Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
Antimicrob Agents Chemother ; : e0081724, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133024

RESUMEN

Escherichia coli ST131 is a multidrug-resistant lineage associated with the global spread of extended-spectrum ß-lactamase-producing organisms. Particularly, ST131 clade C1 is the most predominant clade in Japan, harboring blaCTX-M-14 at a high frequency. However, the process of resistance gene acquisition and spread remains unclear. Here, we performed whole-genome sequencing of 19 E. coli strains belonging to 12 STs and 12 fimH types collected between 1997 and 2016. Additionally, we analyzed the full-length genome sequences of 96 ST131-H30 clade C0 and C1 strains, including those obtained from this study and those registered in public databases, to understand how ST131 clade C1 acquired and spread blaCTX-M-14. We detected conjugative IncFII plasmids and IncB/O/K/Z plasmids carrying blaCTX-M-14 in diverse genetic lineages of E. coli strains from the 1990s to the 2010s, suggesting that these plasmids played an important role in the spread of blaCTX-M-14. Molecular phylogenetic and molecular clock analyses of the 96 ST131-H30 clade C0 and C1 strains identified 8 subclades. Strains harboring blaCTX-M-14 were clustered in subclades 4 and 5, and it was inferred that clade C1 acquired blaCTX-M-14 around 1993. All 34 strains belonging to subclade 5 possessed blaCTX-M-14 with ISEcp1 upstream at the same chromosomal position, indicating their common ancestor acquired blaCTX-M-14 in a single ISEcp1-mediated transposition event during the early formation of the subclade around 1999. Therefore, both the horizontal transfer of plasmids carrying blaCTX-M-14 to diverse genetic lineages and chromosomal integration in the predominant genetic lineage have contributed to the spread of blaCTX-M-14.

2.
Sci Total Environ ; 949: 175079, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094658

RESUMEN

Extended-spectrum ß-lactamases (ESBLs)-producing E. coli have been proposed as an indicator bacterium for antimicrobial resistance (AMR) surveillance within a OneHealth framework. However, it is important to understand the effects and potential biases ESBL-selection has on E. coli populations. Utilising whole genome sequencing, this study compared 80 ESBL-selected E. coli isolates with 201 non-selected isolates from Australian wastewater. The findings revealed significant variations between these cohorts in genetic diversity, AMR profiles, and carriage of virulence-associated genes (VAGs), plasmids, and the transmissible Locus of Stress Tolerance (tLST), a genomic island that imparts resistance to extreme heat and chlorination. The study highlights the predominance of certain sequence types (STs), particularly ST131 (75 % clade A), in ESBL-selected isolates (40 % vs 2 %) and overall the ESBL-selected isolates were largely multidrug-resistant (MDR), predominantly carrying genes for resistance to aminoglycosides, extended-spectrum ß-lactams, fluoroquinolone, macrolides, sulphonamides/trimethoprim, and tetracyclines. The ESBLs identified were almost exclusively blaCTX-M genes, most commonly blaCTX-M-15 > blaCTX-M-27 > blaCTX-M-14. These were predominately carried on IncF plasmids or chromosomally (always ISEcp1 associated), in equal numbers. In contrast, 80 % of non-selected isolates carried no acquired ARGs, and none carried blaCTX-M genes. In both cohorts, extraintestinal pathogenic E. coli (ExPEC) was the dominate pathotype (35 % total) with few (4 % total) intestinal pathogenic E. coli pathotypes identified (aEPEC > ETEC > EAEC). Nevertheless, some clinically important genes were only identified in the non-selected group, namely tigecycline-resistance gene tet(X4) and AmpC ESBL blaCMY-2. Additionally, the presence of tLST, associated with higher metal resistance gene carriage (Ag, As, Cu, Hg, Ni), in a substantial portion of non-selected isolates (20 % vs 0 %), underscores environmental pressures shaping bacterial populations in wastewater ecosystems. These insights are important for developing comprehensive, less biased genomic surveillance strategies to understand and manage public health threats posed by pathogenic E. coli and AMR.


Asunto(s)
Escherichia coli , Aguas Residuales , beta-Lactamasas , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Aguas Residuales/microbiología , Australia , beta-Lactamasas/genética , Virulencia/genética , Antibacterianos/farmacología , Genómica , Farmacorresistencia Bacteriana/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-39037809

RESUMEN

Urinary tract infections are becoming difficult to treat every year due to antibiotic resistance. Uropathogenic Escherichia coli (UPEC) isolates pose a threat with a combined expression of multidrug-resistance and biofilm formation. ST131 clone is a high-risk pandemic clone due to its strong association with antimicrobial resistance, which has been reported frequently in recent years. This study aims to define risk factors, clinical outcomes, and bacterial genetics associated with ST131/O25b UPEC. In this study, antibiotic susceptibility and species-level identification of 61 clinical E. coli strains were determined by automated systems. Detection of extended-spectrum beta-lactamases was assessed by double-disk synergy test. Biofilm formation was quantified by spectrophotometric method. Virulence genes (iutA, sfa cnf-1, iroN, afa, papA, fimA), antibiotic resistance genes (blaCTX-M, blaTEM, blaSHV, blaOXA, qnrA, qnrB, qnrS, ant(2')-Ia, ant(3)-Ia, aac(3)-IIa, mcr-1, mcr-2, mcr-3, mcr-4) were investigated by PCR. The following beta-lactamase genes were identified, blaTEM (n = 53, 86.8%), blaCTX-M (n = 59, 96.7%), blaSHV (n = 47, 77.0%), and blaOXA-1 (n = 27, 44.2%). Our data revealed that 93.4% of (57/61) E. coli isolates were biofilm-producers. O25pabBspe and trpA2 were investigated for the presence of ST131/O25b clone. Among multidrug resistant isolates, co-existence of O25pabBspe and trpA2 was detected in 29 isolates (47.5%). The fimH30 and H30Rx subclones were detected in four isolates that are strong biofilm-producers. These results suggest that clinical E. coli strains may become reservoirs of virulence and antibiotic resistance genes. This study demonstrates a significant difference in biofilm formation between E. coli ST131 and non-ST131 isolates. Moreover, 86.21% (n = 25) of ST131 isolates produced strong to moderate biofilms, while only 43.75% (n = 14) of non-ST131 isolates showed the ability to form strong biofilms. Presence of iutA and fimA genes in the majority of ST131 strains showed an important role in biofilm formation. These findings suggest application of iutA and fimA gene suppressors in treatment of infections caused by biofilm-producing drug-resistant ST131 strains.

4.
One Health ; 18: 100715, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39010959

RESUMEN

Transmission of antimicrobial-resistant bacteria among humans, animals, and the environment is a growing concern worldwide. The distribution of an international high-risk fluoroquinolone-resistant Escherichia coli clone, ST131, has been documented in clinical settings. However, the transmission of ST131 from humans to surrounding environments remains poorly elucidated. To comprehend the current situation and identify the source of ST131 in nature, we analyzed the genetic features of ST131 isolates from the aquatic environment (lake/river water) and wildlife (fox, raccoon, raccoon dog, and deer) and compared them with the features of isolates from humans in Japan using accessory and core genome single nucleotide polymorphism (SNP) analyses. We identified ST131 isolates belonging to the same phylotype and genome clusters (four of eight clusters were concomitant) with low SNP distance between the human isolates and those from the aquatic environment and wildlife. These findings warn of ST131 transmission between humans and the surrounding environment in Japan.

5.
Foodborne Pathog Dis ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045774

RESUMEN

Carbapenem-resistant Escherichia coli (CREC) is a global threat to public health; therefore, alternative treatment options are urgently needed. Bacteriophages have emerged as promising candidates for combating CREC infections. This study aimed to investigate the genetic basis of phage sensitivity in CREC by evaluating carbapenem resistance among multidrug-resistant (MDR) E. coli isolated in Daegu, South Korea and analyzing their sequence types (STs) with phage susceptibility spectra. Among the 60 MDR E. coli isolates, 80.4% were identified as CREC, with 77.0% demonstrating resistance to imipenem and 66.6% to meropenem. Moreover, 70 lytic E. coli bacteriophages were isolated from hospital sewage water and evaluated against those 60 E. coli isolates. The phages exhibited lytic activity of 33%-60%, with average titers ranging from 5.6 × 1012 to 2.4 × 1013 PFU/mL (Plaque-Forming Unit). Furthermore, multilocus sequence typing (MLST) analysis of the bacterial isolates revealed 14 distinct STs, mostly belonging to ST131, ST410, and ST648. Notably, the phage susceptibility spectra of ST73, ST13003, ST648, ST2311, ST167, ST405, ST607, ST7962, and ST131 were significantly different. Thus, the isolated phages can effectively lyse CREC isolates, particularly those with clinically dominant STs. Conversely, ST410 exhibited a 14.2%-87.14% susceptibility spectrum, whereas ST1139, ST1487, ST10, and ST206 did not lyse, suggesting the presence of more resistant STs. Future studies are warranted to identify the reasons behind this resistance and address it. Ultimately, this study will aid in developing focused treatments to address these pressing global health issues.

6.
Front Microbiol ; 15: 1409272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887718

RESUMEN

Introduction: Extraintestinal Escherichia coli infections represent a growing public health threat, However, current studies often overlook important factors such as temporal patterns of infection, phylogenetic and clonal background, or the host gut E. coli population, despite their likely significance. Methods: In this study, we analyzed >7000 clinical E. coli isolates from patients at the Minneapolis Veterans Affairs Health Care System (2012-2019), and concurrent fecal E. coli from uninfected veterans. We assessed phylogenetic group distribution, membership in selected sequence types (STs), and subsets thereof-including the pandemic, resistance-associated ST131-H30R, and ST1193 lineages-and strain type, as defined by pulsed-field gel electrophoresis. We then analyzed these features alongside the temporal patterns of infection in individual hosts. Results: The H30R lineage emerged as the leading lineage, both overall and among fluoroquinolone-resistant isolates, with ST1193 following among fluoroquinolone-resistant isolates. Recurrences were common, occurring in 31% of subjects and 41% of episodes, and often multiple and delayed/prolonged (up to 23 episodes per subject; up to 2655d post-index). Remarkably, these recurrences typically involved the subject's index strain (63% of recurrences), even when affecting extra-urinary sites. ST131, H30R, ST1193, and fluoroquinolone-resistant strains generally caused significantly more recurrences than did other strains, despite similar recurrence intervals. ST131 strain types shifted significantly over the study period. Infection-causing strains were commonly detectable in host feces at times other than during an infection episode; the likelihood of detection varied with surveillance intensity and proximity to the infection. H30R and ST1193 were prominent causes of fecal-clinical clonal overlap. Discussion: These findings provide novel insights into the temporal and clonal characteristics of E. coli infections in veterans and support efforts to develop anti-colonization interventions.

7.
Sci Total Environ ; 941: 173554, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823724

RESUMEN

In the current study, the genotypic characteristics such as antimicrobial resistance and virulence genes, and plasmid replicons and phenotypic characteristics such as biofilm formation and antimicrobial resistance of 87 extended-spectrum beta-lactamase (ESBL)-producing E. coli (ESBL-Ec) isolated from 7 water bodies in northern Greece were investigated. Our data show a high prevalence (60.0 %) of ESBL-Ec in surface waters that exhibit high genetic diversity, suggesting multiple sources of their transmission into the aquatic environment. When evaluating the antimicrobial resistance of isolates, wide variation in their resistance profiles has been detected, with all isolates being multi-drug resistant (MDR). Regarding biofilm formation capacity and phylogenetic groups, the majority (54.0 %, 47/87) of ESBL-Ec were classified as no biofilm producers mainly assigned to phylogroup A (35.6 %; 31/87), followed by B2 (26.5 %; 23/87). PCR screening showed that a high proportion of the isolates tested positive for the blaCTX-M-1 group genes (69 %, 60/87), followed by blaTEM (55.2 %, 48/87), blaOXA (25.3 %, 22/87) and blaCTX-M-9 (17.2 %, 15/87). A subset of 28 ESBL-Ec strains was further investigated by applying whole genome sequencing (WGS), and among them, certain clinically significant sequence types were identified, such as ST131 and ST10. The corresponding in silico analysis predicted all these isolates as human pathogens, while a significant proportion of WGS-ESBL-Ec were assigned to extraintestinal pathogenic E. coli (ExPEC; 32.1 %), and urinary pathogenic E. coli (UPEC; 28.6 %) pathotypes. Comparative phylogenetic analysis, showed that the genomes of the ST131-O25:H4-H30 isolates are genetically linked to the human clinical strains. Here, we report for the first time the detection of a plasmid-mediated mobile colistin resistance gene in ESBL-Ec in Greece isolated from an environmental source. Overall, this study underlines the role of surface waters as a reservoir for antibiotic resistance genes and for presumptive pathogenic ESBL-Ec.


Asunto(s)
Escherichia coli , Ríos , beta-Lactamasas , Escherichia coli/genética , Grecia , beta-Lactamasas/genética , Ríos/microbiología , Filogenia
8.
IDCases ; 36: e01976, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690577

RESUMEN

We report a case of a native knee septic arthritis and subsequent osteomyelitis due to a CO2-dependent (capnophilic) multidrug-resistant E. coli ST131 O25:H4 strain. Capnophilic phenotype made microbiology investigation challenging; susceptibility testing could not be performed and the organism did not grow in the urine culture using standard method. The combination of unique virotype and capnophilia may have contributed to the aggressiveness of this organism and the initial unsuccessful carbapenem course, leading to recurrent infection.

9.
Euro Surveill ; 29(21)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38785090

RESUMEN

Fosfomycin-resistant FosA8-producing Enterobacterales are uncommon strains with extremely low incidence in Europe, based on only three reports in the literature. We detected FosA8-producing Escherichia coli ST131 in clinical isolates from two patients admitted in February 2023 to a rehabilitation unit in Italy. The occurrence of rare fosA-like genes in the high-risk clone ST131 is of clinical relevance. The dissemination of FosA-producing E. coli, although still at low levels, should be continuously monitored.


Asunto(s)
Antibacterianos , Infecciones por Escherichia coli , Escherichia coli , Humanos , Italia/epidemiología , Escherichia coli/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/epidemiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Fosfomicina/farmacología , Fosfomicina/uso terapéutico , Masculino , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Femenino , Farmacorresistencia Bacteriana , Tipificación de Secuencias Multilocus
10.
Microb Drug Resist ; 30(8): 341-349, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38722095

RESUMEN

The study determined the prevalence, antimicrobial resistant (AMR) determinants, and genetic characteristics of Escherichia coli and Klebsiella pneumoniae isolates from patients with diabetic foot infection (DFI) in a Tunisian hospital. A total of 26 Escherichia spp. and Klebsiella spp. isolates were recovered and identified by MALDI-TOF-MS. Antimicrobial susceptibility testing, the detection of AMR determinants and Shiga-like toxin genes, phylogenetic grouping, and molecular typing were performed. Twelve E. coli, 10 K. pneumoniae, 3 K. oxytoca, and 1 E. hermanii were isolated. A multidrug-resistant phenotype was detected in 65.4% of the isolates. About 30.8% of isolates were extended-spectrum ß-lactamase (ESBL) producers and mainly carried blaCTX-M-15 and blaCTX-M-14 genes. One blaNDM-1-producing K. pneumoniae-ST1 strain was identified. Class 1 integrons were detected in 11 isolates and 5 gene cassette arrangements were noted: dfrA1+aadA1 (n = 1), dfrA12+aadA2 (n = 3), and dfrA17+aadA5 (n = 1). Other non-ß-lactam resistance genes detected were as follows (number of isolates): aac(3')-II (3), aac(6')-Ib-cr(8), qnrB (2), qnrS (4), cmlA (2), floR (4), sul1 (11), sul2 (11), and sul3 (2). The phylogroup B1 was the most frequent (41.7%) among E. coli, and two ESBL-producing isolates corresponded to the ST131-B2 lineage. The ESBL- and carbapenemase-producing Enterobacteriaceae in DFIs are described for the first time in Tunisia.


Asunto(s)
Antibacterianos , Pie Diabético , Farmacorresistencia Bacteriana Múltiple , Escherichia coli , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Humanos , Túnez/epidemiología , Pie Diabético/microbiología , Antibacterianos/farmacología , beta-Lactamasas/genética , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación , Hospitales , Proteínas Bacterianas/genética , Filogenia
11.
Front Microbiol ; 15: 1381051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659985

RESUMEN

Finding strategies for decolonizing gut carriers of multidrug-resistant Escherichia coli (MDR-Ec) is a public-health priority. In this context, novel approaches should be validated in preclinical in vivo gut colonization models before being translated to humans. However, the use of mice presents limitations. Here, we used for the first time Zophobas morio larvae to design a new model of intestinal colonization (28-days duration, T28). Three hyperepidemic MDR-Ec producing extended-spectrum ß-lactamases (ESBLs) or carbapenemases were administered via contaminated food to larvae for the first 7 days (T7): Ec-4901.28 (ST131, CTX-M-15), Ec-042 (ST410, OXA-181) and Ec-050 (ST167, NDM-5). Growth curve analyses showed that larvae became rapidly colonized with all strains (T7, ~106-7 CFU/mL), but bacterial load remained high after the removal of contaminated food only in Ec-4901.28 and Ec-042 (T28, ~103-4 CFU/mL). Moreover, larvae receiving a force-feeding treatment with INTESTI bacteriophage cocktail (on T7 and T10 via gauge needle) were decolonized by Ec-4901.28 (INTESTI-susceptible); however, Ec-042 and Ec-050 (INTESTI-resistant) did not. Initial microbiota (before administering contaminated food) was very rich of bacterial genera (e.g., Lactococcus, Enterococcus, Spiroplasma), but patterns were heterogeneous (Shannon diversity index: range 1.1-2.7) and diverse to each other (Bray-Curtis dissimilarity index ≥30%). However, when larvae were challenged with the MDR-Ec with or without administering bacteriophages the microbiota showed a non-significant reduction of the diversity during the 28-day experiments. In conclusion, the Z. morio larvae model promises to be a feasible and high-throughput approach to study novel gut decolonization strategies for MDR-Ec reducing the number of subsequent confirmatory mammalian experiments.

12.
Antibiotics (Basel) ; 13(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667039

RESUMEN

Extended-spectrum ß-lactamase-producing Escherichia coli ST131 has become widespread worldwide. This study aims to characterize the virulome, resistome, and population structure of E. coli ST131 isolates from clinical blood samples in Hungary. A total of 30 C2/H30Rx and 33 C1-M27 ST131 isolates were selected for Illumina MiSeq sequencing and 30 isolates for MinION sequencing, followed by hybrid de novo assembly. Five C2/H30Rx and one C1-M27 cluster were identified. C1-M27 isolates harbored the F1:A2:B20 plasmid in 93.9% of cases. Long-read sequencing revealed that blaCTX-M-27 was on plasmids. Among the C2/H30Rx isolates, only six isolates carried the C2-associated F2:A1:B- plasmid type. Of 19 hybrid-assembled C2/H30Rx genomes, the blaCTX-M-15 gene was located on plasmid only in one isolate, while in the other isolates, ISEcp1 or IS26-mediated chromosomal integration of blaCTX-M-15 was detected in unique variations. In one isolate a part of F2:A1:B- plasmid integrated into the chromosome. These results suggest that CTX-M-15-producing C2/H30Rx and CTX-M-27-producing C1-M27 subclades may have emerged and spread in different ways in Hungary. While blaCTX-M-27 was carried mainly on the C1/H30R-associated F1:A2:B20 plasmid, the IncF-like plasmids of C2/H30Rx or its composite transposons have been incorporated into the chromosome through convergent evolutionary processes.

13.
Front Cell Infect Microbiol ; 14: 1351618, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510968

RESUMEN

Introduction: Urinary tract infections (UTIs) are one of the leading causes of multidrug-resistance (MDR) spread and infection-related deaths. Escherichia coli is by far the main causative agent. We conducted a prospective study on complicated urinary tract infections (cUTIs) i) to monitor the high-risk clones that could be compromising the therapeutic management and ii) to compare the cUTI etiology with uncomplicated infections (uUTIs) occurring in the same period and health area. Methods: 154 non-duplicated E. coli recovered from cUTIs in 2020 at the Hospital Universitario Central de Asturias (Spain) constituted the study collection. Results: Most cUTI isolates belonged to phylogroup B2 (72.1%) and met the uropathogenic (UPEC) status (69.5%) (≥3 of chuA, fyuA, vat, and yfcV genes). MDR was exhibited by 35.7% of the isolates, similarly to data observed in the uUTI collection. A significant difference observed in cUTI was the higher level of fluoroquinolone resistance (FQR) (47.4%), where the pandemic clonal groups B2-CC131 and B2-ST1193 (CH14-64) comprised 28% of the 154 E. coli, representing 52.1% of the FQR isolates. Other prevalent FQR clones were D-ST69 (CH35-27), D-ST405 (CH37-27), and B2-ST429 (CH40-20) (three isolates each). We uncovered an increased genetic and genomic diversity of the CC131: 10 different virotypes, 8 clonotypes (CH), and 2 STs. The presence of bla CTX-M-15 was determined in 12 (7.8%) isolates (all CC131), which showed 10 different core genome (cg)STs and 2 fimH types (fimH30 and fimH602) but the same set of chromosomal mutations conferring FQR (gyrA p.S83L, gyrA p.D87N, parC p.S80I, parC p.E84V, and parE p.I529L). In addition, the plasmidome analysis revealed 10 different IncF formulae in CC131 genomes. Conclusion: We proved here that non-lactose fermenting screening, together with the detection of O25b (rfbO25b), H4 (fliCH4), and H5 (fliCH5) genes, and phylogroup and clonotyping assignation, is a reasonable approach that can be easily implemented for the surveillance of emerging high-risk clones associated with FQR spread in cUTIs, such as the uncommonly reported O25b:H4-B2-ST9126-CC131 (CH1267-30). Since E. coli CC131 and ST1193 are also involved in the community uUTIs of this health area, interventions to eradicate these MDR clones, along with surveillance for other emerging ones, are essential for antibiotic use optimization programs.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Humanos , Escherichia coli/genética , Fluoroquinolonas/farmacología , Infecciones por Escherichia coli/epidemiología , Estudios Prospectivos , beta-Lactamasas/genética , Antibacterianos/farmacología , Infecciones Urinarias/epidemiología
14.
Microbiol Spectr ; 12(4): e0277623, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38415657

RESUMEN

Ceftazidime-avibactam and cefiderocol represent two of the few alternatives for infections by KPC-producing Enterobacterales. We reported the emergence of resistance to both ceftazidime-avibactam and cefiderocol in a KPC-producing ST131-Escherichia coli (KPC-ST131-Ec) clinical isolate. Antimicrobial susceptibility testing, Fourier-transform infrared (FTIR) spectroscopy, whole-genome sequencing, and cloning experiments were performed. A KPC-49-Ec isolate resistant to ceftazidime-avibactam (MICCZA > 16/4 mg/L) and susceptible to cefiderocol (MICFDC: 2 mg/L) was recovered in a blood sample from an oncologic patient hospitalized in the medical ICU (June 2019) during ceftazidime-avibactam treatment. After 44 days, a KPC-31-Ec resistant to both ceftazidime-avibactam and cefiderocol (MICCZA > 16/4 mg/L, MICFDC: 8 mg/L) was found in a rectal sample during a second cycle of ceftazidime-avibactam treatment. Both KPC-49 (R163S) and KPC-31 (D179Y) were detected in the epidemic ST131-H30R1-Ec high-risk clone and showed a phenotype resembling that of ESBL producers. FTIR spectroscopy managed to differentiate cefiderocol-susceptible and resistant ST131-Ec isolates, and these from others belonging to different clones. After cloning and transformation experiments, KPC-49 and KPC-31 were responsible for ceftazidime-avibactam resistance (MICCZA > 16/4 mg/L) and decreased carbapenem MICs (MICMER ≤ 0.12 mg/L, MICIMI ≤ 1 mg/L). KPC-31 was also shown to be associated with increased MICs of cefiderocol (twofold and threefold dilutions over KPC-3 and KPC-49, respectively). However, mutations in proteins participating in outer membrane stability and integrity, such as TolR, could have a more relevant role in cefiderocol resistance. The effects of ceftazidime-avibactam and cefiderocol co-resistance in clinical isolates of Enterobacterales producing KPC mutants make their identification challenging for clinical laboratories.IMPORTANCEThroughout four admissions in our hospital of a single patient, different KPC-3 variants (KPC-3, KPC-49, and KPC-31) were found in surveillance and clinical ST131-Escherichia coli isolates, after prolonged therapies with meropenem and ceftazidime-avibactam. Different patterns of resistance to cefiderocol and ceftazidime-avibactam emerged, accompanied by restored carbapenem susceptibility. The inability to detect these variants with some phenotypic methods, especially KPC-31 by immunochromatography, and the expression of a phenotype similar to that of ESBL producers, posed challenge to identify these variants in the clinical microbiology laboratory. Molecular methods and whole-genome sequencing are necessary and new techniques able to cluster or differentiate related isolates could also be helpful; this is the case of Fourier-transform infrared spectroscopy, which managed in our study to discriminate isolates by cefiderocol susceptibility within ST131, and those from the non-ST131 ones.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Cefiderocol , Ceftazidima , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia coli/genética , Escherichia coli/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Carbapenémicos , Pruebas de Sensibilidad Microbiana , Klebsiella pneumoniae/genética , Proteínas Bacterianas/genética , Combinación de Medicamentos
15.
J Clin Microbiol ; 62(3): e0168723, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38385692

RESUMEN

The dissemination of Escherichia coli multidrug-resistant (MDR) STc131 is related to its persistence in the human gastrointestinal tract as efficient gut colonizers. Infection and prevention measures are the cornerstones for preventing STc131 spread. Oral decolonization therapies that target ST131 are being developed. There are no rapid methods available to identify STc131 in human specimens. A loop-mediated isothermal amplification (LAMP) assay (named LAMP-ST131) was developed for the detection of STc131 on well-characterized E. coli isolates and then compared to culture and PCR for urines and stool swabs. With E. coli isolates (n = 720), LAMP-ST131 had a sensitivity (sens) of 100% [95% confidence interval (C.I.) = 98.1-100%)] and a specificity (spec) of 98.9% (95% C.I. = 97.5-99.5%). On urines (n = 550), LAMP-ST131 had a sens of 97.6% (95% C.I. = 89.68-94.33%) and a spec of 92.3% (95% C.I. = 87.68-99.88%), while on stool swabs (n = 278), LAMP-ST131 had a sens of 100% (95% C.I. = 88.7-100%) and a spec of 83.9% (95% C.I. = 78.8-87.9%). LAMP-ST131 detected 10 (urines) and 100 (stool swabs) gene copies/µL. LAMP-ST131 accurately identified STc131 within E. coli isolates and human specimens. The implementation of LAMP-ST131 will aid genomic surveys, enable the rapid implementation of effective infection prevention measures, and identify patients suitable for ST131 decolonization therapies. Such approaches will curb the spread of STc131 and decrease incidence rates of global MDR E. coli infections. IMPORTANCE: We developed an accurate non-culture-based loop-mediated isothermal amplification (LAMP) methodology for the detection of (sequence type) STc131 among Escherichia coli isolates and human specimens. The use of LAMP-ST131 for global genomic surveillance studies and to identify patients that are suitable for ST131 decolonization therapies will be important for decreasing multidrug-resistant E. coli infections across the globe.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Técnicas de Diagnóstico Molecular , Humanos , Escherichia coli/genética , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/epidemiología , Técnicas de Amplificación de Ácido Nucleico , beta-Lactamasas/genética , Antibacterianos/farmacología
16.
Euro Surveill ; 29(8)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38390649

RESUMEN

The dissemination of carbapenemase-producing Escherichia coli, although still at low level, should be continuously monitored. OXA-244 is emerging in Europe, mainly in E. coli. In Italy, this carbapenemase was reported from an environmental river sample in 2019. We report clinical isolates of OXA-244-producing ST131 E. coli in four patients admitted to an acute care hospital in Pavia, Italy. The association of this difficult-to-detect determinant with a globally circulating high-risk clone, ST131 E. coli, is of clinical relevance.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Escherichia coli , Humanos , Escherichia coli/genética , Infecciones por Escherichia coli/diagnóstico , beta-Lactamasas/genética , Italia/epidemiología , Europa (Continente) , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
17.
Antimicrob Agents Chemother ; 68(2): e0092523, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38169291

RESUMEN

We describe the inter-regional spread of a novel ESBL-producing Escherichia coli subclone (ST131H89) in long-term care facility residents, general population, and environmental water sources in Western Switzerland between 2017 and 2020. The study highlights the importance of molecular surveillance for tracking emerging antibiotic-resistant pathogens in healthcare and community settings.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Humanos , Infecciones por Escherichia coli/epidemiología , Suiza , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Antibacterianos , beta-Lactamasas , Epidemiología Molecular
18.
Microbiol Spectr ; 12(2): e0312823, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38171007

RESUMEN

Colonization with multidrug-resistant Escherichia coli strains causes a substantial health burden in hospitalized patients. We performed a longitudinal genomics study to investigate the colonization of resistant E. coli strains in critically ill patients and to identify evolutionary changes and strain replacement events within patients. Patients were admitted to the intensive care unit and hematology wards at a major hospital in Lebanon. Perianal swabs were collected from participants on admission and during hospitalization, which were screened for extended-spectrum beta-lactamases and carbapenem-resistant Enterobacterales. We performed whole-genome sequencing and analysis on E. coli strains isolated from patients at multiple time points. The E. coli isolates were genetically diverse, with 11 sequence types (STs) identified among 22 isolates sequenced. Five patients were colonized by E. coli sequence type 131 (ST131)-encoding CTX-M-27, an emerging clone not previously observed in clinical samples from Lebanon. Among the eight patients whose resident E. coli strains were tracked over time, five harbored the same E. coli strain with relatively few mutations over the 5 to 10 days of hospitalization. The other three patients were colonized by different E. coli strains over time. Our study provides evidence of strain diversity within patients during their hospitalization. While strains varied in their antimicrobial resistance profiles, the number of resistance genes did not increase over time. We also show that ST131-encoding CTX-M-27, which appears to be emerging as a globally important multidrug-resistant E. coli strain, is also prevalent among critical care patients and deserves further monitoring.IMPORTANCEUnderstanding the evolution of bacteria over time in hospitalized patients is of utmost significance in the field of infectious diseases. While numerous studies have surveyed genetic diversity and resistance mechanisms in nosocomial infections, time series of within-patient dynamics are rare, and high-income countries are over-represented, leaving low- and middle-income countries understudied. Our study aims to bridge these research gaps by conducting a longitudinal survey of critically ill patients in Lebanon. This allowed us to track Escherichia coli evolution and strain replacements within individual patients over extended periods. Through whole-genome sequencing, we found extensive strain diversity, including the first evidence of the emerging E. coli sequence type 131 clone encoding the CTX-M-27 beta-lactamase in a clinical sample from Lebanon, as well as likely strain replacement events during hospitalization.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Enfermedad Crítica , beta-Lactamasas/genética , Genómica , Cuidados Críticos , Antibacterianos
19.
Ann Clin Microbiol Antimicrob ; 23(1): 6, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218869

RESUMEN

BACKGROUND: Antibiotic resistance is one of the most serious global health problems and threatens the effective treatment of bacterial infections. Of greatest concern are infections caused by extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-EC). The aim of our study was to evaluate the prevalence and molecular characteristics of ESBL-EC isolated over an 18-year pre-COVID period from lower respiratory tract (LRT) samples collected from selected Slovenian hospitals. OBJECTIVES AND METHODS: All isolates were identified by MALDI-TOF and phenotypically confirmed as ESBLs by a disk diffusion assay. Using a PCR approach, 487 non-repetitive isolates were assigned to phylogroups, sequence type groups, and clonal groups. Isolates were also screened for virulence-associated genes (VAGs) and antimicrobial resistance genes. RESULTS: The prevalence of ESBL-EC isolates from LRT in a large university hospital was low (1.4%) in 2005 and increased to 10.8% by 2019. The resistance profile of 487 non-repetitive isolates included in the study showed a high frequency of group 1 blaCTX-M (77.4%; n = 377), blaTEM (54.4%; n = 265) and aac(6')-Ib-cr (52%; n = 253) genes and a low proportion of blaSHV and qnr genes. Isolates were predominantly assigned to phylogroup B2 (73.1%; n = 356), which was significantly associated with clonal group ST131. The ST131 group accounted for 67.6% (n = 329) of all isolates and had a higher number of virulence factor genes than the non-ST131 group. The virulence gene profile of ST131 was consistent with that of other extraintestinal pathogenic E. coli (ExPEC) strains and was significantly associated with ten of sixteen virulence factor genes tested. Using ERIC-PCR fingerprinting, isolates with the same ERIC-profile in samples from different patients, and at different locations and sampling dates were confirmed, indicating the presence of "hospital-adapted" strains. CONCLUSION: Our results suggest that the ESBL-EC isolates from LRT do not represent a specific pathotype, but rather resemble other ExPEC isolates, and may be adapted to the hospital environment. To our knowledge, this is the first study of ESBL-EC isolated from LRT samples collected over a long period of time.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Eslovenia/epidemiología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Factores de Virulencia/genética , beta-Lactamasas/genética , Sistema Respiratorio
20.
Pediatr Neonatol ; 65(2): 138-144, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37718133

RESUMEN

BACKGROUND: The accelerating prevalence of extended-spectrum ß-lactamase (ESBL)-producing and multidrug-resistance (MDR) Escherichia coli(E. coli) become a public health challenge worldwide. This study aimed to discuss the prevalence of drug-resistant E. coli colonization and analyze its risk factors and clinical characteristics among young infants in Southern Taiwan. METHODS: Stool samples were collected from young infants, aged less than three months, within three days of their hospitalization from September to December 2019 in a tertiary hospital. A questionnaire was designed for parents to complete. E. coli colonies were selected and analyzed for antimicrobial susceptibility. PCR-based multilocus sequence typing was to detect the presence of sequence type ST131 and blaCTX-M genes. RESULTS: Among 100 enrolled infants, 36% had fecal carriage of E. coli isolates, of which twenty nine (80.5%) were MDR, thirteen (36.1%) were ESBL-producing isolates and five (13.8%) and ten (27.7%) were ST131 and strains carrying CTX-M-14 gene, respectively. Compared to non-ST131 and non-CTX-M-14 gene carrier, isolates of ST131 and CTX-M-14 gene carrier showed a significantly higher resistance rate to cefixime, ceftriaxone, and gentamycin, with p value all <0.05. CONCLUSION: The prevalence of ESBL-producing and MDR E. coli fecal carriage were both high in young infants. The most common sequence type is ST131, of which all are strains carrying CTX-M-14. Further surveillance and investigation to control for the high prevalence of antimicrobial-resistant E. coli fecal carriage among infants in Taiwan are warranted.


Asunto(s)
Antiinfecciosos , Infecciones por Escherichia coli , Lactante , Humanos , Escherichia coli/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/epidemiología , Taiwán/epidemiología , beta-Lactamasas/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA