Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; : 107820, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343004

RESUMEN

Coenzyme Q (CoQ) is a redox-active lipid molecule that acts as an electron carrier in the mitochondrial electron transport chain. In Saccharomyces cerevisiae, CoQ is synthesized in the mitochondrial matrix by a multi-subunit protein-lipid complex termed the CoQ synthome, the spatial positioning of which is coordinated by the Endoplasmic Reticulum-Mitochondria Encounter Structure (ERMES). The MDM12 gene encoding the cytosolic subunit of ERMES, is co-expressed with COQ10, which encodes the putative CoQ chaperone Coq10, via a shared bidirectional promoter. Deletion of COQ10 results in respiratory deficiency, impaired CoQ biosynthesis, and reduced spatial coordination between ERMES and the CoQ Synthome. While Coq10 protein content is maintained upon deletion of MDM12, we show that deletion of COQ10 by replacement with a HIS3 marker results in diminished Mdm12 protein content. Since deletion of individual ERMES subunits prevents ERMES formation, we asked whether some or all of the phenotypes associated with COQ10 deletion result from ERMES dysfunction. To identify the phenotypes resulting solely due to the loss of Coq10, we constructed strains expressing a functionally impaired (coq10-L96S) or truncated (coq10-R147*) Coq10 isoform using CRISPR-Cas9. We show that both coq10 mutants preserve Mdm12 protein content and exhibit impaired respiratory capacity like the coq10Δ mutant, indicating that Coq10's function is vital for respiration regardless of ERMES integrity. Moreover, the maintenance of CoQ synthome stability and efficient CoQ biosynthesis observed for the coq10-R147* mutant suggests these deleterious phenotypes in the coq10Δ mutant result from ERMES disruption. Overall, this study clarifies the role of Coq10 in modulating CoQ biosynthesis.

2.
New Phytol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952028

RESUMEN

Plant homeodomain leucine zipper IV (HD-Zip IV) transcription factors (TFs) contain an evolutionarily conserved steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain. While the START domain is required for TF activity, its presumed role as a lipid sensor is not clear. Here we used tandem affinity purification from Arabidopsis cell cultures to demonstrate that PROTODERMAL FACTOR2 (PDF2), a representative member that controls epidermal differentiation, recruits lysophosphatidylcholines (LysoPCs) in a START-dependent manner. Microscale thermophoresis assays confirmed that a missense mutation in a predicted ligand contact site reduces lysophospholipid binding. We additionally found that PDF2 acts as a transcriptional regulator of phospholipid- and phosphate (Pi) starvation-related genes and binds to a palindromic octamer with consensus to a Pi response element. Phospholipid homeostasis and elongation growth were altered in pdf2 mutants according to Pi availability. Cycloheximide chase experiments revealed a role for START in maintaining protein levels, and Pi starvation resulted in enhanced protein destabilization, suggesting a mechanism by which lipid binding controls TF activity. We propose that the START domain serves as a molecular sensor for membrane phospholipid status in the epidermis. Our data provide insights toward understanding how the lipid metabolome integrates Pi availability with gene expression.

3.
J Endocrinol ; 262(2)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38829257

RESUMEN

Cells actively engaged in de novo steroidogenesis rely on an expansive intracellular network to efficiently transport cholesterol. The final link in the transport chain is STARD1, which transfers cholesterol to the enzyme complex that initiates steroidogenesis. However, the regulation of ovarian STARD1 is not fully characterized, and even less is known about the upstream cytosolic cholesterol transporters STARD4 and STARD6. Here, we identified both STARD4 and STARD6 mRNAs in the human ovary but only detected STARD4 protein since the primary STARD6 transcript turned out to be a splice variant. Corpora lutea contained the highest levels of STARD4 and STARD1 mRNA and STARD1 protein, while STARD4 protein was uniformly distributed across ovarian tissues. Cyclic AMP analog (8Br-cAMP) and phorbol ester (PMA) individually increased STARD1 and STARD4 mRNA along with STARD1 protein and its phosphoform in cultured primary human luteinized granulosa cells (hGCs). STARD6 transcripts and STARD4 protein were unresponsive to these stimuli. Combining lower doses of PMA and 8Br-cAMP blunted the 8Br-cAMP stimulation of STARD1 protein. Increasing cholesterol levels by blocking its conversion to steroid with aminoglutethimide or by adding LDL reduced the STARD4 mRNA response to stimuli. Sterol depletion reduced the STARD1 mRNA and protein response to PMA. These data support a possible role for STARD4, but not STARD6, in supplying cholesterol for steroidogenesis in the ovary. We demonstrate for the first time how cAMP, PMA and sterol pathways separately and in combination differentially regulate STARD4, STARD6 and STARD1 mRNA levels, as well as STARD1 and STARD4 protein in human primary ovarian cells.


Asunto(s)
Ovario , Adulto , Femenino , Humanos , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Células Cultivadas , Colesterol/metabolismo , AMP Cíclico/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Ovario/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , ARN Mensajero/metabolismo
4.
J Mol Biol ; 436(11): 168572, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615744

RESUMEN

STARD4 regulates cholesterol homeostasis by transferring cholesterol between the plasma membrane and endoplasmic reticulum. The STARD4 structure features a helix-grip fold surrounding a large hydrophobic cavity holding the sterol. Its access is controlled by a gate formed by the Ω1 and Ω4 loops and the C-terminal α-helix. Little is known about the mechanisms by which STARD4 binds to membranes and extracts/releases cholesterol. All available structures of STARD4 are without a bound sterol and display the same closed conformation of the gate. The cholesterol transfer activity of the mouse STARD4 is enhanced in the presence of anionic lipids, and in particular of phosphatidylinositol biphosphates (PIP2) for which two binding sites were proposed on the mouse STARD4 surface. Yet only one of these sites is conserved in human STARD4. We here report the results of a liposome microarray-based assay and microseconds-long molecular dynamics simulations of human STARD4 with complex lipid bilayers mimicking the composition of the donor and acceptor membranes. We show that the binding of apo form of human STARD4 is sensitive to the presence of PIP2 through two specific binding sites, one of which was not identified on mouse STARD4. We report two novel conformations of the gate in holo-STARD4: a yet-unobserved close conformation and an open conformation of Ω4 shedding light on the opening/closure mechanism needed for cholesterol uptake/release. Overall, the modulation of human STARD4 membrane-binding by lipid composition, and by the presence of the cargo supports the capacity of human STARD4 to achieve directed transfer between specific organelle membranes.


Asunto(s)
Membrana Celular , Colesterol , Proteínas de Transporte de Membrana , Simulación de Dinámica Molecular , Animales , Humanos , Ratones , Sitios de Unión , Proteínas Portadoras/metabolismo , Proteínas Portadoras/química , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Colesterol/química , Membrana Dobles de Lípidos/metabolismo , Membrana Dobles de Lípidos/química , Liposomas/metabolismo , Liposomas/química , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Unión Proteica , Conformación Proteica
5.
Curr Opin Plant Biol ; 75: 102417, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37441837

RESUMEN

The leaf epidermis comprises the outermost layer of cells that protect plants against environmental stresses such as drought, ultraviolet radiation, and pathogen attack. Research over the past decades highlights the role of class IV homeodomain leucine-zipper (HD-Zip IV) transcription factors (TFs) in driving differentiation of various epidermal cell types, such as trichomes, guard cells, and pavement cells. Evolutionary origins of this family in the charophycean green algae and HD-Zip-specific gene expression in the maternal genome provide clues to unlocking their secrets which include ties to cell cycle regulation. A distinguishing feature of these TFs is the presence of a lipid binding pocket that integrates metabolic information with gene expression. Identities of metabolic partners are beginning to emerge, uncovering feedback loops to maintain epidermal cell specification. Discoveries of associated molecular mechanisms are revealing fascinating links to phospholipid and sphingolipid metabolism and mechanical signaling.


Asunto(s)
Proteínas de Homeodominio , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Rayos Ultravioleta , Diferenciación Celular , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Protein Sci ; 32(6): e4644, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37070717

RESUMEN

Polyketide metabolism-associated proteins in Mycobacterium tuberculosis play an essential role in the survival of the bacterium, which makes them potential drug targets for the treatment of tuberculosis (TB). The novel ribonuclease protein Rv1546 is predicted to be a member of the steroidogenic acute regulatory protein-related lipid-transfer (START) domain superfamily, which comprises bacterial polyketide aromatase/cyclases (ARO/CYCs). Here, we determined the crystal structure of Rv1546 in a V-shaped dimer. The Rv1546 monomer consists of four α-helices and seven antiparallel ß-strands. Interestingly, in the dimeric state, Rv1546 forms a helix-grip fold, which is present in START domain proteins, via three-dimensional domain swapping. Structural analysis revealed that the conformational change of the C-terminal α-helix of Rv1546 might contribute to the unique dimer structure. Site-directed mutagenesis followed by in vitro ribonuclease activity assays was performed to identify catalytic sites of the protein. This experiment suggested that surface residues R63, K84, K88, and R113 are important in the ribonuclease function of Rv1546. In summary, this study presents the structural and functional characterization of Rv1546 and supplies new perspectives for exploiting Rv1546 as a novel drug target for TB treatment.


Asunto(s)
Mycobacterium tuberculosis , Policétidos , Ribonucleasas , Dimerización , Modelos Moleculares , Proteínas
7.
J Plant Res ; 136(3): 349-358, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36826609

RESUMEN

The surface of plants is covered by the epidermis, which protects the plant's body from the external environment and mediates inter-cell layer signaling to regulate plant development. Therefore, the manifestation of epidermal traits at a precise location is a prerequisite for their normal growth and development. In Arabidopsis thaliana, class IV homeodomain-leucine zipper transcription factors PROTODERMAL FACTOR2 (PDF2) and ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) play redundant roles in epidermal cell differentiation. Nevertheless, several pieces of evidence suggest that the activity and/or function of PDF2 and ATML1 are regulated differently. The role of the steroidogenic acute regulatory protein-related lipid transfer (START) domain of ATML1 in restricting this protein's activity has been demonstrated; however, whether this lipid-dependent mechanism regulates PDF2 expression is unknown. In this study, we demonstrated that the START domains of PDF2 and ATML1, regulate protein turnover in a position-dependent manner and affect the dimeric proteins. Our results show that a conserved mechanism provides the basis for the functional redundancy of PDF2 and ATML1 in epidermal cell differentiation and that an unidentified regulatory layer specific to PDF2 or ATML1 is responsible for the difference in the activity and/or function of PDF2 and ATML1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Epidermis de la Planta , Diferenciación Celular , Lípidos , Regulación de la Expresión Génica de las Plantas
8.
Plant Direct ; 7(2): e483, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36742092

RESUMEN

Isoprene has recently been proposed to be a signaling molecule that can enhance tolerance of both biotic and abiotic stress. Not all plants make isoprene, but all plants tested to date respond to isoprene. We hypothesized that isoprene interacts with existing signaling pathways rather than requiring novel mechanisms for its effect on plants. We analyzed the cis-regulatory elements (CREs) in promoters of isoprene-responsive genes and the corresponding transcription factors binding these promoter elements to obtain clues about the transcription factors and other proteins involved in isoprene signaling. Promoter regions of isoprene-responsive genes were characterized using the Arabidopsis cis-regulatory element database. CREs bind ARR1, Dof, DPBF, bHLH112, GATA factors, GT-1, MYB, and WRKY transcription factors, and light-responsive elements were overrepresented in promoters of isoprene-responsive genes; CBF-, HSF-, WUS-binding motifs were underrepresented. Transcription factors corresponding to CREs overrepresented in promoters of isoprene-responsive genes were mainly those important for stress responses: drought-, salt/osmotic-, oxidative-, herbivory/wounding and pathogen-stress. More than half of the isoprene-responsive genes contained at least one binding site for TFs of the class IV (homeodomain leucine zipper) HD-ZIP family, such as GL2, ATML1, PDF2, HDG11, ATHB17. While the HD-zipper-loop-zipper (ZLZ) domain binds to the L1 box of the promoter region, a special domain called the steroidogenic acute regulatory protein-related lipid transfer, or START domain, can bind ligands such as fatty acids (e.g., linolenic and linoleic acid). We tested whether isoprene might bind in such a START domain. Molecular simulations and modeling to test interactions between isoprene and a class IV HD-ZIP family START-domain-containing protein were carried out. Without membrane penetration by the HDG11 START domain, isoprene within the lipid bilayer was inaccessible to this domain, preventing protein interactions with membrane bound isoprene. The cross-talk between isoprene-mediated signaling and other growth regulator and stress signaling pathways, in terms of common CREs and transcription factors could enhance the stability of the isoprene emission trait when it evolves in a plant but so far it has not been possible to say what how isoprene is sensed to initiate signaling responses.

9.
Plant Signal Behav ; 17(1): 2134675, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36281762

RESUMEN

Analysis of PCST1 expression characteristics and the role of PCST1 in response to osmotic stress in Arabidopsis thaliana. The structure of PCST1 was analyzed using Bioinformatics method. Real-time PCR, GUS tissue localization and subcellular localization were adopted to analyze the expression pattern of PCST1 in Arabidopsis. To validate the transgenic positive strain of PCST1 using Real-time PCR, overexpression experiments were performed in wild type. Full-length cDNA was cloned and connected into a binary vector with 35S promoter, and the construction was transformed into wild type. With NaCl and mannitol treatments, the germination rate, green leaves rate, physiological indexes were carried out and counted in Arabidopsis with overexpression of PCST1 and T-DNA insertion mutants. The molecular mechanism of PCST1 in response to osmotic stress in Arabidopsis was analyzed. Based on the bioinformatic analysis, PCST1 is a hydrophobin with 403 amino acids, and the molecular weight is 45.3236 KDa. It contains only the START (the lipid/sterol - binding StAR - related lipid transfer protein domains) conservative domain. PCST1 possesses phosphatidylcholine binding sites and transmembrane region. Expression pattern analysis showed that expression of PCST1 increased with time. The PCST1 widely expressed in Arabidopsis, including roots, axils of stem leaves, flowers (sepal, conductive tissue of the petal, thrum, anther and stigmas), and the top and basal parts of the siliquas. It mainly localized in cell membrane. The overexpression of PCST1 enhanced the sensitivity to osmotic stress in Arabidopsis based on the germination rate. While expression of PCST1 decreased, and the sensitivity to osmotic stress had no obvious change in Arabidopsis. Its molecular mechanism study showed, that PCST1 response to osmotic stress resistance by regulating the proline, betaine synthesis, as well as the expression of key genes SOS, NCED, CIPK. PCST1 is composed of 403 amino acids. The START conservative domain, a transmembrane structure, the phosphatidyl choline binding sites are contained in PCST1. It is localized in cytoplasmic membrane. The PCST1 widely expressed in the root, leaf, flower and siliquas. NaCl and mannitol suppressed the expression of PCST1 and PCST1 can negatively control action of Arabidopsis in the osmotic stress. PCST1 regulates the synthetic pathway of proline, betaine and the expression of SOS, NCED and CIPK in response to the osmotic stress resistance.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Cloruro de Sodio , ADN Complementario , Betaína/metabolismo , Prolina/metabolismo , Aminoácidos/metabolismo , Manitol/metabolismo , Fosfatidilcolinas/metabolismo , Esteroles/metabolismo
10.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216212

RESUMEN

Lipid transfer proteins (LTPs) are recognized as key players in the inter-organelle trafficking of lipids and are rapidly gaining attention as a novel molecular target for medicinal products. In mammalian cells, ceramide is newly synthesized in the endoplasmic reticulum (ER) and converted to sphingomyelin in the trans-Golgi regions. The ceramide transport protein CERT, a typical LTP, mediates the ER-to-Golgi transport of ceramide at an ER-distal Golgi membrane contact zone. About 20 years ago, a potent inhibitor of CERT, named (1R,3S)-HPA-12, was found by coincidence among ceramide analogs. Since then, various ceramide-resembling compounds have been found to act as CERT inhibitors. Nevertheless, the inevitable issue remains that natural ligand-mimetic compounds might directly bind both to the desired target and to various undesired targets that share the same natural ligand. To resolve this issue, a ceramide-unrelated compound named E16A, or (1S,2R)-HPCB-5, that potently inhibits the function of CERT has recently been developed, employing a series of in silico docking simulations, efficient chemical synthesis, quantitative affinity analysis, protein-ligand co-crystallography, and various in vivo assays. (1R,3S)-HPA-12 and E16A together provide a robust tool to discriminate on-target effects on CERT from off-target effects. This short review article will describe the history of the development of (1R,3S)-HPA-12 and E16A, summarize other CERT inhibitors, and discuss their possible applications.


Asunto(s)
Transporte Biológico/fisiología , Ceramidas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Ligandos
11.
Curr Opin Plant Biol ; 64: 102148, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34814028

RESUMEN

The StARkin domain (derived from 'kin of steroidogenic acute regulatory protein (StAR)') is an evolutionarily conserved helix-grip-fold structure. StARkin domains possess a deep hydrophobic pocket capable of binding lipophilic ligands such as fatty acids, sterols, and isoprenoids. Dysregulation of StARkin proteins has profound effects on disease and development. In this review, we profile recent mechanistic and evolutionary studies, which highlight the remarkable diversity of regulatory mechanisms employed by the StARkin module. Although primarily focused on land plants, we also discuss select key advances in mammalian StARkin biology. The diversity of perspectives, systems, and approaches described here may be helpful to researchers characterizing poorly understood StARkin proteins.


Asunto(s)
Embryophyta , Esteroles , Animales , Embryophyta/metabolismo , Ligandos , Mamíferos/metabolismo , Esteroles/metabolismo
12.
Front Genet ; 12: 737194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567086

RESUMEN

The StAR-related lipid transfer (START) domain containing proteins or START proteins, encoded by a plant amplified family of evolutionary conserved genes, play important roles in lipid binding, transport, signaling, and modulation of transcriptional activity in the plant kingdom, but there is limited information on their evolution, duplication, and associated sub- or neo-functionalization. Here we perform a comprehensive investigation of this family across the rice pangenome, using 10 wild and cultivated varieties. Conservation of START domains across all 10 rice genomes suggests low dispensability and critical functional roles for this family, further supported by chromosomal mapping, duplication and domain structure patterns. Analysis of synteny highlights a preponderance of segmental and dispersed duplication among STARTs, while transcriptomic investigation of the main cultivated variety Oryza sativa var. japonica reveals sub-functionalization amongst genes family members in terms of preferential expression across various developmental stages and anatomical parts, such as flowering. Ka/Ks ratios confirmed strong negative/purifying selection on START family evolution, implying that ontogeny recapitulated selection pressures during rice domestication. Our findings provide evidence for high conservation of START genes across rice varieties in numbers, as well as in their stringent regulation of Ka/Ks ratio, and showed strong functional dependency of plants on START proteins for their growth and reproductive development. We believe that our findings advance the limited knowledge about plant START domain diversity and evolution, and pave the way for more detailed assessment of individual structural classes of START proteins among plants and their domain specific substrate preferences, to complement existing studies in animals and yeast.

13.
Biochem Biophys Res Commun ; 534: 436-441, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33246557

RESUMEN

The appropriate regulation of thylakoid lipid synthesis is essential for the function of chloroplasts. In plant cells, membrane lipids synthesized in the ER are utilized as a precursor for the synthesis of chloroplast glycolipids. This pathway is thought to be mediated by the transport of glycerolipids synthesized in the ER into chloroplasts. However, we have little knowledge about the proteins involved in the lipid transfer between these organelles in plant cells. Here we show a protein, STAR2, containing the START (Steroidogenic acute regulatory protein-related lipid transfer) domain known to function as a lipid transporter, is involved in the incorporation of ER-derived fatty acids into chloroplast glycolipids in Marchantia polymorpha. We found that STAR2 localizes on the chloroplast envelope membrane as a punctuate structure and is required for the increase of C20 fatty acids, which are synthesized in the ER, in chloroplast glycolipids in response to phosphate deprivation. Our results indicate that STAR2 of M. polymorpha is likely to be involved in the lipid transfer from ER to chloroplast, presumably as a lipid transporter.


Asunto(s)
Cloroplastos/metabolismo , Ácidos Grasos/metabolismo , Glucolípidos/metabolismo , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Vías Biosintéticas , Marchantia/crecimiento & desarrollo , Marchantia/ultraestructura , Fosfatos/metabolismo , Proteínas de Plantas/análisis
14.
Front Mol Biosci ; 7: 603983, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330630

RESUMEN

The multi domain ceramide transfer protein (CERT) which contains the domains START and PH, is a protein that allows the transport of ceramide from the endoplasmic reticulum to the Golgi and so it plays a major role in sphingolipid metabolism. Recently, the crystal structure of the PH-START complex has been released, suggesting an inhibitory action of START to the binding of the PH domain to the Golgi apparatus and thus limiting the CERT activity. Our study presents a combination of docking and molecular dynamic simulations of N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)alkanamides (HPA) analogs and limonoids compounds known to inhibit CERT. Through our computational study, we compared the binding affinity of 14 ligands at both domains (START and PH) and also at the START-PH interface, including several mutations known to play a role in the CERT's activity. At the difference of HPA compounds, limonoids have a stronger binding affinity for the START-PH interface. Furthermore, 2 inhibitors (HPA-12 and isogedunin) were investigated through molecular dynamic (MD) simulations. 50 ns of molecular dynamic simulations have displayed the stability of isogedunin as well as keys residues in the binding of this molecule at the interface of the PH-START complex. Therefore, this study suggests a novel inhibitory mechanism of CERT for limonoid compounds involving the stabilization of the START-PH interface. This could help to develop new and potentially more selective inhibitors of this transporter, which is a potent target in cancer therapy.

15.
Proc Natl Acad Sci U S A ; 117(36): 22080-22089, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32820071

RESUMEN

Nonshivering thermogenesis occurs in brown adipose tissue to generate heat in response to cold ambient temperatures. Thioesterase superfamily member 1 (Them1) is transcriptionally up-regulated in brown adipose tissue upon exposure to the cold and suppresses thermogenesis in order to conserve energy reserves. It hydrolyzes long-chain fatty acyl-CoAs that are derived from lipid droplets, preventing their use as fuel for thermogenesis. In addition to its enzymatic domains, Them1 contains a C-terminal StAR-related lipid transfer (START) domain with unknown ligand or function. By complementary biophysical approaches, we show that the START domain binds to long-chain fatty acids, products of Them1's enzymatic reaction, as well as lysophosphatidylcholine (LPC), lipids shown to activate thermogenesis in brown adipocytes. Certain fatty acids stabilize the START domain and allosterically enhance Them1 catalysis of acyl-CoA, whereas 18:1 LPC destabilizes and inhibits activity, which we verify in cell culture. Additionally, we demonstrate that the START domain functions to localize Them1 near lipid droplets. These findings define the role of the START domain as a lipid sensor that allosterically regulates Them1 activity and spatially localizes it in proximity to the lipid droplet.


Asunto(s)
Ácidos Grasos/metabolismo , Lisofosfatidilcolinas/metabolismo , Palmitoil-CoA Hidrolasa/química , Palmitoil-CoA Hidrolasa/metabolismo , Acilcoenzima A/metabolismo , Tejido Adiposo Pardo/enzimología , Tejido Adiposo Pardo/metabolismo , Regulación Alostérica , Ácidos Grasos/química , Humanos , Cinética , Gotas Lipídicas/enzimología , Gotas Lipídicas/metabolismo , Lisofosfatidilcolinas/química , Palmitoil-CoA Hidrolasa/genética , Dominios Proteicos
16.
FEBS J ; 287(18): 3921-3924, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32852115

RESUMEN

Steroidogenic acute regulatory protein (STARD1) is regulated by phosphorylation and 14-3-3 protein binding. STARD1 is a key player in cholesterol transport in mitochondria, and its regulation is not fully understood. Tugaeva et al. provide novel insights on the site-specific phosphorylation and subsequent 14-3-3-dependent regulation of STARD1 function. These results may help us understand the mechanism behind the regulation of steroidogenesis. Comment on: https://doi.org/10.1111/febs.15474.


Asunto(s)
Proteínas 14-3-3 , Fosfoproteínas , Proteínas 14-3-3/genética , Lipogénesis , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica
17.
Int J Biochem Cell Biol ; 124: 105763, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32389745

RESUMEN

Mycobacterium smegmatis MSMEG_0129 and Rv0164, its homologue in Mycobacterium tuberculosis, are single START-domain proteins essential for bacterial growth and survival, but their biochemical activities and biological roles remain undetermined. Here, we probed the possible functions of MSMEG_0129 and its underlying mechanisms by determining its cellular location, searching for its interaction partners and monitoring its transcription profile. MSMEG_0129, and Rv0164 by extension, were found to be cytosolic proteins rather than secreted components as previously understood. Increases in MSMEG_0129 expression at physiological levels accelerated bacterial growth in a proportional manner, but additional growth acceleration was not observed when MSMEG_0129 was overexpressed up to 20 fold. MSMEG_0129 is a short-lived protein, unstable at both the mRNA and protein levels. Co-IP and GST pull-down assays showed that MSMEG_0129 interacts with the ClpP2 protease and a global transcription factor, CarD, their expression being correlated with that of MSMEG_0129. Nutrient deficiency led to the downregulation of MSMEG_0129 but upregulation of CarD. However, in the context of constitutive MSMEG_0129 overexpression under nutrient-rich or starvation conditions, the mRNA level of CarD was reduced 3 fold. Conversely, expression of ClpP2 decreased with MSMEG_0129 downregulation under starvation conditions, but increased 4-8 fold when MSMEG_0129 was overexpressed. Our data suggest that MSMEG_0129, and Rv0164 by analogy, are likely to be nutrition sensing factors that regulate mycobacterial growth and may be involved in signal transfer under nutrient deficiency, possibly via physical and regulatory interactions with CarD and ClpP2.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citoplasma/metabolismo , Mycobacterium smegmatis/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas Bacterianas/genética , Citoplasma/genética , Inmunoprecipitación , Espectrometría de Masas , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/patogenicidad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Nutrientes/metabolismo , Unión Proteica/genética , Dominios Proteicos/genética , Estabilidad Proteica , Serina Endopeptidasas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Mol Cell Endocrinol ; 504: 110704, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31927098

RESUMEN

The Steroidogenic Acute Regulatory Protein-related Lipid Transfer (START) domain is a ~210 amino acid sequence that folds into an α/ß helix-grip structure forming a hydrophobic pocket for lipid binding. The helix-grip fold structure defines a large superfamily of proteins, and this review focuses on the mammalian START domain family members that include single START domain proteins with identified ligands, and larger multi-domain proteins that may have novel roles in metabolism. Much of our understanding of the mammalian START domain proteins in lipid transport and changes in metabolism has advanced through studies using knockout mouse models, although for some of these proteins the identity and/or physiological role of ligand binding remains unknown. The findings that helped define START domain lipid-binding specificity, lipid transport, and changes in metabolism are presented to highlight that fundamental questions remain regarding the biological function(s) for START domain-containing proteins.


Asunto(s)
Proteínas Portadoras/fisiología , Metabolismo de los Lípidos , Proteínas de Transporte de Membrana/fisiología , Fosfoproteínas/fisiología , Animales , Transporte Biológico/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Espacio Intracelular/metabolismo , Metabolismo de los Lípidos/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Noqueados , Fosfoproteínas/química , Fosfoproteínas/genética
19.
Elife ; 82019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31799930

RESUMEN

Previously we identified Lam/GramD1 proteins, a family of endoplasmic reticulum membrane proteins with sterol-binding StARkin domains that are implicated in intracellular sterol homeostasis. Here, we show how these proteins exchange sterol molecules with membranes. An aperture at one end of the StARkin domain enables sterol to enter/exit the binding pocket. Strikingly, the wall of the pocket is longitudinally fractured, exposing bound sterol to solvent. Large-scale atomistic molecular dynamics simulations reveal that sterol egress involves widening of the fracture, penetration of water into the cavity, and consequent destabilization of the bound sterol. The simulations identify polar residues along the fracture that are important for sterol release. Their replacement with alanine affects the ability of the StARkin domain to bind sterol, catalyze inter-vesicular sterol exchange and alleviate the nystatin-sensitivity of lam2Δ yeast cells. These data suggest an unprecedented, water-controlled mechanism of sterol discharge from a StARkin domain.


Asunto(s)
Antiportadores/metabolismo , Retículo Endoplásmico/enzimología , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Esteroles/metabolismo , Agua/metabolismo , Antiportadores/química , Proteínas de Unión al ADN , Complejo Multienzimático de Ribonucleasas del Exosoma , Homeostasis , Proteínas de la Membrana/química , Simulación de Dinámica Molecular , Proteínas Nucleares , Conformación Proteica , Dominios Proteicos , Proteínas de Unión al ARN , Proteínas de Saccharomyces cerevisiae/química
20.
Plant J ; 98(5): 928-941, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30735592

RESUMEN

Abscisic acid (ABA) receptors belong to the START domain superfamily, which encompasses ligand-binding proteins present in all kingdoms of life. START domain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterized START domain proteins are the 14 PYR/PYL/RCAR ABA receptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently in Nicotiana benthamiana coupled to untargeted LC-MS to identify candidate binding ligands. We optimized this method using ABA-PYL interactions and show that ABA co-purifies with wild-type PYL5 but not a binding site mutant. The Kd of PYL5 for ABA is 1.1 µm, which suggests that the method has sufficient sensitivity for many ligand-protein interactions. Using this method, we surveyed a set of 37 START domain-related proteins, which resulted in the identification of ligands that co-purified with MLBP1 (At4G01883) or MLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed that MLBP1 binds to monolinolenin, which we confirmed using recombinant MLBP1. Monolinolenin also co-purified with MLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein-metabolite interaction and better understand protein-ligand interactions in plants.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión a Ácidos Grasos/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ligandos , Ácidos Linolénicos/química , Ácidos Linolénicos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA