Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Crit Care ; 28(1): 260, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095884

RESUMEN

BACKGROUND: This study aimed to explore the characteristics of abnormal regional resting-state functional magnetic resonance imaging (rs-fMRI) activity in comatose patients in the early period after cardiac arrest (CA), and to investigate their relationships with neurological outcomes. We also explored the correlations between jugular venous oxygen saturation (SjvO2) and rs-fMRI activity in resuscitated comatose patients. We also examined the relationship between the amplitude of the N20-baseline and the rs-fMRI activity within the intracranial conduction pathway of somatosensory evoked potentials (SSEPs). METHODS: Between January 2021 and January 2024, eligible post-resuscitated patients were screened to undergo fMRI examination. The amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) of rs-fMRI blood oxygenation level-dependent (BOLD) signals were used to characterize regional neural activity. Neurological outcomes were evaluated using the Glasgow-Pittsburgh cerebral performance category (CPC) scale at 3 months after CA. RESULTS: In total, 20 healthy controls and 31 post-resuscitated patients were enrolled in this study. The rs-fMRI activity of resuscitated patients revealed complex changes, characterized by increased activity in some local brain regions and reduced activity in others compared to healthy controls (P < 0.05). However, the mean ALFF values of the whole brain were significantly greater in CA patients (P = 0.011). Among the clusters of abnormal rs-fMRI activity, the cluster values of ALFF in the left middle temporal gyrus and inferior temporal gyrus and the cluster values of ReHo in the right precentral gyrus, superior frontal gyrus and middle frontal gyrus were strongly correlated with the CPC score (P < 0.001). There was a strong correlation between the mean ALFF and SjvO2 in CA patients (r = 0.910, P < 0.001). The SSEP N20-baseline amplitudes in CA patients were negatively correlated with thalamic rs-fMRI activity (all P < 0.001). CONCLUSIONS: This study revealed that abnormal rs-fMRI BOLD signals in resuscitated patients showed complex changes, characterized by increased activity in some local brain regions and reduced activity in others. Abnormal BOLD signals were associated with neurological outcomes in resuscitated patients. The mean ALFF values of the whole brain were closely related to SjvO2 levels, and changes in the thalamic BOLD signals correlated with the N20-baseline amplitudes of SSEP responses. TRIAL REGISTRATION: NCT05966389 (Registered July 27, 2023).


Asunto(s)
Coma , Paro Cardíaco , Imagen por Resonancia Magnética , Sobrevivientes , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Persona de Mediana Edad , Coma/fisiopatología , Coma/diagnóstico por imagen , Paro Cardíaco/complicaciones , Paro Cardíaco/fisiopatología , Anciano , Sobrevivientes/estadística & datos numéricos , Estudios de Cohortes , Descanso/fisiología , Adulto
2.
J Clin Monit Comput ; 38(5): 1003-1042, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39068294

RESUMEN

Somatosensory evoked potentials (SEPs) are used to assess the functional status of somatosensory pathways during surgical procedures and can help protect patients' neurological integrity intraoperatively. This is a position statement on intraoperative SEP monitoring from the American Society of Neurophysiological Monitoring (ASNM) and updates prior ASNM position statements on SEPs from the years 2005 and 2010. This position statement is endorsed by ASNM and serves as an educational service to the neurophysiological community on the recommended use of SEPs as a neurophysiological monitoring tool. It presents the rationale for SEP utilization and its clinical applications. It also covers the relevant anatomy, technical methodology for setup and signal acquisition, signal interpretation, anesthesia and physiological considerations, and documentation and credentialing requirements to optimize SEP monitoring to aid in protecting the nervous system during surgery.


Asunto(s)
Potenciales Evocados Somatosensoriales , Monitorización Neurofisiológica Intraoperatoria , Sociedades Médicas , Potenciales Evocados Somatosensoriales/fisiología , Humanos , Monitorización Neurofisiológica Intraoperatoria/métodos , Estados Unidos , Monitoreo Intraoperatorio/métodos , Electroencefalografía/métodos , Anestesia/métodos
3.
Neurodiagn J ; 64(3): 96-111, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38941588

RESUMEN

Intraoperative neurophysiological monitoring (IONM) is shown to be useful in surgeries when the nervous system is at risk. Its success in part relies upon proper setup of often dozens of electrodes correctly placed and secured upon patients and inserted in specific stimulating and recording receptacles. Given the complicated setups and the demanding operating room environment, errors in setup are bound to occur. These have led to false negatives associated with new patient morbidities including, at times, paralysis. No studies quantify the prevalence of these types of setup errors. Approximately 800,000 operations annually utilize intraoperative neuromonitoring in the US alone, so even a small percentage of errors suggests clinical significance. In addition, these types of errors hinder the overall effectiveness of IONM and may result in lower reported sensitivities and lower cost-effectiveness of this important service. We sought to discover through a prospective study and verification through chart review the prevalence of "electrode-swap" errors (when recording and/or stimulating electrodes are incorrectly placed on the patient or in the IONM equipment during setup) across all procedures monitored. We found recording and/or stimulating electrode set up errors in 24 of 454 cases (5.3%). These data and examples of how errors were discovered intraoperatively are reported. We also offer techniques to help reduce this error rate. This study demonstrates a significant potential avoidable error in IONM diagnostic utility, patient outcome, and sensitivity/specificity of alert criteria. The value of identifying and correcting these errors is consequential, multifaceted, and far-reaching.


Asunto(s)
Electrodos , Monitorización Neurofisiológica Intraoperatoria , Humanos , Monitorización Neurofisiológica Intraoperatoria/métodos , Monitorización Neurofisiológica Intraoperatoria/estadística & datos numéricos , Estudios Prospectivos , Masculino , Femenino , Prevalencia , Persona de Mediana Edad , Adulto , Anciano , Errores Médicos/prevención & control , Errores Médicos/estadística & datos numéricos
4.
Biomed Phys Eng Express ; 10(4)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38744259

RESUMEN

Objective.Detection of the epileptogenic zone is critical, especially for patients with drug-resistant epilepsy. Accurately mapping cortical regions exhibiting high activity during spontaneous seizure events while detecting neural activity up to 500 Hz can assist clinicians' surgical decisions and improve patient outcomes.Approach.We designed, fabricated, and tested a novel hybrid, multi-scale micro-electrocorticography (micro-ECoG) array with a unique embedded configuration. This array was compared to a commercially available microelectrode array (Neuronexus) for recording neural activity in rodent sensory cortex elicited by somatosensory evoked potentials and pilocarpine-induced seizures.Main results.Evoked potentials and spatial maps recorded by the multi-scale array ('micros', 'mesos', and 'macros' refering to the relative electrode sizes, 40 micron, 1 mm, and 4 mm respectively) were comparable to the Neuronexus array. The SSEPs recorded with the micros had higher peak amplitudes and greater signal power than those recorded by the larger mesos and macro. Seizure onset events and high-frequency oscillations (∼450 Hz) were detected on the multi-scale, similar to the commercially available array. The micros had greater SNR than the mesos and macro over the 5-1000 Hz frequency range during seizure monitoring. During cortical stimulation experimentation, the mesos successfully elicited motor effects.Significance.Previous studies have compared macro- and microelectrodes for localizing seizure activity in adjacent regions. The multi-scale design validated here is the first to simultaneously measure macro- and microelectrode signals from the same overlapping cortical area. This enables direct comparison of microelectrode recordings to the macroelectrode recordings used in standard neurosurgical practice. Previous studies have also shown that cortical regions generating high-frequency oscillations are at an increased risk for becoming epileptogenic zones. More accurate mapping of these micro seizures may improve surgical outcomes for epilepsy patients.


Asunto(s)
Electrocorticografía , Potenciales Evocados Somatosensoriales , Microelectrodos , Convulsiones , Electrocorticografía/instrumentación , Electrocorticografía/métodos , Animales , Convulsiones/diagnóstico , Ratas , Masculino , Electrodos Implantados , Corteza Somatosensorial , Diseño de Equipo , Ratas Sprague-Dawley , Mapeo Encefálico/métodos , Pilocarpina , Epilepsia
5.
Spine J ; 24(9): 1645-1659, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38685275

RESUMEN

BACKGROUND CONTEXT: Thoracic spinal stenosis (TSS) is secondary to different pathologies that differ in clinical characteristics and surgical outcomes. PURPOSE: This study aimed to determine the optimal warning thresholds for combined somatosensory-evoked potentials (SSEP) and motor-evoked potentials (MEP) for predicting postoperative neurological deterioration in surgical treatment for TSS based on different pathologies. Additionally, we explored the correlation between SSEP/MEP monitoring and postoperative spinal neurological function. STUDY SETTING: Retrospective study. PATIENT SAMPLE: Two hundred five patients. OUTCOME MEASURES: We obtained perioperative modified Japanese Orthopedic Association (mJOA) scores to assess spinal neurological function. METHODS: The data collected in this study included demographic data, intraoperative neurophysiological monitoring (IONM) signals, and perioperative neurological function assessments. To determine the optimal IONM warning threshold, a receiver operating characteristic (ROC) curve was used. Additionally, Pearson correlation analysis was conducted to determine the correlation between IONM signals and clinical neurological conditions. RESULTS: A total of 205 consecutive patients were eligible. Forty-one patients had thoracic disc herniation (TDH), 14 had ossification of the posterior longitudinal ligament (OPLL), 124 had ossification of the ligamentum flavum (OLF), and 26 had OPLL+OLF. The mean mJOA scores before surgery and 3 months after surgery were 7.0 and 7.9, respectively, resulting in a mean mJOA recovery rate (RR) of 23.1%. The average postoperative mJOA RRs for patients with TDH, OPLL, OLF, and OPLL+OLF were 24.8%, 10.4%, 26.8%, and 11.2%, respectively. Patients with OPLL+OLF exhibited a more stringent threshold for IONM changes. This included a lower amplitude cutoff value (a decrease of 49.0% in the SSEP amplitude and 57.5% in the MEP amplitude for short-term prediction) and a shorter duration of waveform change (19.5 minutes for SSEP and 22.5 minutes for MEP for short-term prediction). On the other hand, patients with TDH had more lenient IONM warning criteria (a decrease of 49.0% in SSEP amplitude and 77.5% in MEP amplitude for short-term prediction; durations of change of 25.5 minutes for SSEP and 32.5 minutes for MEP). However, OPLL patients or OLF patients had moderate and similar IONM warning thresholds. Additionally, there was a stronger correlation between the SSEP amplitude variability ratio and the JOA RR in OPLL+OLF patients, while the correlation was stronger between the MEP amplitude variability ratio and the JOA RR for the other three TSS pathologies. CONCLUSIONS: Optimal IONM change criteria for prediction vary depending on different TSS pathologies. The optimal monitoring strategy for prediction varies depending on TSS pathologies.


Asunto(s)
Potenciales Evocados Motores , Potenciales Evocados Somatosensoriales , Estenosis Espinal , Vértebras Torácicas , Humanos , Estenosis Espinal/cirugía , Estenosis Espinal/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Potenciales Evocados Somatosensoriales/fisiología , Potenciales Evocados Motores/fisiología , Vértebras Torácicas/cirugía , Anciano , Estudios Retrospectivos , Adulto , Monitorización Neurofisiológica Intraoperatoria/métodos
6.
Clin Neurophysiol ; 161: 69-79, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452426

RESUMEN

OBJECTIVE: To evaluate the diagnostic accuracy of intraoperative neurophysiological monitoring (IONM) during endovascular treatment (EVT) of ruptured intracranial aneurysms (rIA). METHODS: IONM and clinical data from 323 patients who underwent EVT for rIA from 2014-2019 were retrospectively reviewed. Significant IONM changes and outcomes were evaluated based on visual review of data and clinical documentation. RESULTS: Of the 323 patients undergoing EVT, significant IONM changes were noted in 30 patients (9.29%) and 46 (14.24%) experienced postprocedural neurological deficits (PPND). 22 out of 30 (73.33%) patients who had significant IONM changes experienced PPND. Univariable analysis showed changes in somatosensory evoked potential (SSEP) and electroencephalogram (EEG) were associated with PPND (p-values: <0.001 and <0.001, retrospectively). Multivariable analysis showed that IONM changes were significantly associated with PPND (Odd ratio (OR) 20.18 (95%CI:7.40-55.03, p-value: <0.001)). Simultaneous changes in both IONM modalities had specificity of 98.9% (95% CI: 97.1%-99.7%). While sensitivity when either modality had a change was 47.8% (95% CI: 33.9%-62.0%) to predict PPND. CONCLUSIONS: Significant IONM changes during EVT for rIA are associated with an increased risk of PPND. SIGNIFICANCE: IONM can be used confidently as a real time neurophysiological diagnostic guide for impending neurological deficits during EVT treatment of rIA.


Asunto(s)
Aneurisma Roto , Isquemia Encefálica , Electroencefalografía , Procedimientos Endovasculares , Potenciales Evocados Somatosensoriales , Aneurisma Intracraneal , Monitorización Neurofisiológica Intraoperatoria , Humanos , Masculino , Femenino , Persona de Mediana Edad , Procedimientos Endovasculares/efectos adversos , Procedimientos Endovasculares/métodos , Aneurisma Roto/cirugía , Aneurisma Roto/fisiopatología , Aneurisma Intracraneal/cirugía , Aneurisma Intracraneal/fisiopatología , Monitorización Neurofisiológica Intraoperatoria/métodos , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/fisiopatología , Estudios Retrospectivos , Potenciales Evocados Somatosensoriales/fisiología , Anciano , Adulto , Electroencefalografía/métodos
7.
Acta Neurol Belg ; 124(3): 935-941, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38438636

RESUMEN

BACKGROUND: Pure neuritic leprosy (PNL) is uncommon form of leprosy involving peripheral nerves. Some isolated case reports have shown imaging changes in the central nervous system (CNS) and also impairment in visual evoked potential (VEP), somatosensory evoked potential (SSEP) and brain stem auditory-evoked potentials (BAEPs) parameters in PNL, but there is lack of large study. This prospective observational study evaluates impairment in these central conduction studies among PNL patients. METHODS: We screened patients with leprosy presenting with features of neuropathy and/or thickened nerves. Patients with bacilli-positive nerve biopsies were included in the study and subjected to routine tests along with nerve conduction study (NCS), VEP, tibial SSEP and BAEPs. Parameters of these studies were analyzed based on data from previous studies. RESULTS: Of 76 patients screened for PNL 49 had positive findings in biopsy. Most of patients were male and mean age group was 46.35 ± 15.35 years. Mononeuritis multiplex was most common NCS pattern in 46.93% (23/49) patients. We found abnormal VEP in 13 out of 35 patients (37.14%). Similarly abnormal SSEP and BAEPs among 42.85% and 40% patients respectively. DISCUSSION: This study shows that in PNL significant number of patients have subclinical CNS involvement. Exact pathophysiology of CNS involvement is not known till now but study of VEP, SSEP and BAEPs parameter may help in early diagnosis of PNL.


Asunto(s)
Potenciales Evocados Somatosensoriales , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Potenciales Evocados Somatosensoriales/fisiología , Anciano , Estudios Prospectivos , Lepra/fisiopatología , Lepra/complicaciones , Potenciales Evocados Visuales/fisiología , Conducción Nerviosa/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Neuritis/fisiopatología
8.
Eur Spine J ; 33(3): 1230-1244, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286908

RESUMEN

PURPOSE: This study aimed to investigate the effectiveness of tract-specific diffusion tensor imaging (DTI) metrics in identifying the responsible segments for neurological dysfunction in cervical spondylotic myelopathy (CSM). METHODS: The study encompassed nineteen participants diagnosed with CSM, including 10 males and 9 females. Additionally, a control group consisting of ten healthy caregivers (5 males and 5 females) were recruited with no symptoms and no compressions on magnetic resonance imaging (MRI). All participants underwent a comprehensive physical examination, MRI assessment, and DTI examination conducted by a senior chief physician. Several parameters were collected from the MR images, including the aspect ratio (defined as the anteroposterior diameter / the transverse diameter of the corresponding segment's spinal cord), transverse ratio (defined as the transverse diameter of the corresponding segment's spinal cord / the transverse diameter of the spinal cord at C2/3), and T2 high signal of the spinal cord. Furthermore, quantitative DTI metrics, such as axial diffusivity (AD), mean diffusivity (MD), radial diffusivity (RD), and fractional anisotropy (FA), were calculated using automatic region-of-interest (ROI) analysis for both whole spinal cord column and dorsal column. Receiver operating characteristic (ROC) curves were constructed to evaluate the diagnostic efficacy of the aspect ratio, transverse ratio, and DTI parameters. The area under the curve (AUC), sensitivity, and specificity were calculated. Intraoperative spinal cord electrophysiological examination was performed as the objective measure of spinal cord function during surgery. RESULTS: As determined by electrophysiological examination, neurological dysfunction was found in 2 patients due to C3/4 compression, in 10 patients due to C4/5 compression, in 6 patients due to C5/6 compression, and in 1 patient due to C6/7 compression. The modified Japanese Orthopedic Association scale (mJOA) was 12.71 ± 1.55 in the CSM group, with 4.87 ± 0.72 for sensory nerve function and 5.05 ± 1.35 for motor nerve function. For the control group, none of the volunteers had neurological dysfunction. T2 high signal was found at the most stenotic segment in 13 patients of the CSM group. Considering all the cervical segments, the aspect ratio (AUC = 0.823, P = 0.001, Sensitivity = 68.42%, Specificity = 82.47%) was more capable of determining the responsible segment than transverse ratio (AUC = 0.661, P = 0.027, Sensitivity = 68.42%, Specificity = 67.01%). AD, MD, and RD were significantly higher while FA was significantly lower in the responsible segment than in the irresponsible segment (P < 0.05). The AUC of DTI-Dorsal column parameters (AD, MD, RD, FA) was larger than the corresponding parameters of the DTI (Whole spinal cord). AD of DTI-Dorsal Column possessed the greatest efficacy (AUC = 0.823, sensitivity = 84.21%, specificity = 77.32%) to determine the responsible segment, larger than AD of DTI-Whole spinal cord (AUC = 0.822, P = 0.001, Sensitivity = 89.47%, Specificity = 77.32%), aspect ratio (AUC = 0.823, P = 0.001, Sensitivity = 68.42%, Specificity = 82.47%) and transverse ratio (AUC = 0.661, P = 0.027, Sensitivity = 68.42%, Specificity = 67.01%). Subgroup analysis revealed that the diagnostic efficacy of DTI and MRI parameters was influenced by cervical spine segment. CONCLUSIONS: When considering all cervical segments, AD from the DTI-Dorsal Column exhibited the most significant potential in identifying responsible segments. This potential was found to be superior to that of DTI-Whole spinal cord, aspect ratio, the most stenotic segment, T2 high signals, transverse ratio, motor nerve dysfunction, and sensory nerve dysfunction. The diagnostic effectiveness of both DTI and MRI parameters was notably influenced by the specific cervical spine segment.


Asunto(s)
Enfermedades de la Médula Espinal , Espondilosis , Masculino , Femenino , Humanos , Imagen de Difusión Tensora/métodos , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/cirugía , Enfermedades de la Médula Espinal/patología , Imagen de Difusión por Resonancia Magnética , Constricción Patológica , Vértebras Cervicales/patología , Espondilosis/diagnóstico por imagen , Espondilosis/cirugía , Espondilosis/patología
9.
Eur Spine J ; 33(4): 1644-1656, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38285275

RESUMEN

PURPOSE: To evaluate the diagnostic accuracy of intraoperative somatosensory evoked potential (SSEP) monitoring and types of SSEP changes in predicting the risk of postoperative neurological outcomes during correction surgery for idiopathic scoliosis (IS) in the pediatric age group (≤ 21 years). METHODS: Database review was performed to identify literature on pediatric patients with IS who underwent correction with intraoperative neuromonitoring. The sensitivity, specificity, and diagnostic odds ratio (DOR) of transient and persistent SSEP changes and complete SSEP loss in predicting postoperative neurological deficits were calculated. RESULTS: Final analysis included 3778 patients. SSEP changes had a sensitivity of 72.9%, specificity of 96.8%, and DOR of 102.3, while SSEP loss had a sensitivity of 41.8%, specificity of 99.3%, and DOR of 133.2 for predicting new neurologic deficits. Transient and persistent SSEP changes had specificities of 96.8% and 99.1%, and DORs of 16.6 and 59, respectively. CONCLUSION: Intraoperative SSEP monitoring can predict perioperative neurological injury and improve surgical outcomes in pediatric scoliosis fusion surgery. LEVEL OF EVIDENCE: Level 2. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Asunto(s)
Monitorización Neurofisiológica Intraoperatoria , Procedimientos Ortopédicos , Escoliosis , Humanos , Niño , Adulto Joven , Adulto , Escoliosis/diagnóstico , Escoliosis/cirugía , Potenciales Evocados Somatosensoriales/fisiología , Monitoreo Intraoperatorio , Procedimientos Neuroquirúrgicos , Potenciales Evocados Motores/fisiología , Estudios Retrospectivos
10.
J Cardiothorac Vasc Anesth ; 38(2): 526-533, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37838509

RESUMEN

OBJECTIVE: Postoperative delirium (POD) can occur in up to 50% of older patients undergoing cardiovascular surgery, resulting in hospitalization and significant morbidity and mortality. This study aimed to determine whether intraoperative neurophysiologic monitoring (IONM) modalities can be used to predict delirium in patients undergoing cardiovascular surgery. DESIGN: Adult patients undergoing cardiovascular surgery with IONM between 2019 and 2021 were reviewed retrospectively. Delirium was assessed multiple times using the Intensive Care Delirium Screening Checklist (ICDSC). Patients with an ICDSC score ≥4 were considered to have POD. Significant IONM changes were evaluated based on a visual review of electroencephalography (EEG) and somatosensory evoked potentials data and documentation of significant changes during surgery. SETTING: University of Pittsburgh Medical Center hospitals. PARTICIPANTS: Patients 18 years old and older undergoing cardiovascular surgery with IONM monitoring. MEASUREMENTS AND MAIN RESULTS: Of the 578 patients undergoing cardiovascular surgery with IONM, 126 had POD (21.8%). Significant IONM changes were noted in 134 patients, of whom 49 patients had delirium (36.6%). In contrast, 444 patients had no IONM changes during surgery, of whom 77 (17.3%) patients had POD. Upon multivariate analysis, IONM changes were associated with POD (odds ratio 2.12; 95% CI 1.31-3.44; p < 0.001). Additionally, baseline EEG abnormalities were associated with POD (p = 0.002). CONCLUSION: Significant IONM changes are associated with an increased risk of POD in patients undergoing cardiovascular surgery. These findings offer a basis for future research and analysis of EEG and somatosensory evoked potential monitoring to predict, detect, and prevent POD.


Asunto(s)
Delirio del Despertar , Monitorización Neurofisiológica Intraoperatoria , Adulto , Humanos , Adolescente , Estudios Retrospectivos , Potenciales Evocados Somatosensoriales/fisiología , Monitorización Neurofisiológica Intraoperatoria/métodos , Electroencefalografía , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control
11.
Toxicol Appl Pharmacol ; 482: 116772, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036230

RESUMEN

The tobacco cembranoid known as (1S,2E,4R,6R,7E,11E)-2,7,11-cembratriene-4,6-diol (4R) has been shown to offer neuroprotection against conditions such as brain ischemia, systemic inflammation, Parkinson's disease, and organophosphate toxicity in rodents. Previous safety studies conducted on male and female Sprague Dawley rats revealed no significant side effects following a single injection of 4R at varying concentrations (6, 24, or 98 mg/kg of body weight). This study aimed to assess the potential of 4R for clinical trials in neurotherapy in male nonhuman primates. Ten macaques (Macacca mulatta) were randomly separated into two groups of 5 and then intravenously injected with 4R or vehicle for 11 consecutive days at a dose of 1.4 mg/kg. Throughout the study, we monitored brain activity by electroencephalogram, somatosensory evoked potentials, and transcranial motor evoked potentials on days 0, 4, 8, and 12 and found no significant changes. The spontaneous behavior of the primates remained unaffected by the treatment. Minor hematological and blood composition variations were also detected in the experimental animals but lacked clinical significance. In conclusion, our results reinforce the notion that 4R is non-toxic in nonhuman primates under the conditions of this study.


Asunto(s)
Isquemia Encefálica , Diterpenos , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Nicotiana
12.
Int J Surg Case Rep ; 114: 109164, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38113562

RESUMEN

INTRODUCTION AND IMPORTANCE: D-wave (Direct waves) are Motor Evoked Potentials (MEPs) generated by a single transcranial stimulation and captured by attaching an epidural recording electrode caudal to the vulnerable area. Intraoperative neurophysiologic monitoring (IONM) is widely used in neurosurgery to recognize important neurological structures but can be challenging in the pediatric population due to incomplete neural development. CASE PRESENTATION: Case 1: A 48-year-old female presented to the outpatient department with complaints of difficulty walking for the past six months, numbness and weakness in bilateral lower limbs with recurrent falls for the past 1 month. Case 2: A 12-year-old boy presented to the emergency room with a history of inability to use both upper and lower limbs on the right side with tremulousness. CLINICAL DISCUSSION: Magnetic resonance imaging (MRI) Spine in the first case revealed a D9-D10 calcified meningioma with significant spinal cord compression. In the second case, MRI Spine showed C1-C2 Intramedullary Space Occupying Lesion (SOL) and was planned for C1-C2 laminectomy with midline myelotomy. The first case was planned for microsurgical excision of the lesion under IONM guidance. The procedure went smoothly. Microsurgical gross total resection (GTR) of the intramedullary SOL under IONM Guidance was done for the second case. Postoperatively, the first patient showed no neurological compromise or complications. In the second case, following surgery, the child recovered gradually from surgery. CONCLUSION: This case series demonstrates the successful surgical management of two cases of spinal cord tumors through an IONM-guided surgery and the effective use of D waves in such challenging cases.

13.
Zhongguo Zhen Jiu ; 43(11): 1257-1260, 2023 Sep 08.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37986248

RESUMEN

OBJECTIVES: To observe the clinical effect of wrist-ankle acupuncture on postpartum abdominal pain and its influence on serum beta-endorphin (ß-EP) level in puerpera. METHODS: Seventy patients with postpartum abdominal pain were randomly divided into an acupuncture + herbal medication group (35 cases, 1 case dropped out) and a herbal medication group (35 cases, 2 cases dropped out). In the herbal medication group, 1 day after delivery, modified shenghua decoction was taken orally, one dose a day. In the acupuncture + herbal medication group, on the basis of herbal medication, wrist-ankle acupuncture was given at the Lower 1 and Lower 2 of the ankles, once daily. The duration of treatment was 3 days in the two groups. Before and after treatment, the score of visual analogue scale (VAS) for pain, serum ß-EP level, uterine fundus height, postpartum conditions of lochia and the uterine recovery at 42 days postpartum were compared in the patients of the two groups. RESULTS: At each time point after treatment (24 h, 48 h and 72 h after delivery), VAS scores and the uterine fundus height were reduced as compared with those before treatment (2 h after delivery) in the two groups (P<0.05); these indexes in the acupuncture + herbal medication group were lower than those in the herbal medication group (P<0.05). After treatment (72 h after delivery), ß-EP levels in the serum were increased when compared with those before treatment in the two groups (P<0.05), and the ß-EP level in the acupuncture + herbal medication group was higher than that in the herbal medication group (P<0.05). The volume of postpartum lochia discharge in the acupuncture + herbal medication group was higher than that in the herbal medication group (P<0.05), while the duration of postpartum lochia discharge and the total time of lochia discharge were shorter (P<0.05). Regarding the recovery of the uterus at 42 days postpartum, there was no statistical significance between the two groups (P>0.05). CONCLUSIONS: Wrist-ankle acupuncture obviously reduces the degree of postpartum abdominal pain and promotes the lochia discharge and the uterine recovery. The effect mechanism may be related to the up-regulation of serum ß-EP level and the increase of pain threshold so that analgesia is obtained.


Asunto(s)
Terapia por Acupuntura , Tobillo , Femenino , Humanos , betaendorfina , Muñeca , Dolor Abdominal , Puntos de Acupuntura
14.
Front Neurosci ; 17: 1248975, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854290

RESUMEN

Background: Somatosensory deficits after stroke correlate with functional disabilities and impact everyday-life. In particular, the interaction of proprioception and motor dysfunctions affects the recovery. While corticospinal tract (CST) damage is linked to poor motor outcome, much less is known on proprioceptive recovery. Identifying a predictor for such a recovery could help to gain insights in the complex functional recovery processes thereby reshaping rehabilitation strategies. Methods: 50 patients with subacute stroke were tested before and after neurological rehabilitation. Proprioceptive and motor impairments were quantified with three clinical assessments and four hand movement and proprioception measures using a robotic device. Somatosensory evoked potentials (SSEP) to median nerve stimulation and structural imaging data (MRI) were also collected. Voxel-based lesion-symptom mapping (VLSM) along with a region of interest (ROI) analysis were performed for the corticospinal tract (CST) and for cortical areas. Results: Before rehabilitation, the VLSM revealed lesion correlates for all clinical and three robotic measures. The identified voxels were located in the white matter within or near the CST. These regions associated with proprioception were located posterior compared to those associated with motor performance. After rehabilitation the patients showed an improvement of all clinical and three robotic assessments. Improvement in the box and block test was associated with an area in anterior CST. Poor recovery of proprioception was correlated with a high lesion load in fibers towards primary sensorymotor cortex (S1 and M1 tract). Patients with loss of SSEP showed higher lesion loads in these tracts and somewhat poorer recovery of proprioception. The VSLM analysis for SSEP loss revealed a region within and dorsal of internal capsule next to the posterior part of CST, the posterior part of insula and the rolandic operculum. Conclusion: Lesions dorsal to internal capsule next to the posterior CST were associated with proprioceptive deficits and may have predictive value. Higher lesion load was correlated with poorer restoration of proprioceptive function. Furthermore, patients with SSEP loss trended towards poor recovery of proprioception, the corresponding lesions were also located in the same location. These findings suggest that structural imaging of the internal capsule and CST could serve as a recovery predictor of proprioceptive function.

15.
Cureus ; 15(8): e44046, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37746490

RESUMEN

A typical spine is straight and symmetrical, with all of the vertebrae facing forward when viewed from the posterior. Scoliosis is a term used to describe a lateral deviation of the spine's normal vertical line that is greater than 10° on an X-ray. More severe curves are sometimes accompanied by medical issues such as increased back discomfort and cardiorespiratory difficulties along with the cosmetic components of the deformity. The test for spinal cord integrity prior to the widespread adoption of intraoperative neurophysiologic monitoring (IOM) was the wake-up test. In this article, we review the challenges faced by anesthesiologists and surgeons during intraoperative monitoring and the importance of clinical assessment of surgical outcomes.

16.
Brain Topogr ; 36(6): 835-853, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37642729

RESUMEN

Stereoelectroencephalography (SEEG) records electrical brain activity with intracerebral electrodes. However, it has an inherently limited spatial coverage. Electrical source imaging (ESI) infers the position of the neural generators from the recorded electric potentials, and thus, could overcome this spatial undersampling problem. Here, we aimed to quantify the accuracy of SEEG ESI under clinical conditions. We measured the somatosensory evoked potential (SEP) in SEEG and in high-density EEG (HD-EEG) in 20 epilepsy surgery patients. To localize the source of the SEP, we employed standardized low resolution brain electromagnetic tomography (sLORETA) and equivalent current dipole (ECD) algorithms. Both sLORETA and ECD converged to similar solutions. Reflecting the large differences in the SEEG implantations, the localization error also varied in a wide range from 0.4 to 10 cm. The SEEG ESI localization error was linearly correlated with the distance from the putative neural source to the most activated contact. We show that it is possible to obtain reliable source reconstructions from SEEG under realistic clinical conditions, provided that the high signal fidelity recording contacts are sufficiently close to the source of the brain activity.


Asunto(s)
Electrocorticografía , Epilepsia , Humanos , Electrocorticografía/métodos , Electroencefalografía/métodos , Epilepsia/cirugía , Neuroimagen , Potenciales Evocados Somatosensoriales , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética
17.
J Clin Med ; 12(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37510767

RESUMEN

Intraoperative neuromonitoring (IONM) has become an indispensable surgical adjunct in cervical spine procedures to minimize surgical complications. Understanding the historical development of IONM, indications for use, associated pitfalls, and recent developments will allow the surgeon to better utilize this important technology. While IONM has shown great promise in procedures for cervical deformity, intradural tumors, or myelopathy, routine use in all cervical spine cases with moderate pathology remains controversial. Pitfalls that need to be addressed include human error, a lack of efficient communication, variable alarm warning criteria, and a non-standardized checklist protocol. As the techniques associated with IONM technology become more robust moving forward, IONM emerges as a crucial solution to updating patient safety protocols.

18.
Emerg Med Clin North Am ; 41(3): 601-616, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37391253

RESUMEN

There has been only a small improvement in survival and neurologic outcomes in patients with cardiac arrest in recent decades. Type of arrest, length of total arrest time, and location of arrest alter the trajectory of survival and neurologic outcome. In the post-arrest phase, clinical markers such as blood markers, pupillary light response, corneal reflex, myoclonic jerking, somatosensory evoked potential, and electroencephalography testing can be used to help guide neurological prognostication. Most of the testing should be performed 72 hours post-arrest with special considerations for longer observation periods in patients who underwent TTM or who had prolonged sedation and/or neuromuscular blockade.


Asunto(s)
Electroencefalografía , Paro Cardíaco , Humanos , Pronóstico , Paro Cardíaco/diagnóstico , Paro Cardíaco/terapia
20.
J Neural Eng ; 20(2)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36863013

RESUMEN

Objective.Transcranial magnetic stimulation (TMS) is a non-invasive technique widely used for neuromodulation. Animal models are essential for investigating the underlying mechanisms of TMS. However, the lack of miniaturized coils hinders the TMS studies in small animals, since most commercial coils are designed for humans and thus incapable of focal stimulation in small animals. Furthermore, it is difficult to perform electrophysiological recordings at the TMS focal point using conventional coils.Approach.We designed, fabricated, and tested a novel miniaturized TMS coil (4-by-7 mm) that consisted of a C-shaped iron powder core and insulated copper wires (30 turns). The resulting magnetic and electric fields were characterized with experimental measurements and finite element modeling. The efficacy of this coil in neuromodulation was validated with electrophysiological recordings of single-unit activities (SUAs), somatosensory evoked potentials (SSEPs), and motor evoked potentials (MEPs) in rats (n= 32) following repetitive TMS (rTMS; 3 min, 10 Hz).Main results.This coil could generate a maximum magnetic field of 460 mT and an electric field of 7.2 V m-1in the rat brain according to our simulations. With subthreshold rTMS focally delivered over the sensorimotor cortex, mean firing rates of primary somatosensory and motor cortical neurons significantly increased (154±5% and 160±9% from the baseline level, respectively); MEP and SSEP amplitude significantly increased (136±9%) and decreased (74±4%), respectively.Significance.This miniaturized C-shaped coil enabled focal TMS and concurrent electrophysiological recording/stimulation at the TMS focal point. It provided a useful tool to investigate the neural responses and underlying mechanisms of TMS in small animal models. Using this paradigm, we for the first time observed distinct modulatory effects on SUAs, SSEPs, and MEPs with the same rTMS protocol in anesthetized rats. These results suggested that multiple neurobiological mechanisms in the sensorimotor pathways were differentially modulated by rTMS.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Humanos , Ratas , Animales , Estimulación Magnética Transcraneal/métodos , Roedores , Corteza Motora/fisiología , Potenciales Evocados Motores/fisiología , Potenciales Evocados Somatosensoriales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA