Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.231
Filtrar
1.
Skin Res Technol ; 30(8): e13888, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39099447

RESUMEN

BACKGROUND: Incontinence-associated dermatitis (IAD) is a tough problem in clinical settings, not only increasing the risk of complications like catheter-related urinary tract infections and pressure ulcers in elderly and critically ill patients, but also prolonging hospital stays, raising hospital costs, and possibly leading to medical disputes. This study is aimed to evaluate the therapeutic effect of silicone dressing combined with topical oxygen therapy on IAD in a rat model. METHODS: An IAD rat model induced by synthetic urine with trypsin was established. Hematoxylin & eosin staining was carried out to examine skin histology. Using immunofluorescence, the microvessel density in the affected skin tissues was determined. ELISA was performed to measure the concentrations of inflammatory cytokines and angiogenic factors in serum. The mRNA expression of EGF, PDGF, and VEGF was detected via qRT-PCR. Western blotting was employed to determine NF-κB p65/STAT1 pathway-related protein levels. RESULTS: Compared to single therapy, silicone dressing combined with topical oxygen therapy could significantly reduce the severity of IAD, improve skin histology, inhibit inflammation, and promote angiogenesis in IAD rat models. Additionally, the results showed that relatively speaking, the combined therapy suppressed the NF-κB p65/STAT1 signaling pathway more effectively. CONCLUSION: These findings indicated that silicone dressing combined with topical oxygen therapy can alleviate IAD through promoting wound healing and inhibiting inflammation via NF-κB p65/STAT1 signaling pathway in a rat model, which provided a theoretical basis for the prevention and treatment of IAD in clinic.


Asunto(s)
Vendajes , Dermatitis , Modelos Animales de Enfermedad , Oxígeno , Ratas Sprague-Dawley , Factor de Transcripción STAT1 , Transducción de Señal , Siliconas , Factor de Transcripción ReIA , Incontinencia Urinaria , Animales , Ratas , Transducción de Señal/efectos de los fármacos , Oxígeno/administración & dosificación , Factor de Transcripción STAT1/metabolismo , Dermatitis/terapia , Dermatitis/etiología , Factor de Transcripción ReIA/metabolismo , Incontinencia Urinaria/terapia , Incontinencia Urinaria/etiología , Masculino
2.
J Adv Res ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128702

RESUMEN

INTRODUCTION: Cetuximab (CTX) is an effective targeted drug for the treatment of metastatic colorectal cancer, but it is effective only in patients with wild-type KRAS genes. Even in this subset of patients, the sensitivity of CTX in patients with right hemi-colon cancer is much lower than that in patients with left hemi-colon cancer. This significantly limits its clinical application. Therefore, further elucidation of the underlying molecular mechanisms is needed. N-myc downstream-regulated gene 1 (NDRG1) plays an important role in solid tumor invasion and metastasis, but whether it can influence CTX sensitivity has not been thoroughly investigated. OBJECTIVE: Our study aimed to identify a novel mechanism by which NDRG1 affects CTX sensitivity. METHODS: Through mass spectrometry analysis of our previously constructed CTX-resistant RKO and HCT116 cells, we found that the signal transducer and activator of transcription-1 (Stat1) might be a potential target of NDRG1. By knocking out NDRG1 or/and Stat1 genes, we then applied the loss-of-function experiments to explore the regulatory relationship between NDRG1 and Stat1 and their roles in the cell cycle, epithelial-mesenchymal transition (EMT), and the sensitivity to CTX in these two colorectal cancer (CRC) cells. Finally, we used the nude-mouse transplanted tumor model and human CRC samples to verify the expression of NDRG1 and Stat1 and their impact on CTX sensitivity in vivo. RESULTS: Stat1 was upregulated in CTX-resistant cells, whereas NDRG1 was downregulated. Mechanically, NDRG1 was inversely correlated with Stat1 expression. It suppressed CRC cell proliferation, migration, and invasion, and promoted apoptosis and epithelial-mesenchymal transition (EMT) by inhibiting Stat1. In addition, NDRG1 directly interacted with Stat1 and promoted Smurf1-induced Stat1 ubiquitination. Importantly, this novel NDRG1-dependent regulatory loop also enhanced CTX sensitivity both in vitro and in vivo. CONCLUSION: Our study revealed that NDRG1 enhanced the sensitivity to Cetuximab by inhibiting Stat1 expression and promoting its ubiquitination in colorectal cancer, elucidating NDRG1 might be a potential therapeutic target for refractory CTX-resistant CRC tumors. But its clinical value still needs to be validated in a larger sample size as well as a different genetic background.

3.
Free Radic Biol Med ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122201

RESUMEN

Enkephalins are reportedly correlated with heart function. However, their regulation in the heart remains unexplored. This study revealed a substantial increase in circulating levels of opioid growth factor (OGF) (also known as methionine enkephalin) and myocardial expression levels of both OGF and its receptor (OGFR) in subjects treated with doxorubicin (Dox). Silencing OGFR through gene knockout or using adeno-associated virus serotype 9 carrying small hairpin RNA effectively alleviated Dox-induced cardiotoxicity (DIC) in mice. Conversely, OGF supplementation exacerbated DIC manifestations, which could be abolished by administration of the OGFR antagonist naltrexone (NTX). Mechanistically, the previously characterized OGF/OGFR/P21 axis was identified to facilitate DIC-related cardiomyocyte apoptosis. Additionally, OGFR was observed to dissociate STAT1 from the promoters of ferritin genes (FTH and FTL), thereby repressing their transcription and exacerbating DIC-related cardiomyocyte ferroptosis. To circumvent the compromised therapeutic effects of Dox on tumors owing to OGFR blockade, SiO2-based modifiable lipid nanoparticles were developed for heart-targeted delivery of NTX. The pretreatment of tumor-bearing mice with the assembled NTX nanodrug successfully provided cardioprotection against Dox toxicity without affecting Dox therapy in tumors. Taken together, this study provides a novel understanding of Dox cardiotoxicity and sheds light on the development of cardioprotectants for patients with tumors receiving Dox treatment.

4.
Lupus ; : 9612033241273072, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39126180

RESUMEN

OBJECTIVE: We aim to investigate the potential roles of key genes in the development of lupus nephritis (LN), screen key biomarkers, and construct the lncRNA XIST/miR-381-3P/STAT1 axis by using bioinformatic prediction combined with clinical validation, thereby providing new targets and insights for clinical research. METHODS: Gene expression microarrays GSE157293 and GSE112943 were downloaded from the GEO database to obtain differentially expressed genes (DEGs), followed by enrichment analyses on these DEGs, which were enriched and analyzed to construct a protein-protein interaction (PPI) network to screen core genes. The lncRNA-miRNA-mRNA regulatory network was predicted and constructed based on the miRNA database. 37 female patients with systemic lupus erythematosus (SLE) were recruited to validate the bioinformatics results by exploring the diagnostic value of the target ceRNA axis in LN by dual luciferase and real-time fluorescence quantitative PCR (RT-qPCR) and receiver operating characteristic (ROC). RESULTS: The data represented that a total of 133 differential genes were screened in the GSE157293 dataset and 2869 differential genes in the GSE112943 dataset, yielding a total of 26 differentially co-expressed genes. Six core genes (STAT1, OAS2, OAS3, IFI44, DDX60, and IFI44L) were screened. Biological functional analysis identified key relevant pathways in LN. ROC curve analysis suggested that lncRNA XIST, miR-381-3P, and STAT1 could be used as potential molecular markers to assist in the diagnosis of LN. CONCLUSION: STAT1 is a key gene in the development of LN. In conclusion, lncRNA XIST, miR-381-3P, and STAT1 can be used as new molecular markers to assist in the diagnosis of LN, and the lncRNA XIST/miR-381-3P/STAT1 axis may be a potential therapeutic target for LN.

5.
Immunobiology ; 229(5): 152840, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126792

RESUMEN

Due to the urgent need to create appropriate treatment techniques, which are currently unavailable, LPS-induced sepsis has become a serious concern on a global scale. The primary active component in the pathophysiology of inflammatory diseases such as sepsis is the Gram-negative bacterial lipopolysaccharide (LPS). LPS interacts with cell surface TLR4 in macrophages, causing the formation of reactive oxygen species (ROS), TNF-α, IL-1ß and oxidative stress. It also significantly activates the MAPKs and NF-κB pathway. Excessive production of pro-inflammatory cytokines is one of the primary characteristic features in the onset and progression of inflammation. Cytokines mainly signal through the JAK/STAT pathway. We hypothesize that blocking of TLR4 along with TNFR1 might be beneficial in suppressing the effects of STAT1/STAT3 due to the stimulation of SOCS3 proteins. Prior to the LPS challenge, the macrophages were treated with antibodies against TLR4 and TNFR1 either individually or in combination. On analysis of the macrophage populations by flowcytometry, it was seen that receptor blockade facilitated the phenotypic shift of the M1 macrophages towards M2 resulting in lowered oxidative stress. Blocking of TLR4/TNFR1 upregulated the SOCS3 and mTOR expressions that enabled the transition of inflammatory M1 macrophages towards the anti-inflammatory M2 phenotype, which might be crucial in curbing the inflammatory responses. Also the reduction in the production of inflammatory cytokines such as IL-6, IL-1ß due to the reduction in the activation of the STAT1 and STAT3 molecules was observed in our combination treatment group. All these results indicated that neutralization of both TLR4 and TNFR1 might provide new insights in establishing an alternative therapeutic strategy for LPS-sepsis.

6.
Front Immunol ; 15: 1430938, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114664

RESUMEN

Severe aplastic anemia (SAA) is a life-threatening bone marrow failure syndrome whose development can be triggered by environmental, autoimmune, and/or genetic factors. The latter comprises germ line pathogenic variants in genes that bring about habitually predisposing syndromes as well as immune deficiencies that do so only occasionally. One of these disorders is the autosomal dominant form of chronic mucocutaneous candidiasis (CMC), which is defined by germ line STAT1 gain-of-function (GOF) pathogenic variants. The resultant overexpression and constitutive activation of STAT1 dysregulate the Janus kinase/signal transducer and activator of transcription 1 (STAT) signaling pathway, which normally organizes the development and proper interaction of different components of the immunologic and hematopoietic system. Although SAA is an extremely rare complication in this disorder, it gained a more widespread interest when it became clear that the underlying causative pathomechanism may, in a similar fashion, also be instrumental in at least some of the idiopathic SAA cases. Based on these premises, we present herein what is the historically most likely first cord blood-transplanted SAA case in a CMC family with a documented STAT1 GOF pathogenic variant. In addition, we recapitulate the characteristics of the six CMC SAA cases that have been reported so far and discuss the significance of STAT1 GOF pathogenic variants and other STAT1 signaling derangements in the context of these specific types of bone marrow failure syndromes. Because a constitutively activated STAT1 signaling, be it driven by STAT1 GOF germ line pathogenic variants or any other pathogenic variant-independent events, is apparently important for initiating and maintaining the SAA disease process, we propose to acknowledge that SAA is one of the definite disease manifestations in STAT1-mutated CMC cases. For the same reason, we deem it necessary to also incorporate molecular and functional analyses of STAT1 into the diagnostic work-up of SAA cases.


Asunto(s)
Anemia Aplásica , Candidiasis Mucocutánea Crónica , Factor de Transcripción STAT1 , Adulto , Femenino , Humanos , Masculino , Anemia Aplásica/genética , Candidiasis Mucocutánea Crónica/genética , Trasplante de Células Madre de Sangre del Cordón Umbilical , Linaje , Estudios Retrospectivos , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
7.
Mol Neurobiol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138759

RESUMEN

The abundant expression of circular RNAs (circRNAs) in the central nervous system and their contribution to the pathogenesis of depression suggest that circRNAs are promising therapeutic targets for depression. This study explored the role and mechanism of circKat6b in esketamine's antidepressant effect. We found that intravenous administration of esketamine (5 mg/kg) treatment decreased the circKat6b expression in the astrocytes of hippocampus induced by a chronic unpredictable mild stress (CUMS) mouse model, while the overexpression of circKat6b in the hippocampus significantly attenuated the antidepressant effects of esketamine in depressed mice. RNA-sequencing, RT-PCR, and western blot experiments showed that the stat1 and p-stat1 expression were significantly upregulated in mouse astrocytes overexpressing circKat6b. In the CUMS mouse model, overexpression of circKat6b in the hippocampus significantly reversed the downregulation of p-stat1 protein expression caused by esketamine. Our findings demonstrated that a novel mechanism of the antidepressant like effect of esketamine may be achieved by reducing the expression of circKat6b in the astrocyte of the hippocampus of depressed mice.

8.
J Cell Mol Med ; 28(15): e18501, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39088353

RESUMEN

Inflammatory bowel disease (IBD) is a chronic systemic inflammatory condition regarded as a major risk factor for colitis-associated cancer. However, the underlying mechanisms of IBD remain unclear. First, five GSE data sets available in GEO were used to perform 'batch correction' and Robust Rank Aggregation (RRA) to identify differentially expressed genes (DEGs). Candidate molecules were identified using CytoHubba, and their diagnostic effectiveness was predicted. The CIBERSORT algorithm evaluated the immune cell infiltration in the intestinal epithelial tissues of patients with IBD and controls. Immune cell infiltration in the IBD and control groups was determined using the least absolute shrinkage selection operator algorithm and Cox regression analysis. Finally, a total of 51 DEGs were screened, and nine hub genes were identified using CytoHubba and Cytoscape. GSE87466 and GSE193677 were used as extra data set to validate the expression of the nine hub genes. CD4-naïve T cells, gamma-delta T cells, M1 macrophages and resting dendritic cells (DCs) are the main immune cell infiltrates in patients with IBD. Signal transducer and activator of transcription 1, CCR5 and integrin subunit beta 2 (ITGB2) were significantly upregulated in the IBD mouse model, and suppression of ITGB2 expression alleviated IBD inflammation in mice. Additionally, the expression of ITGB2 was upregulated in IBD-associated colorectal cancer (CRC). The silence of ITGB2 suppressed cell proliferation and tumour growth in vitro and in vivo. ITGB2 resting DCs may provide a therapeutic strategy for IBD, and ITGB2 may be a potential diagnostic marker for IBD-associated CRC.


Asunto(s)
Biología Computacional , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Biología Computacional/métodos , Ratones , Perfilación de la Expresión Génica , Modelos Animales de Enfermedad , Antígenos CD18/genética , Antígenos CD18/metabolismo , Mapas de Interacción de Proteínas , Receptores CCR5/genética , Receptores CCR5/metabolismo
9.
Front Oncol ; 14: 1431362, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091910

RESUMEN

Introduction: Chemotherapy, notably docetaxel (Doc), stands as the primary treatment for castration-resistant prostate cancer (CRPC). However, its efficacy is hindered by side effects and chemoresistance. Hypoxia in prostate cancer (PC) correlates with chemoresistance to Doc-induced apoptosis via Heme Oxygenase-1 (HO-1) modulation, a key enzyme in heme metabolism. This study investigated targeting heme degradation pathway via HO-1 inhibition to potentiate the therapeutic efficacy of Doc in PC. Methods: Utilizing diverse PC cell lines, we evaluated HO-1 inhibition alone and with Doc on viability, apoptosis, migration, and epithelial- to- mesenchymal transition (EMT) markers and elucidated the underlying mechanisms. Results: HO-1 inhibition significantly reduced PC cell viability under hypoxic and normoxic conditions, enhancing Doc-induced apoptosis through interconnected mechanisms, including elevated reactive oxygen species (ROS) levels, glutathione cycle disruption, and modulation of Signal Transducer and Activator of Transcription 1 (STAT1) pathway. The interplay between STAT1 and HO-1 suggests its reliance on HO-1 activation. Additionally, a decrease in cell migration and downregulation of EMT markers (vimentin and snail) were observed, indicating attenuation of mesenchymal phenotype. Discussion: In conclusion, the combination of HO-1 inhibition with Doc holds promise for improving therapeutic outcomes and advancing clinical management in PC.

10.
Genome Med ; 16(1): 95, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095897

RESUMEN

BACKGROUND: Ischemic stroke elicits a complex and sustained immune response in the brain. Immunomodulatory treatments have long held promise for improving stroke outcomes, yet none have succeeded in the clinical setting. This lack of success is largely due to our incomplete understanding of how immune cells respond to stroke. The objective of the current study was to dissect the effect of permanent stroke on microglia, the resident immune cells within the brain parenchyma. METHODS: A permanent middle cerebral artery occlusion (pMCAO) model was used to induce ischemic stroke in young male and female mice. Microglia were sorted from fluorescence reporter mice after pMCAO or sham surgery and then subjected to single-cell RNA sequencing analysis. Various methods, including flow cytometry, RNA in situ hybridization, immunohistochemistry, whole-brain imaging, and bone marrow transplantation, were also employed to dissect the microglial response to stroke. Stroke outcomes were evaluated by infarct size and behavioral tests. RESULTS: First, we showed the morphologic and spatial changes in microglia after stroke. We then performed single-cell RNA sequencing analysis on microglia isolated from sham and stroke mice of both sexes. The data indicate no major sexual dimorphism in the microglial response to permanent stroke. Notably, we identified seven potential stroke-associated microglial clusters, including four major clusters characterized by a disease-associated microglia-like signature, a highly proliferative state, a macrophage-like profile, and an interferon (IFN) response signature, respectively. Importantly, we provided evidence that the macrophage-like cluster may represent the long-sought stroke-induced microglia subpopulation with increased CD45 expression. Lastly, given that the IFN-responsive subset constitutes the most prominent microglial population in the stroke brain, we used fludarabine to pharmacologically target STAT1 signaling and found that fludarabine treatment improved long-term stroke outcome. CONCLUSIONS: Our findings shed new light on microglia heterogeneity in stroke pathology and underscore the potential of targeting specific microglial populations for effective stroke therapies.


Asunto(s)
Encéfalo , Accidente Cerebrovascular Isquémico , Microglía , Animales , Microglía/metabolismo , Microglía/patología , Femenino , Masculino , Ratones , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Análisis de la Célula Individual , Infarto de la Arteria Cerebral Media/patología , Ratones Endogámicos C57BL
11.
Front Mol Biosci ; 11: 1419072, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948079

RESUMEN

Low-grade glioma (LGG) is a prevalent and lethal primary brain malignancy, with most patients succumbing to recurrence and progression. The signal transducer and activator of transcription (STAT) family has long been implicated in tumor initiation and progression. However, a comprehensive evaluation of the expression status and overall function of STAT genes in LGG remains largely unreported. In this study, we investigated the association between the expression of STAT family genes and the progression of LGG. Through a comprehensive analysis that combined bioinformatics screening and validation assays, we determined that STAT1, STAT3, and STAT5A were upregulated and contributed to the malignant progression of LGG. Notably, our findings suggest that STAT3 is a critical prognostic marker that regulates the progression of LGG. STAT3 emerged as the most significant prognostic indicator governing the advancement of LGG. Additionally, our inquiry into the STAT3-binding proteins and differentially expressed-correlated genes (DEGs) revealed that STAT3 played a pivotal role in the progression of LGG by stimulating the expression of STAT1, FOXO1, and MYC. In summary, our recent study conducted a thorough analysis of the STAT family genes and revealed that directing therapeutic interventions towards STAT3 holds potential as a viable strategy for treating patients with LGG.

12.
Mol Immunol ; 173: 1-9, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996607

RESUMEN

Restoring and maintaining the function of endothelial cells is critical for acute respiratory distress syndrome (ARDS). Guanylate binding protein 1(GBP1) is proved to elevated in ARDS patients, but its role and mechanism remains unclear. The objective of this study is to investigate the internal mechanism of GBP1 in lung injury. Our study showed that when the LPS and IFN-γ induced human Pulmonary Microvascular Endothelial Cells (HPMECs) injury model was established, cell viability was significantly reduced, and the levels of GBP1 levels and inflammatory factors were significantly increased. When transfection with si-GBP1, low expression of GBP1 promoted cell proliferation and migration, and decreased the expression of downstream inflammatory factors. Furthermore, the inhibition of GBP1 significantly reduced the occurrence of cell pyroptosis and the expression of NLRP3 and STAT1. Our study indicated that GBP1 alleviates endothelial pyroptosis and inflammation through STAT1 / NLRP3/GSDMD signaling pathway, and GBP1 may be a new target in the treatment of lung injury in the future.

13.
Int J Biol Sci ; 20(9): 3530-3543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993551

RESUMEN

During muscle regeneration, interferon-gamma (IFN-γ) coordinates inflammatory responses critical for activation of quiescent muscle stem cells upon injury via the Janus kinase (JAK) - signal transducer and activator of transcription 1 (STAT1) pathway. Dysregulation of JAK-STAT1 signaling results in impaired muscle regeneration, leading to muscle dysfunction or muscle atrophy. Until now, the underlying molecular mechanism of how JAK-STAT1 signaling resolves during muscle regeneration remains largely elusive. Here, we demonstrate that epithelial-stromal interaction 1 (Epsti1), an interferon response gene, has a crucial role in regulating the IFN-γ-JAK-STAT1 signaling at early stage of muscle regeneration. Epsti1-deficient mice exhibit impaired muscle regeneration with elevated inflammation response. In addition, Epsti1-deficient myoblasts display aberrant interferon responses. Epsti1 interacts with valosin-containing protein (VCP) and mediates the proteasomal degradation of IFN-γ-activated STAT1, likely contributing to dampening STAT1-mediated inflammation. In line with the notion, mice lacking Epsti1 exhibit exacerbated muscle atrophy accompanied by increased inflammatory response in cancer cachexia model. Our study suggests a crucial function of Epsti1 in the resolution of IFN-γ-JAK-STAT1 signaling through interaction with VCP which provides insights into the unexplored mechanism of crosstalk between inflammatory response and muscle regeneration.


Asunto(s)
Interferón gamma , Regeneración , Factor de Transcripción STAT1 , Factor de Transcripción STAT1/metabolismo , Animales , Ratones , Regeneración/fisiología , Interferón gamma/metabolismo , Transducción de Señal , Inflamación/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ratones Endogámicos C57BL , Ratones Noqueados
14.
Photodiagnosis Photodyn Ther ; : 104283, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032666

RESUMEN

BACKGROUND: Cervical cancer ranks the fourth most prevalent type of cancer worldwide, characterized by a notably low survival rate, particularly in its metastatic stage. Despite 5-aminolevulinic acid photodynamic therapy (ALA-PDT) demonstrating potential anti-tumor effects against cervical cancer, the intricate mechanisms underlying its efficacy necessitate further investigation. Here, the study aims to elucidate the impact of ALA-PDT on the cancer cell viability, invasion and migration, alongside delineating the underlying molecular mechanisms. METHODS: Cervical cancer SiHa cells were subjected to ALA and red light irradiation, and we then measured the ALA-PDT's effects on cell functions using various assays. The potential interaction between miR-152-3p and JAK1 was explored through bioinformatics analyses and validated by dual-luciferase reporter assays. Post-transfection with miR-152-3p and JAK1 vectors, cellular functions were re-evaluated. The efficacy of ALA-PDT in tumor suppression was further investigated through tumor transplantation experiment in vivo. RESULTS: ALA-PDT markedly suppressed SiHa cell viability, invasion and migration, impacting critical markers of proliferation, apoptosis, and epithelial-mesenchymal transition(EMT). And these effects were echoed by the inhibition of miR-152-3p. JAK1 was identified as a direct target of miR-152-3p, and ALA-PDT was found to regulate the expression levels of miR-152-3p, consequently influencing the JAK1/STAT1 signaling pathway. Augmentation of miR-152-3p expression and inhibition of the JAK1/STAT1 pathway mitigated the anti-cancer effects of ALA-PDT, whereas JAK1 overexpression diminished these effects. In vivo analyses demonstrated that ALA-PDT suppressed tumor growth and modulated the miR-152-3p/JAK1/STAT1 pathway expression. CONCLUSIONS: ALA-PDT inhibits the viability, invasion, and migration of cervical cancer SiHa cells by modulating the miR-152-3p/JAK1/STAT1 axis, offering a promising therapeutic avenue for combating invasive cervical cancer.

15.
Cardiovasc Diabetol ; 23(1): 269, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044275

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a mortal clinical syndrome without effective therapies. Empagliflozin (EMPA) improves cardiovascular outcomes in HFpEF patients, but the underlying mechanism remains elusive. Here, mice were fed a high-fat diet (HFD) supplemented with L-NAME for 12 weeks and subsequently intraperitoneally injected with EMPA for another 4 weeks. A 4D-DIA proteomic assay was performed to detect protein changes in the failing hearts. We identified 310 differentially expressed proteins (DEPs) (ctrl vs. HFpEF group) and 173 DEPs (HFpEF vs. EMPA group). The regulation of immune system processes was enriched in all groups and the interferon response genes (STAT1, Ifit1, Ifi35 and Ifi47) were upregulated in HFpEF mice but downregulated after EMPA administration. In addition, EMPA treatment suppressed the increase in the levels of aging markers (p16 and p21) in HFpEF hearts. Further bioinformatics analysis verified STAT1 as the hub transcription factor during pathological changes in HFpEF mice. We next treated H9C2 cells with IFN-γ, a primary agonist of STAT1 phosphorylation, to investigate whether EMPA plays a beneficial role by blocking STAT1 activation. Our results showed that IFN-γ treatment caused cardiomyocyte senescence and STAT1 activation, which were inhibited by EMPA administration. Notably, STAT1 inhibition significantly reduced cellular senescence possibly by regulating STING expression. Our findings revealed that EMPA mitigates cardiac inflammation and aging in HFpEF mice by inhibiting STAT1 activation. The STAT1-STING axis may act as a pivotal mechanism in the pathogenesis of HFpEF, especially under inflammatory and aging conditions.


Asunto(s)
Compuestos de Bencidrilo , Senescencia Celular , Modelos Animales de Enfermedad , Glucósidos , Insuficiencia Cardíaca , Proteínas de la Membrana , Ratones Endogámicos C57BL , Miocitos Cardíacos , Factor de Transcripción STAT1 , Transducción de Señal , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Volumen Sistólico , Función Ventricular Izquierda , Animales , Factor de Transcripción STAT1/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/patología , Compuestos de Bencidrilo/farmacología , Glucósidos/farmacología , Senescencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Masculino , Volumen Sistólico/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular , Interferón gamma/metabolismo , Fosforilación , Ratones
16.
Front Immunol ; 15: 1398955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994355

RESUMEN

Introduction: STAT1a is an essential signal transduction protein involved in the interferon pathway, playing a vital role in IFN-alpha/beta and gamma signaling. Limited information is available about the STAT protein in fish, particularly in Indian major carps (IMC). This study aimed to identify and characterize the STAT1a protein in Labeo rohita (LrSTAT1a). Methods: The full-length CDS of LrSTAT1a transcript was identified and sequenced. Phylogenetic analyses were performed based on the nucleotide sequences. The in-vivo immune stimulant poly I: C was used to treat various tissues, and the expression of LrSTAT1a was determined using quantitative real-time polymerase chain reaction (qRT-PCR). A 3D model of the STAT1a protein was generated using close structure homologs available in the database and checked using molecular dynamics (MD) simulations. Results: The full-length CDS of Labeo rohita STAT1a (LrSTAT1a) transcript consisted of 3238 bp that encoded a polypeptide of 721 amino acids sequence was identified. Phylogenetic analyses were performed based on the nucleotide sequences. Based on our findings, other vertebrates share a high degree of conservation with STAT1a. Additionally, we report that the in vivo immune stimulant poly I: C treatment of various tissues resulted in the expression of LrSTAT1a as determined by quantitative real-time polymerase chain reaction (qRT-PCR). In the current investigation, treatment with poly I: C dramatically increased the expression of LrSTAT1a in nearly every organ and tissue, with the brain, muscle, kidney, and intestine showing the highest levels of expression compared to the control. We made a 3D model of the STAT1a protein by using close structure homologs that were already available in the database. The model was then checked using molecular dynamics (MD) simulations. Consistent with previous research, the MD study highlighted the significance of the STAT1a protein, which is responsible for Src homology 2 (SH2) recognition. An important H-bonding that successfully retains SH2 inside the STAT1a binding cavity was determined to be formed by the conserved residues SER107, GLN530, SER583, LYS584, MET103, and ALA106. Discussion: This study provides molecular insights into the STAT1a protein in Rohu (Labeo rohita) and highlights the potential role of STAT1a in the innate immune response in fish. The high degree of conservation of STAT1a among other vertebrates suggests its crucial role in the immune response. The in-vivo immune stimulation results indicate that STAT1a is involved in the immune response in various tissues, with the brain, muscle, kidney, and intestine being the most responsive. The 3D model and MD study provide further evidence of the significance of STAT1a in the immune response, specifically in SH2 recognition. Further research is necessary to understand the specific mechanisms involved in the IFN pathway and the role of STAT1a in the immune response of IMC.


Asunto(s)
Proteínas de Peces , Filogenia , Poli I-C , Factor de Transcripción STAT1 , Animales , Poli I-C/inmunología , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Dominios Homologos src , Unión Proteica , Secuencia de Aminoácidos , Simulación de Dinámica Molecular , Carpas/inmunología , Carpas/genética , Carpas/metabolismo , Perfilación de la Expresión Génica , Cyprinidae/inmunología , Cyprinidae/genética , Cyprinidae/metabolismo
17.
J Cancer ; 15(14): 4566-4576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006090

RESUMEN

Background: OTUB1, an essential deubiquitinating enzyme, is upregulated in various types of cancer. Previous studies have shown that OTUB1 may be an oncogene in glioblastoma multiforme (GBM), but its specific regulatory mechanism remains unclear. This study aimed to investigate the mechanism by which OTUB1 and the JAK2/STAT1 signaling pathway co-regulate the growth of GBM. Methods: Using bioinformatics, GBM tissues, and cells, we evaluated the expression and clinical significance of OTUB1 in GBM. Subsequently, we explored the regulatory mechanisms of OTUB1 on malignant behaviors in GBM in vitro and in vivo. In addition, we added the JAK2 inhibitor AZD1480 to explore the regulation of OTUB1 for JAK2/STAT1 pathway in GBM. Results: We found that OTUB1 expression was upregulated in GBM. Silencing OTUB1 promotes apoptosis and cell cycle arrest at G1 phase, inhibiting cell proliferation. Moreover, OTUB1 knockdown effectively inhibited the invasion and migration of GBM cells, and the opposite phenomenon occurred with overexpression. In vivo experiments revealed that OTUB1 knockdown inhibited tumor growth, further emphasizing its crucial role in GBM progression. Mechanistically, we found that OTUB1 was negatively correlated with the JAK2/STAT1 pathway in GBM. The addition of the JAK2 inhibitor AZD1480 significantly reversed the effects of silencing OTUB1 on GBM. Conclusion: Our study reveals a novel mechanism by which OTUB1 inhibits the JAK2/STAT1 signaling pathway. This contributes to a better understanding of OTUB1's role in GBM and provides a potential avenue for targeted therapeutic intervention.

18.
Aging Cell ; : e14275, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016438

RESUMEN

Renal aging, marked by the accumulation of senescent cells and chronic low-grade inflammation, leads to renal interstitial fibrosis and impaired function. In this study, we investigate the role of macrophages, a key regulator of inflammation, in renal aging by analyzing kidney single-cell RNA sequencing data of C57BL/6J mice from 8 weeks to 24 months. Our findings elucidate the dynamic changes in the proportion of kidney cell types during renal aging and reveal that increased macrophage infiltration contributes to chronic low-grade inflammation, with these macrophages exhibiting senescence and activation of ferroptosis signaling. CellChat analysis indicates enhanced communications between macrophages and tubular cells during aging. Suppressing ferroptosis alleviates macrophage-mediated tubular partial epithelial-mesenchymal transition in vitro, thereby mitigating the expression of fibrosis-related genes. Using SCENIC analysis, we infer Stat1 as a key age-related transcription factor promoting iron dyshomeostasis and ferroptosis in macrophages by regulating the expression of Pcbp1, an iron chaperone protein that inhibits ferroptosis. Furthermore, through virtual screening and molecular docking from a library of anti-aging compounds, we construct a docking model targeting Pcbp1, which indicates that the natural small molecule compound Rutin can suppress macrophage senescence and ferroptosis by preserving Pcbp1. In summary, our study underscores the crucial role of macrophage iron dyshomeostasis and ferroptosis in renal aging. Our results also suggest Pcbp1 as an intervention target in aging-related renal fibrosis and highlight Rutin as a potential therapeutic agent in mitigating age-related renal chronic low-grade inflammation and fibrosis.

19.
Integr Cancer Ther ; 23: 15347354241263018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39077786

RESUMEN

Objective: The Chinese medicine Jianpi-Huayu decoction (, JPHY) can alleviate cancer-related fatigue in patients with liver cancer. However, its mechanism remains unclear. In this study, we used BALB/c mice with liver cancer model to investigate whether JPHY alleviates cancer-related fatigue by regulating Th1/Th2 immune balance; and the possible association with the IL-27/STAT1 signaling pathway. Methods: We established a mouse model of liver cancer fatigue. Mice were gavaged with physiological saline, low, medium, or high concentrations of JPHY respectively; and intraperitoneal injection of fludarabine (STAT1 pathway inhibitor) with JPHY for 21 days. We recorded the general condition of the mice, and assessed fatigue using scoring criteria and Exhausted Swimming Test. We calculated the spleen and thymus indices, performed H&E staining and immunohistochemical analysis on liver tumor tissues to observe the tumor proliferation marker ki67. We quantified the secretion levels of IFN-γ and IL-2 produced by Th1 cells in serum and splenic lymphocytes, as well as the secretion of IL-4, IL-10 by Th2 cells, and IL-27 in the signaling pathway through ELISA analysis. We evaluated the expression levels of p-STAT1 and STAT1 in spleen tissues using Western blot analysis. Results: JPHY exhibits a therapeutic effect on hepatocellular carcinoma-induced splenomegaly in murine models by upregulating the pro-inflammatory cytokines IFN-γ and IL-2 and downregulating the anti-inflammatory cytokines IL-4 and IL-10. Moreover, JPHY suppresses ki67 expression, reduces tumor-related inflammation infiltration, and ameliorates cancer-associated fatigue. Additionally, the expression of phosphorylated protein p-STAT1 is down-regulated. Conclusion: JPHY may improve the Th1/Th2 immune balance through its anti-inflammatory effects and promotion of IL-27-induced STAT1 phosphorylation, thereby alleviating fatigue in mice with liver cancer.


Asunto(s)
Medicamentos Herbarios Chinos , Fatiga , Neoplasias Hepáticas , Ratones Endogámicos BALB C , Factor de Transcripción STAT1 , Transducción de Señal , Células TH1 , Células Th2 , Animales , Factor de Transcripción STAT1/metabolismo , Ratones , Medicamentos Herbarios Chinos/farmacología , Transducción de Señal/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Células TH1/efectos de los fármacos , Células TH1/inmunología , Fatiga/tratamiento farmacológico , Células Th2/efectos de los fármacos , Células Th2/inmunología , Modelos Animales de Enfermedad , Balance Th1 - Th2/efectos de los fármacos , Masculino , Interleucinas/metabolismo , Interleucina-27
20.
Inflammation ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037666

RESUMEN

The ovarian tumor (OTU) family consists of deubiquitinating enzymes thought to play a crucial role in immunity. Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) pose substantial clinical challenges due to severe respiratory complications and high mortality resulting from uncontrolled inflammation. Despite this, no study has explored the potential link between the OTU family and ALI/ARDS. Using publicly available high-throughput data, 14 OTUs were screened in a simulating bacteria- or LPS-induced ALI model. Subsequently, gene knockout mice and transcriptome sequencing were employed to explore the roles and mechanisms of the selected OTUs in ALI. Our screen identified OTUD1 in the OTU family as a deubiquitinase highly related to ALI. In the LPS-induced ALI model, deficiency of OTUD1 significantly ameliorated pulmonary edema, reduced permeability damage, and decreased lung immunocyte infiltration. Furthermore, RNA-seq analysis revealed that OTUD1 deficiency inhibited key pathways, including the IFN-γ/STAT1 and TNF-α/NF-κB axes, ultimately mitigating the severity of immune responses in ALI. In summary, our study highlights OTUD1 as a critical immunomodulatory factor in acute inflammation. These findings suggest that targeting OTUD1 could hold promise for the development of novel treatments against ALI/ARDS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA