increased cholesterol levels, upregulating SREBP2 mRNA and HMGCR protein. Combining this with EVOO lowered cholesterol, increased SREBP2 mRNA, and upregulated low-density lipoprotein receptor (LDLR) expression. HFD-induced metabolic dysfunction-associated fatty liver disease was mitigated by EVOO. In conclusion, the SREBP2 system responds to dietary changes. CONCLUSIONS: In rabbits, the SREBP2 system responds to dietary changes. Acute HFD hinders cholesterol synthesis, while prolonged HFD disrupts regulation, causing SREBP2 upregulation. EVOO intake prompts LDLR upregulation, potentially enhancing cholesterol clearance and restoring hepatic alterations.

13.
Thorac Cancer ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245881

RESUMEN

BACKGROUND: Inositol-requiring enzyme 1 (IRE1) is an endoplasmic reticulum (ER)-resident transmembrane protein that senses ER stress and mediates an essential arm of the unfolded protein response (UPR). IRE1 reduces ER stress by upregulating the expression of multiple ER chaperones through activation of X-box-binding protein 1 (XBP1). Emerging lines of evidence have revealed that IRE1-XBP1 axis serves as a multipurpose signal transducer during oncogenic transformation and cancer development. In this study, we explore how IRE1-XBP1 signaling promotes chemoresistance in lung cancer. METHODS: The expression patterns of UPR components and MRP1 were examined by Western blot. qRT-PCR was employed to determine RNA expression. The promoter activity was determined by luciferase reporter assay. Chemoresistant cancer cells were analyzed by viability, apoptosis. CUT & Tag (Cleavage under targets and tagmentation)-qPCR analysis was used for analysis of DNA-protein interaction. RESULTS: Here we show that activation of IRE1α-XBP1 pathway leads to an increase in MDR-related protein 1 (MRP1) expression, which facilitates drug extrusion and confers resistance to cytotoxic chemotherapy. At the molecular level, XBP1-induced c-Myc is necessary for SREBP1 expression, and SREBP1 binds to the MRP1 promoter to directly regulate its transcription. CONCLUSIONS: We conclude that IRE1α-XBP1 had important role in chemoresistance and appears to be a novel prognostic marker for lung cancer.

14.
Drug Des Devel Ther ; 18: 3841-3851, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39219698

RESUMEN

Introduction: Apigenin is a natural flavonoid compound with promising potential for the attenuation of myocardial hypertrophy (MH). The compound can also modulate the expression of miR-185-5p that both promote MH and suppress autophagy. The current attempts to explain the anti-MH effect of apigenin by focusing on changes in miR-185-5p-mediated autophagy. Methods: Hypertrophic symptoms were induced in rats using transverse aortic constriction (TAC) method and in cardiomyocytes using Ang II and then handled with apigenin. Changes in myocardial function and structure and cell viability and surface area were measured. The role of miR-185-5p in the anti-MH function of apigenin was explored by detecting changes in autophagic processes and miR-185-5p/SREBP2 axis. Results: TAC surgery induced weight increase, structure destruction, and collagen deposition in hearts of model rats. Ang II suppresses cardiomyocyte viability and increased cell surface area. All these impairments were attenuated by apigenin and were associated with the restored level of autophagy. At the molecular level, the expression of miR-185-5p was up-regulated by TAC, while the expression of SREBP2 was down-regulated, which was reserved by apigenin both in vivo and in vitro. The induction of miR-185-5p in cardiomyocytes could counteracted the protective effects of apigenin. Discussion: Collectively, the findings outlined in the current study highlighted that apigenin showed anti-MH effects. The effects were related to the inhibition of miR-185-5p and activation of SREBP, which contributed to the increased autophagy.


Asunto(s)
Apigenina , Autofagia , Cardiomegalia , MicroARNs , Ratas Sprague-Dawley , Animales , MicroARNs/metabolismo , MicroARNs/genética , Apigenina/farmacología , Autofagia/efectos de los fármacos , Ratas , Masculino , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Cardiomegalia/patología , Células Cultivadas , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Supervivencia Celular/efectos de los fármacos
15.
Eur J Cell Biol ; 103(4): 151454, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39232451

RESUMEN

CTCF is a key factor in three-dimensional chromatin folding and transcriptional control that was found to affect cancer cell migration by a mechanism that is still poorly understood. To identify this mechanism, we used mouse melanoma cells with a partial loss of function (pLoF) of CTCF. We found that CTCF pLoF inhibits cell migration rate while leading to an increase in the expression of multiple enzymes in the cholesterol biosynthesis pathway along with an elevation in the cellular cholesterol level. In agreement with the cholesterol change we detected altered membrane dynamics in CTCF pLoF cells as measured by reduced formation of migrasomes, extracellular vesicles formed at the rear side of migrating cells. Inhibition of cholesterol synthesis in CTCF pLoF cells restored the cellular migration rate and migrasome formation, suggesting that CTCF supports cell migration by suppressing cholesterol synthesis. Detailed analysis of the promoter of Hmgcs1, an early enzyme in the cholesterol synthesis pathway, revealed that CTCF prevents formation of a loop between that promoter and another promoter 200 kb away. CTCF also supports PRC2 recruitment to the promoter and deposition of H3K27me3. H3K27me3 at the promoter of Hmgcs1 prevents SREBP2 binding and activation of transcription. By this mechanism, CTCF fine-tunes cholesterol levels to support cell migration. Notably, genome wide association studies suggest a link between CTCF and cholesterol-associated diseases, thus CTCF emerges as a new regulator of cholesterol biosynthesis.

16.
Biochem Pharmacol ; 229: 116513, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218042

RESUMEN

The transcription factor known as sterol regulatory element-binding protein (SREBP) and the glycation pathways, specifically the formation of Advanced Glycation End Products (AGEs), have a significant and deleterious impact on the kidney. They alter renal lipid metabolism and promote glomerulosclerosis, mesangial cell expansion, tubulointerstitial fibrosis, and inflammation, leading to diabetic nephropathy (DN) progression. Although several pieces of scientific evidence are reported for potential causes of glycation and lipotoxicity in DN, the underlying mechanism of renal lipid accumulation still needs to be fully understood. We provide a rationalized view on how AGEs exert multiple effects that cause SREBP activation and inflammation, contributing to DN through Receptor for AGEs (RAGE) signaling, AGE-R1-dependent downregulation of Sirtuin 1 (SIRT-1), and increased SREBP Cleavage Activating Protein (SCAP) glycosylation. This review emphasizes the association between glycation and the SREBP pathway and how it affects the onset of DN associated with obesity. Finally, we discuss the correlation of glycation and the SREBP pathway with insulin resistance (IR), oxidative stress, endoplasmic reticulum stress, inflammation, and existing and emerging therapeutic approaches toward better controlling obesity-related DN.

17.
Cell Signal ; 124: 111381, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243918

RESUMEN

Pancreatic cancer (PC) is highly malignancy with poor survival. Ferroptosis offers a novel therapeutic target for cancer treatment and glutathione peroxidase 4 (GPX4) shields tumor cells from ferroptosis damage. Although Sterol regulatory element-binding protein 1 (SREBP1) has been implicated in the development of pancreatic cancer, its underlying mechanisms remain unclear. This research aims to explore the role of SREBP1 in ferroptosis by using its inhibitor Fatostatin. In this study, Fatostatin was found to inhibit the proliferation and clonogenicity of pancreatic cancer cell lines. This was accompanied by a reduction in intracellular lipid synthesis, increased iron accumulation, elevated levels of reactive oxygen species (ROS), and accumulation of malondialdehyde (MDA). The JASPAR database shows that there is a binding site of the SREBP1 on the promoter region of GPX4. What's more, it was verified that SREBP1 can transcriptionally regulate GPX4 by CHIP. In vivo experiments further revealed that Fatostatin could suppress the growth of subcutaneous tumors in nude mice. In conclusion, our study suggests that Fatostatin may inhibit pancreatic cancer cell proliferation by inducing ferroptosis through the SREBP1/GPX4 pathway. These findings shed light on the therapeutic potential of Fatostatin and lay the groundwork for future investigations into its mechanism of action in pancreatic cancer.

18.
Brain Behav Immun ; 123: 108-122, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260763

RESUMEN

Chronic HIV infection can dysregulate lipid/cholesterol metabolism in the peripheral system, contributing to the higher incidences of diabetes and atherosclerosis in HIV (+) individuals. Recently, accumulating evidence indicate that HIV proteins can also dysregulate lipid/cholesterol metabolism in the brain and such dysregulation could be linked with the pathogenesis of HIV-associated neurological disorders (HAND)/NeuroHIV. To further characterize the association between lipid/cholesterol metabolism and HAND, we employed HIV-inducible transactivator of transcription (iTAT) and control mice to compare their brain lipid profiles. Our results reveal that HIV-iTAT mice possess dysregulated lipid profiles and have increased numbers of lipid droplets (LDs) accumulation microglia (LDAM) in the brains. HIV protein TAT can upregulate LDs formation through enhancing the lipid/cholesterol synthesis in vitro. Mechanistically, HIV-TAT increases the expression of sterol regulatory element-binding protein 2 (SREBP2) through microRNA-124 downregulation. Cholesterol synthesis inhibition can block HIV-TAT-mediated NLRP3 inflammasome activation and microglial activation in vitro as well as mitigate aging-related behavioral impairment and memory deficiency in HIV-iTAT mice. Taken together, our results indicate an inherent role of lipid metabolism and LDAM in the pathogenesis of NeuroHIV (immunometabolism). These findings suggest that LDAM reversal through modulating lipid/cholesterol metabolism could be a novel therapeutic target for ameliorating NeuroHIV symptoms in chronic HIV (+) individuals.

19.
Transl Res ; 274: 21-34, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39245209

RESUMEN

Endoplasmic reticulum (ER) stress is recognized as a crucial contributor to the progression of traumatic brain injury (TBI) and represents a potential target for therapeutic intervention. This study aimed to assess the potential of J147, a novel neurotrophic compound, in alleviating ER stress by modulating related signaling pathways, thereby promoting functional recovery in TBI. To this end, adult mice underwent controlled cortical impact (CCI) injury to induce TBI, followed by oral administration of J147 one-hour post-injury, with daily dosing for 3 to 7 days. Multiple behavioral assessments were conducted over 35 days, revealing a significant, dose-dependent improvement in neurofunctional recovery with J147 treatment. The neuropathological analysis demonstrated reduced acute neurodegeneration (observed at three days through FJC staining), enhanced long-term neuron survival (H&E and Nissl staining), and improved neuroplasticity (Golgi staining) at 35 days post-TBI. At the molecular level, TBIinduced AMP-activated protein kinase (AMPK) dephosphorylation, sterol regulatory element binding protein-1 (SREBP-1) activation, and upregulation of ER stress marker proteins, including phosphorylated eukaryotic initiation factor-2α (p-eIF2a), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in perilesional cortex neurons at three days post-injury. Notably, the J147 treatment significantly attenuated AMPK dephosphorylation, SERBP-1 activation, and expression of the ER stress markers. In summary, this study reveals the therapeutic promise of J147 in mitigating secondary brain damage associated with TBI and improving long-term functional recovery by modulating ER stress pathways.

20.
FEBS J ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39279038

RESUMEN

Disrupted cholesterol homeostasis plays a critical role in the development of multiple diseases, such as cardiovascular disease and cancer. However, the role of cholesterol in inflammatory bowel disease (IBD) remains unclear. In the present study, we investigated whether and how high levels of cholesterol in the diet affect experimental colitis in mice. A normal diet supplemented with 1.25% cholesterol (high cholesterol diet) caused more severe colitis and aggravated the disruption of intestinal tight junction structure, accompanied by higher colonic tissue total cholesterol (TC) levels in a dextran sulfate sodium (DSS)-induced experimental colitis mouse model. Cholesterol aggravated DSS-induced intestinal epithelial barrier impairment and nuclear sterol regulatory element-binding protein 2 (nSREBP2) inhibition both in vivo and in vitro. In addition, nSREBP2 overexpression ameliorated cholesterol-induced intestinal epithelial barrier disruption in Caco2 cells. Interestingly, inhibition of SREBP2 disrupted intestinal epithelial barrier in the absence of cholesterol. Furthermore, SREBP2 regulated the protein expression of tight junction proteins (occludin/Zo-1) via modulating caveolin-1-mediated endocytosis and lysosomal degradation. Analysis of UK Biobank data indicated that, in fully adjusted models, higher serum TC concentrations were an independent protective factor for IBD incidence. The sterol regulatory element-binding factor 2 (SREBF2) gene rs2228313 (G/C) genetic variant was associated with the incidence of IBD and the CC genotype of SREBF2 rs2228313 was associated with higher serum TC levels and decreased the risk of IBD. In summary, a high cholesterol diet aggravates DSS-induced colitis in mice by down-regulating nSREBP2 expression, thereby promoting the endocytic degradation of tight junction proteins. In humans, SREBF2 gene single nucleotide polymorphism rs2228313 and serum TC levels are associated with IBD incidence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA