Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37836173

RESUMEN

Sugar Efflux transporters (SWEET) are involved in diverse biological processes of plants. Pathogens have exploited them for nutritional gain and subsequently promote disease progression. Recent studies have implied the involvement of potato SWEET genes in the most devastating late blight disease caused by Phytophthora infestans. Here, we identified and designated 37 putative SWEET genes as StSWEET in potato. We performed detailed in silico analysis, including gene structure, conserved domains, and phylogenetic relationship. Publicly available RNA-seq data was harnessed to retrieve the expression profiles of SWEET genes. The late blight-responsive SWEET genes were identified from the RNA-seq data and then validated using quantitative real-time PCR. The SWEET gene expression was studied along with the biotrophic (SNE1) and necrotrophic (PiNPP1) marker genes of P. infestans. Furthermore, we explored the co-localization of P. infestans resistance loci and SWEET genes. The results indicated that nine transporter genes were responsive to the P. infestans in potato. Among these, six transporters, namely StSWEET10, 12, 18, 27, 29, and 31, showed increased expression after P. infestans inoculation. Interestingly, the observed expression levels aligned with the life cycle of P. infestans, wherein expression of these genes remained upregulated during the biotrophic phase and decreased later on. In contrast, StSWEET13, 14, and 32 didn't show upregulation in inoculated samples suggesting non-targeting by pathogens. This study underscores these transporters as prime P. infestans targets in potato late blight, pivotal in disease progression, and potential candidates for engineering blight-resistant potato genotypes.

2.
Plants (Basel) ; 12(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37050100

RESUMEN

Sugars Will Eventually be Exported Transporter (SWEET) gene family plays indispensable roles in plant physiological activities, development processes, and responses to biotic and abiotic stresses, but no information is known for roses. In this study, a total of 25 RcSWEET genes were identified in Rosa chinensis 'Old Blush' by genome-wide analysis and clustered into four subgroups based on their phylogenetic relationships. The genomic features, including gene structures, conserved motifs, and gene duplication among the chromosomes of RcSWEET genes, were characterized. Seventeen types of cis-acting elements among the RcSWEET genes were predicted to exhibit their potential regulatory roles during biotic and abiotic stress and hormone responses. Tissue-specific and cold-response expression profiles based on transcriptome data showed that SWEETs play widely varying roles in development and stress tolerance in two rose species. Moreover, the different expression patterns of cold-response SWEET genes were verified by qRT-PCR between the moderately cold-resistant species R. chinensis 'Old Blush' and the extremely cold-resistant species R. beggeriana. Especially, SWEET2a and SWEET10c exhibited species differences after cold treatment and were sharply upregulated in the leaves of R. beggeriana but not R. chinensis 'Old Blush', indicating that these two genes may be the crucial candidates that participate in cold tolerance in R. beggeriana. Our results provide the foundation for function analysis of the SWEET gene family in roses, and will contribute to the breeding of cold-tolerant varieties of roses.

3.
Genes (Basel) ; 13(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36292567

RESUMEN

The sugar will eventually be exported transporters (SWEET) family is an important group of transport carriers for carbon partitioning in plants and has important functions in growth, development, and abiotic stress tolerance. Although the SWEET family is an important sugar transporter, little is known of the functions of the SWEET family in maize (Zea mays), especially in response to abiotic stresses. To further explore the response pattern of maize SWEET to abiotic stress, a bioinformatics-based approach was used to predict and identify the maize SWEET gene (ZmSWEET) family. Twenty-four ZmSWEET genes were identified using the MaizeGDB database. Phylogenetic analysis resolved these twenty-four genes into four clades. One tandem and five segmental duplication events were identified, which played a major role in ZmSWEET family expansion. Synteny analysis provided insight into the evolutionary characteristics of the ZmSWEET genes with those of three graminaceous crop species. A heatmap showed that most ZmSWEET genes responded to at least one type of abiotic stress. By an abscisic acid signaling pathway, among which five genes were significantly induced under NaCl treatment, eight were obviously up-regulated under PEG treatment and five were up-regulated under Cd stress, revealing their potential functions in response to abiotic stress. These findings will help to explain the evolutionary links of the ZmSWEET family and contribute to future studies on the functional characteristics of ZmSWEET genes, and then improve abiotic stress tolerance in maize through molecular breeding.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Cloruro de Sodio/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Familia de Multigenes , Cadmio/metabolismo , Estrés Fisiológico/genética , Proteínas de Transporte de Membrana/genética , Hormonas , Carbono/metabolismo , Azúcares/metabolismo
4.
PeerJ ; 10: e13273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529486

RESUMEN

The Sugars Will Eventually be Exported Transporter (SWEET) gene family encodes a family of sugar transporters that play essential roles in plant growth, reproduction, and biotic and abiotic stresses. Prunus mume is a considerable ornamental wood plant with high edible and medicinal values; however, its lack of tolerance to low temperature has severely limited its geographical distribution. To investigate whether this gene family mediates the response of P. mume to cold stress, we identified that the P. mume gene family consists of 17 members and divided the family members into four groups. Sixteen of these genes were anchored on six chromosomes, and one gene was anchored on the scaffold with four pairs of segmental gene duplications and two pairs of tandem gene duplications. Cis-acting regulatory element analysis indicated that the PmSWEET genes are potentially involved in P. mume development, including potentially regulating roles in procedure, such as circadian control, abscisic acid-response and light-response, and responses to numerous stresses, such as low-temperature and drought. We performed low-temperature treatment in the cold-tolerant cultivar 'Songchun' and cold-sensitive cultivar 'Zaolve' and found that the expression of four of 17 PmSWEETs was either upregulated or downregulated with prolonged treatment times. This finding indicates that these family members may potentially play a role in cold stress responses in P. mume. Our study provides a basis for further investigation of the role of SWEET proteins in the development of P. mume and its responses to cold stress.


Asunto(s)
Respuesta al Choque por Frío , Prunus , Respuesta al Choque por Frío/genética , Perfilación de la Expresión Génica/métodos , Prunus/genética , Genoma de Planta , Genes de Plantas
5.
Int J Mol Sci ; 23(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35628209

RESUMEN

The Sugars Will Eventually be Exported Transporters (SWEET) family is a class of sugar transporters that play key roles in phloem loading, seed filling, pollen development and the stress response in plants. Here, a total of 18 JcSWEET genes were identified in physic nut (Jatropha curcas L.) and classified into four clades by phylogenetic analysis. These JcSWEET genes share similar gene structures, and alternative splicing of messenger RNAs was observed for five of the JcSWEET genes. Three (JcSWEET1/4/5) of the JcSWEETs were found to possess transport activity for hexose molecules in yeast. Real-time quantitative PCR analysis of JcSWEETs in different tissues under normal growth conditions and abiotic stresses revealed that most are tissue-specifically expressed, and 12 JcSWEETs responded to either drought or salinity. The JcSWEET16 gene responded to drought and salinity stress in leaves, and the protein it encodes is localized in both the plasma membrane and the vacuolar membrane. The overexpression of JcSWEET16 in Arabidopsis thaliana modified the flowering time and saline tolerance levels but not the drought tolerance of the transgenic plants. Together, these results provide insights into the characteristics of SWEET genes in physic nut and could serve as a basis for cloning and further functional analysis of these genes.


Asunto(s)
Arabidopsis , Jatropha , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Jatropha/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Azúcares/metabolismo
6.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269614

RESUMEN

Members of the sugars will eventually be exported transporter (SWEET) family regulate the transport of different sugars through the cell membrane and control the distribution of sugars inside and outside the cell. The SWEET gene family also plays important roles in plant growth and development and physiological processes. So far, there are no reports on the SWEET family in pomegranate. Meanwhile, pomegranate is rich in sugar, and three published pomegranate genome sequences provide resources for the study of the SWEET gene family. 20 PgSWEETs from pomegranate and the known Arabidopsis and grape SWEETs were divided into four clades (Ⅰ, Ⅱ, Ⅲ and Ⅳ) according to the phylogenetic relationships. PgSWEETs of the same clade share similar gene structures, predicting their similar biological functions. RNA-Seq data suggested that PgSWEET genes have a tissue-specific expression pattern. Foliar application of tripotassium phosphate significantly increased the total soluble sugar content of pomegranate fruits and leaves and significantly affected the expression levels of PgSWEETs. The plant growth hormone regulator assay also significantly affected the PgSWEETs expression both in buds of bisexual and functional male flowers. Among them, we selected PgSWEET17a as a candidate gene that plays a role in fructose transport in leaves. The 798 bp CDS sequence of PgSWEET17a was cloned, which encodes 265 amino acids. The subcellular localization of PgSWEET17a showed that it was localized to the cell membrane, indicating its involvement in sugar transport. Transient expression results showed that tobacco fructose content was significantly increased with the up-regulation of PgSWEET17a, while both sucrose and glucose contents were significantly down-regulated. The integration of the PgSWEET phylogenetic tree, gene structure and RNA-Seq data provide a genome-wide trait and expression pattern. Our findings suggest that tripotassium phosphate and plant exogenous hormone treatments could alter PgSWEET expression patterns. These provide a reference for further functional verification and sugar metabolism pathway regulation of PgSWEETs.


Asunto(s)
Arabidopsis , Lythraceae , Granada (Fruta) , Arabidopsis/genética , Clonación Molecular , Fructosa , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Lythraceae/genética , Fosfatos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Granada (Fruta)/genética , Azúcares
7.
DNA Cell Biol ; 39(9): 1606-1620, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32749870

RESUMEN

The sugars will eventually be exported transporters (SWEET) gene family is a glycoprotein gene family that can regulate the transport of sugar in plants and plays an important role in plant growth and development, as well as in response to environmental stress. In this study, Kentucky bluegrass (cv. Baron) seedlings were grown in various treatments, including heavy metal cadmium, salt, drought, cold, and heat stress for 6 h, 24 h, 48 h, and 7 day. The relative expression of the identified PpSWEET genes in Kentucky bluegrass was measured. The results showed there were a total of 13 SWEET genes, which could be divided into four clades by phylogenetic analysis. Most PpSWEET genes are alkali proteins with seven transmembrane helices. Moreover, almost all PpSWEET proteins possess similar conserved motifs and active sites. In addition, an analysis of the relative expression of PpSWEET genes under various stress treatments indicated that PpSWEET12 and PpSWEET15 had very high expression under the five types of stress, meaning they can be used as important candidate genes for studying responses to environmental stresses of turfgrass. Furthermore, certain genes only showed changes in expression under one or two specific stress treatments. This study provides important insight into the SWEET gene family in Kentucky bluegrass and its functional roles in responses to various environmental stresses.


Asunto(s)
Proteínas de Transporte de Monosacáridos/genética , Proteínas de Plantas/genética , Poa/genética , Estrés Fisiológico , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Poa/clasificación , Poa/metabolismo , Dominios Proteicos
8.
Biochem Biophys Res Commun ; 496(2): 407-414, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29307830

RESUMEN

Sugars will eventually be exported transporters (SWEETs) are a group of recently identified sugar transporters in plants that play important roles in diverse physiological processes. However, currently, limited information about this gene family is available in pineapple (Ananas comosus). The availability of the recently released pineapple genome sequence provides the opportunity to identify SWEET genes in a Bromeliaceae family member at the genome level. In this study, 39 pineapple SWEET genes were identified in two pineapple cultivars (18 AnfSWEET and 21 AnmSWEET) and further phylogenetically classified into five clades. A phylogenetic analysis revealed distinct evolutionary paths for the SWEET genes of the two pineapple cultivars. The MD2 cultivar might have experienced a different expansion than the F153 cultivar because two additional duplications exist, which separately gave rise to clades III and IV. A gene exon/intron structure analysis showed that the pineapple SWEET genes contained highly conserved exon/intron numbers. An analysis of public RNA-seq data and expression profiling showed that SWEET genes may be involved in fruit development and ripening processes. AnmSWEET5 and AnmSWEET11 were highly expressed in the early stages of pineapple fruit development and then decreased. The study increases the understanding of the roles of SWEET genes in pineapple.


Asunto(s)
Ananas/genética , Proteínas Portadoras/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Ananas/clasificación , Ananas/crecimiento & desarrollo , Ananas/metabolismo , Evolución Biológica , Proteínas Portadoras/metabolismo , Mapeo Cromosómico , Exones , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Intrones , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Azúcares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA