Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Parasit Vectors ; 17(1): 248, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844973

RESUMEN

BACKGROUND: Sarcoptic mange is a skin disease caused by the contagious ectoparasite Sarcoptes scabiei, capable of suppressing and extirpating wild canid populations. Starting in 2015, we observed a multi-year epizootic of sarcoptic mange affecting a red fox (Vulpes vulpes) population on Fire Island, NY, USA. We explored the ecological factors that contributed to the spread of sarcoptic mange and characterized the epizootic in a landscape where red foxes are geographically constrained. METHODS: We tested for the presence of S. scabiei DNA in skin samples collected from deceased red foxes with lesions visibly consistent with sarcoptic mange disease. We deployed 96-100 remote trail camera stations each year to capture red fox occurrences and used generalized linear mixed-effects models to assess the affects of red fox ecology, human and other wildlife activity, and island geography on the frequency of detecting diseased red foxes. We rated the extent of visual lesions in diseased individuals and mapped the severity and variability of the sarcoptic mange disease. RESULTS: Skin samples that we analyzed demonstrated 99.8% similarity to S. scabiei sequences in GenBank. Our top-ranked model (weight = 0.94) showed that diseased red foxes were detected more frequently close to roadways, close to territories of other diseased red foxes, away from human shelters, and in areas with more mammal activity. There was no evidence that detection rates in humans and their dogs or distance to the nearest red fox den explained the detection rates of diseased red foxes. Although detected infrequently, we observed the most severe signs of sarcoptic mange at the periphery of residential villages. The spread of visual signs of the disease was approximately 7.3 ha/week in 2015 and 12.1 ha/week in 2017. CONCLUSIONS: We quantified two separate outbreaks of sarcoptic mange disease that occurred > 40 km apart and were separated by a year. Sarcoptic mange revealed an unfettered spread across the red fox population. The transmission of S. scabiei mites in this system was likely driven by red fox behaviors and contact between individuals, in line with previous studies. Sarcoptic mange is likely an important contributor to red fox population dynamics within barrier island systems.


Asunto(s)
Zorros , Sarcoptes scabiei , Escabiosis , Animales , Zorros/parasitología , Escabiosis/veterinaria , Escabiosis/epidemiología , Escabiosis/parasitología , Sarcoptes scabiei/genética , Piel/parasitología , Piel/patología , New York/epidemiología , Animales Salvajes/parasitología , Geografía , Humanos
2.
J Mammal ; 105(3): 621-632, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38812927

RESUMEN

Home range and home range overlap can be used to describe use of space and movement of wildlife. During the last years, advancements in technology have greatly improved our understanding of animal movement, especially among large herbivores. Wild ungulate abundance and distribution have increased in temperate areas. Moreover, their diseases-including sarcoptic mange in the Iberian Ibex (Capra pyrenaica)-have become a cause of concern for livestock, public health, and wildlife conservation. In this study, we first reviewed existing literature on the home range of species in the genus Capra. We then analyzed data from 52 GPS-GSM-collared Iberian ibexes, of which 33 were healthy and 19 were affected by sarcoptic mange from 3 different populations in the southeastern Iberian Peninsula to analyze: (1) differences in size and characteristics of home ranges obtained by the 3 most commonly used methodologies-minimum convex polygon, kernel density estimation, and Brownian bridges movement models (BBMMs); and (2) the impact of endemic sarcoptic mange on Iberian Ibex home range. The literature review revealed that available information on spatial behavior of Capra spp. was based only on 3 species, including the Iberian Ibex, estimated through a diversity of methods which made it difficult to compare results. We found positive correlations among the different home range estimation methods in the Iberian Ibex, with BBMMs proving to be the most accurate. This study is the first to use BBMMs for estimating home range in this species, and it revealed a marked seasonal behavior in spatial use, although sarcoptic mange smoothed such seasonal pattern. The seasonal overlaps obtained suggest that core areas of the Iberian Ibex change within wider home range areas, which are ecological parameters relevant to identifying key areas for species management and conservation.

3.
J Wildl Dis ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717896

RESUMEN

We report tracking of bacterial skin microbiota for two bare-nosed wombats (Vombatus ursinus) following in situ treatment for sarcoptic mange. Sarcoptes scabiei, the etiologic agent, has dramatic effects on skin microbiota. Our case reports show differing disease trajectory and bacterial beta diversity between the two treated individuals.

4.
J Math Biol ; 88(5): 53, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565734

RESUMEN

The use of therapeutic agents is a critical option to manage wildlife disease, but their implementation is usually spatially constrained. We seek to expand knowledge around the effectiveness of management of environmentally-transmitted Sarcoptes scabiei on a host population, by studying the effect of a spatially constrained treatment regime on disease dynamics in the bare-nosed wombat Vombatus ursinus. A host population of wombats is modelled using a system of non-linear partial differential equations, a spatially-varying treatment regime is applied to this population and the dynamics are studied over a period of several years. Treatment could result in mite decrease within the treatment region, extending to a lesser degree outside, with significant increases in wombat population. However, the benefits of targeted treatment regions within an environment are shown to be dependent on conditions at the start (endemic vs. disease free), as well as on the locations of these special regions (centre of the wombat population or against a geographical boundary). This research demonstrates the importance of understanding the state of the environment and populations before treatment commences, the effects of re-treatment schedules within the treatment region, and the transient large-scale changes in mite numbers that can be brought about by sudden changes to the environment. It also demonstrates that, with good knowledge of the host-pathogen dynamics and the spatial terrain, it is possible to achieve substantial reduction in mite numbers within the target region, with increases in wombat numbers throughout the environment.


Asunto(s)
Marsupiales , Escabiosis , Animales , Escabiosis/tratamiento farmacológico , Escabiosis/epidemiología , Sarcoptes scabiei , Animales Salvajes
5.
Parasit Vectors ; 17(1): 194, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664829

RESUMEN

BACKGROUND: Sarcoptic mange is a serious animal welfare concern in bare-nosed wombats (Vombatus ursinus). Fluralaner (Bravecto®) is a novel acaricide that has recently been utilised for treating mange in wombats. The topical 'spot-on' formulation of fluralaner can limit treatment delivery options in situ, but dilution to a volume for 'pour-on' delivery is one practicable solution. This study investigated the in vitro acaricidal activity of Bravecto, a proposed essential oil-based diluent (Orange Power®), and two of its active constituents, limonene and citral, against Sarcoptes scabiei. METHODS: Sarcoptes scabiei were sourced from experimentally infested pigs. In vitro assays were performed to determine the lethal concentration (LC50) and survival time of the mites when exposed to varying concentrations of the test solutions. RESULTS: All compounds were highly effective at killing mites in vitro. The LC50 values of Bravecto, Orange Power, limonene and citral at 1 h were 14.61 mg/ml, 4.50%, 26.53% and 0.76%, respectively. The median survival times of mites exposed to undiluted Bravecto, Orange Power and their combination were 15, 5 and 10 min, respectively. A pilot survival assay of mites collected from a mange-affected wombat showed survival times of < 10 min when exposed to Bravecto and Orange Power and 20 min when exposed to moxidectin. CONCLUSIONS: These results confirm the acaricidal properties of Bravecto, demonstrate acaricidal properties of Orange Power and support the potential suitability of Orange Power and its active constituents as a diluent for Bravecto. As well as killing mites via direct exposure, Orange Power could potentially enhance the topical delivery of Bravecto to wombats by increasing drug penetration in hyperkeratotic crusts. Further research evaluating the physiochemical properties and modes of action of Orange Power and its constituents as a formulation vehicle would be of value.


Asunto(s)
Acaricidas , Isoxazoles , Aceites de Plantas , Sarcoptes scabiei , Escabiosis , Animales , Sarcoptes scabiei/efectos de los fármacos , Acaricidas/farmacología , Isoxazoles/farmacología , Escabiosis/tratamiento farmacológico , Escabiosis/parasitología , Aceites de Plantas/farmacología , Aceites de Plantas/química , Monoterpenos Acíclicos/farmacología , Porcinos , Limoneno/farmacología , Limoneno/química , Terpenos/farmacología , Terpenos/química , Ciclohexenos/farmacología , Ciclohexenos/química , Dosificación Letal Mediana
6.
Vet Res Commun ; 48(3): 1837-1843, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38280082

RESUMEN

South American Camelids, including alpacas, have gained popularity in Europe as pets and prized wool sources. Skin health concerns, particularly mite infestations, have emerged as a notable problem in these animals. Sarcoptic mange can lead to severe itching, papules, and chronic symptoms such as alopecia, crusts, and emaciation if left untreated. This case report documents a 2-year-old female alpaca suffering from sarcoptic mange. Despite initial treatment with ivermectin, its condition worsened, leading to severe weight loss, abortion, and a continued presence of mites. Considering the lack of effective treatments for sarcoptic mange in alpacas and the unavailability of registered drugs for this species in Italy, fluralaner, a drug previously used in other animal species, has been administered orally at a dosage of 5 mg/kg. Within a week after the treatment with fluralaner, the patient exhibited significant improvement, including the resolution of itching, healing of skin lesions, and an increase in appetite. Follow-up skin scrapings confirmed the absence of mites, and the patient's condition continued to improve. Fluralaner demonstrated to be a highly effective and fast-acting treatment for sarcoptic mange in alpacas, offering potential economic benefits attributed to its single-dose administration.


Asunto(s)
Camélidos del Nuevo Mundo , Isoxazoles , Escabiosis , Animales , Camélidos del Nuevo Mundo/parasitología , Femenino , Isoxazoles/uso terapéutico , Isoxazoles/administración & dosificación , Escabiosis/tratamiento farmacológico , Escabiosis/veterinaria , Escabiosis/parasitología , Acaricidas/uso terapéutico
7.
Vet Med (Praha) ; 68(5): 200-207, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37982023

RESUMEN

In veterinary medicine, natural products provide an alternative to chemical agents for mite management. In the present study, the acaricidal efficacy of Urtica fissa leaf ethyl acetate extract against Sarcoptes scabiei mites was examined. The chemical composition of the extract was determined using liquid chromatography-mass spectrometry (LC-MS) analysis. The ethyl acetate extract was found to be extremely toxic to mites at a concentration of 100 mg/ml (m/v), killing all S. scabiei within two hours. The median lethal time (LT50) values for ethyl acetate extract concentrations of 25, 50, and 100 mg/ml against S. scabiei were 1.706, 1.204, and 0.750 h, respectively. The median lethal dosage (LC50) for S. scabiei was 19.14 mg/ml at two hours. The chemical composition of the ethyl acetate extract was evaluated using LC-MS, showing that the major components were schaftoside (8.259%), carnosol (6.736%), prostaglandin A2 (5.94%), 13(S)-HpOTrE (4.624%), nandrolone (4.264%), 1H-indole-3-carboxaldehyde (4.138%), 9-oxoODE (3.206%), and stearidonic acid (2.891%). In conclusion, these findings indicate that Urtica fissa contains promising new acaricidal compounds capable of successfully controlling animal mites.

8.
One Health ; 17: 100622, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38024274

RESUMEN

Identifying the role that host species play in pathogen transmission and maintenance is crucial for disease control, but it is a difficult task, in particular for vector-borne and multi-host pathogens, and especially when wildlife species are involved. This is the case for a Crimean-Congo hemorrhagic fever virus (CCHFV) hotspot in north-eastern Spain, where Iberian ibex (Capra pyrenaica) and wild boar (Sus scrofa) are involved, but their roles in disease transmission are unclear. In this context, we studied the dynamics of CCHFV transmission in these two species during the collapse of an Iberian ibex population due to a sarcoptic mange outbreak. We carried out a repeated cross-sectional study measuring the trends of CCHFV seroprevalence in Iberian ibex and wild boar and their abundances. In addition, we identified the tick species present in this area on the vegetation and on wild boars, and evaluated relevant meteorological factors. Results show that while the trends in CCHFV seroprevalence in Iberian Ibex and density of wild boars remained constant (p = 1.0 and p = 0.8, respectively), both the trends in Iberian ibex census and CCHFV seroprevalence in wild boars decreased significantly (p = 0.003 and p = 0.0001, respectively), and were correlated (Spearman's rank, 0.02 < p-adjusted<0.05). The correlation between the patterns of reduction of Iberian ibex abundance and the decrease of seroprevalence in wild boars suggests some sort of shared transmission cycle between the two species. Data from tick species in the area suggest a possible role of Rhipicephalus bursa in CCHFV transmission. The dynamics of CCHFV were unlikely caused by changes in meteorological variables such as temperature or water vapor pressure deficit. Further studies will be needed to confirm these hypotheses.

9.
Parasitol Res ; 122(12): 3181-3188, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37882819

RESUMEN

Sarcoptes scabiei (Acari: Sarcoptidae) is a globally distributed parasitic mite species, which causes mange in a broad spectrum of domestic and wild mammals. In the present study, we report a case of chronic S. scabiei infestation in a captive lowland tapir (Tapirus terrestris) held in a multi-species exhibit at Vienna Zoo. The adult male showed clinically manifested mange flare-ups three times at an interval of up to 12 months, diagnosed by positive deep-skin scrapings and successfully treated by oral applications of ivermectin (0.1-0.2 mg/kg body weight) and washings with antimicrobial solutions. Clinical symptoms including pruritus, alopecia, erythema, crusts, and superficial bleedings were limited to the axillar and pectoral region, as well as distal limbs. The affected tapir died from underlying bacterial pneumonia during general anesthesia. Skin scrapings, necropsy, and histopathological analysis of mite material (eggs, larvae, and adults) permitted further morphological and molecular identification. The morphological features described here matched the characteristics for the species S. scabiei and molecular data verified morphological identification. Cross-species transmission plays a key role in the expansion of this neglected emerging panzootic disease and urban wildlife could potentially bridge the gap between free-ranging wildlife reservoirs and zoo animals. However, further examinations are needed to detect the primary source of infestation and discover transmission pathways within the zoo.


Asunto(s)
Sarcoptes scabiei , Escabiosis , Animales , Masculino , Sarcoptes scabiei/genética , Escabiosis/tratamiento farmacológico , Escabiosis/veterinaria , Animales Salvajes/parasitología , Piel/parasitología , Mamíferos , Biología Molecular
10.
BMC Vet Res ; 19(1): 189, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798627

RESUMEN

BACKGROUND: Sarcoptic mange is a common, pruritic parasitic skin disease of dogs. Due to its highly contagious character, it represents a potential veterinary and public health risk. Because of clinical similarity with other diseases, cross-antigenicity, and low sensitivity of available diagnostic methods, therapeutical trial is frequently used to confirm the disease. Considering the variety of available acaricidal molecules as well as the need to use the most effective treatment, the present paper reviews evidence comparing different types of systemic treatment of canine scabies. RESULTS: Analysis of the results showed that afoxolaner, fluralaner and sarolaner as well as several macrocyclic lactones such as selamectin, moxidectin and milbemycin oxime can lead to parasitological and clinical cure. CONCLUSION: The similarity in the clinical and parasitological efficacy of these substances enhances the need for comparative studies, which could allow the identification of the most efficacious product.


Asunto(s)
Acaricidas , Enfermedades de los Perros , Escabiosis , Animales , Perros , Escabiosis/tratamiento farmacológico , Escabiosis/veterinaria , Escabiosis/parasitología , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/parasitología , Acaricidas/uso terapéutico , Administración Cutánea , Resultado del Tratamiento , Sarcoptes scabiei
11.
Front Vet Sci ; 10: 1183304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323847

RESUMEN

Introduction: Sarcoptic mange, caused by Sarcoptes scabiei, is a disease with implications for wildlife conservation and management. Its severity depends on the host's local skin immune response, which is largely unknown in Iberian ibex (Capra pyrenaica), a mountain ungulate dramatically affected by mange. In this species, the clinical outcome of sarcoptic mange varies among individuals, and the local immune response could be key to controlling the infestation. This study aims to characterize the local cellular immune response and its relationship with the clinical outcome. Methods: Fourteen Iberian ibexes were experimentally infested with S. scabiei and six more served as controls. Clinical signs were monitored, and skin biopsies were collected from the withers at 26, 46, and 103 days post-infection (dpi). The presence and distribution of macrophages (including M1 and M2 phenotypes), T lymphocytes, B lymphocytes, plasma cells, and interleukine 10 were quantitatively evaluated using immunohistochemical techniques. Results: An inflammatory infiltrate that decreased significantly from 26 to 103 dpi was observed in all the infested ibexes. The predominant inflammatory cell population in the skin of the mangy ibexes was formed by macrophages (mainly the M2 phenotype) followed by T lymphocytes, with lower numbers of B lymphocytes and plasma cells. Three clinical courses were identified: total recovery, partial recovery, and terminal stage. The inflammatory infiltrates were less pronounced in the fully recovered ibexes than in those that progressed to the terminal stage throughout the study. Discussion: The results suggest an exacerbated but effective Th1-type cellular immune response controlling mange in Iberian ibex. Furthermore, the local immune response appears to determine the variability of the clinical responses to S. scabiei infestation in this species. This first report on the progression of local skin immune cells is relevant not only for individuals but also for population management and conservation.

12.
Eur J Wildl Res ; 69(3): 63, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274486

RESUMEN

Iberian ibex (Capra pyrenaica) is an ecologically and economically relevant medium-sized emblematic mountain ungulate. Diseases participate in the population dynamics of the species as a regulating agent, but can also threaten the conservation and viability of vulnerable population units. Moreover, Iberian ibex can also be a carrier or even a reservoir of pathogens shared with domestic animals and/or humans, being therefore a concern for livestock and public health. The objective of this review is to compile the currently available knowledge on (1) diseases of Iberian ibex, presented according to their relevance on the health and demography of free-ranging populations; (2) diseases subjected to heath surveillance plans; (3) other diseases reported in the species; and (4) diseases with particular relevance in captive Iberian ibex populations. The systematic review of all the information on diseases affecting the species unveils unpublished reports, scientific communications in meetings, and scientific articles, allowing the first comprehensive compilation of Iberian ibex diseases. This review identifies the gaps in knowledge regarding pathogenesis, immune response, diagnostic methods, treatment, and management of diseases in Iberian ibex, providing a base for future research. Moreover, this challenges wildlife and livestock disease and wildlife population managers to assess the priorities and policies currently implemented in Iberian ibex health surveillance and monitoring and disease management.

13.
Pathogens ; 12(6)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37375520

RESUMEN

The maned wolf (Chrysocyon brachyurus) is the largest South American canid. In Brazil, as in other countries, it is considered an endangered species. Habitat loss, landscape changes, hunting, and roadkill are the main threats to this species. In addition, invasive diseases of domestic animals are considered to be an emerging threat to the maned wolf, where parasitic diseases are relevant. Sarcoptic mange is a skin disease caused by the mite Sarcoptes scabiei. This disease is currently almost globally distributed, with a remarkable host diversity. In Brazil, reports of sarcoptic mange in wildlife include several species, both wild and captive. However, the impact of this disease on wildlife is unknown. At the time of writing, there is only one published report of sarcoptic mange in maned wolves. This study sheds light on the occurrence of sarcoptic mange in free-ranging maned wolves in their natural range. A total of 52 cases (suspected and confirmed) of sarcoptic mange were identified through social media review, camera trapping, chemical immobilization and sample collection. These cases were distributed in southeastern Brazil, in the states of São Paulo (n = 34), Minas Gerais (n = 17), and Rio de Janeiro (n = 1), demonstrating a rapid and widespread spread of this disease, although it still only occurs in part of the species' range. We expect that these results will help to subsidize future actions relevant to the control of this emerging disease.

14.
J Anim Ecol ; 92(9): 1786-1801, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37221666

RESUMEN

Understanding the spatial dynamics and drivers of wildlife pathogens is constrained by sampling logistics, with implications for advancing the field of landscape epidemiology and targeted allocation of management resources. However, visually apparent wildlife diseases, when combined with remote-surveillance and distribution modelling technologies, present an opportunity to overcome this landscape-scale problem. Here, we investigated dynamics and drivers of landscape-scale wildlife disease, using clinical signs of sarcoptic mange (caused by Sarcoptes scabiei) in its bare-nosed wombat (BNW; Vombatus ursinus) host. We used 53,089 camera-trap observations from over 3261 locations across the 68,401 km2 area of Tasmania, Australia, combined with landscape data and ensemble species distribution modelling (SDM). We investigated: (1) landscape variables predicted to drive habitat suitability of the host; (2) host and landscape variables associated with clinical signs of disease in the host; and (3) predicted locations and environmental conditions at greatest risk of disease occurrence, including some Bass Strait islands where BNW translocations are proposed. We showed that the Tasmanian landscape, and ecosystems therein, are nearly ubiquitously suited to BNWs. Only high mean annual precipitation reduced habitat suitability for the host. In contrast, clinical signs of sarcoptic mange disease in BNWs were widespread, but heterogeneously distributed across the landscape. Mange (which is environmentally transmitted in BNWs) was most likely to be observed in areas of increased host habitat suitability, lower annual precipitation, near sources of freshwater and where topographic roughness was minimal (e.g. human modified landscapes, such as farmland and intensive land-use areas, shrub and grass lands). Thus, a confluence of host, environmental and anthropogenic variables appear to influence the risk of environmental transmission of S. scabiei. We identified that the Bass Strait Islands are highly suitable for BNWs and predicted a mix of high and low suitability for the pathogen. This study is the largest spatial assessment of sarcoptic mange in any host species, and advances understanding of the landscape epidemiology of environmentally transmitted S. scabiei. This research illustrates how host-pathogen co-suitability can be useful for allocating management resources in the landscape.


Asunto(s)
Marsupiales , Escabiosis , Animales , Humanos , Escabiosis/epidemiología , Efectos Antropogénicos , Ecosistema , Sarcoptes scabiei , Animales Salvajes
15.
Parasite ; 30: 11, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37010452

RESUMEN

Domestic and wild felids are considered suitable hosts for the parasitic mite Sarcoptes scabiei, and sarcoptic mange is reported in several felid species in the scientific literature. However, the historic classification of Sarcoptes mites into host-specific varieties does not include S. scabiei var. felis. It is unclear whether sarcoptic mange transmission in felids involves canids, other sympatric species, or exclusively felids. This study aimed to characterize the genetic structure of S. scabiei mites from domestic cats (Felis catus) and Eurasian lynx (Lynx lynx carpathicus), comparing them with Sarcoptes mites from sympatric domestic and wild carnivores. Ten Sarcoptes microsatellite markers were used to genotype 81 mites obtained from skin scrapings of 36 carnivores: 4 domestic cats, one dog (Canis lupus familiaris), 4 Eurasian lynx, 23 red foxes (Vulpes vulpes), and 4 grey wolves (Canis lupus lupus) from either Italy, Switzerland or France. Two genetic clusters of S. scabiei with a geographical distribution pattern were detected: mites from cats originating from Central Italy clustered with those from sympatric wolves. In contrast, all the other mites from Switzerland, France and Northern Italy clustered together. These results strengthen the previously advanced hypothesis that genetic variants of S. scabiei have a predominant geographic-related distribution with cryptic transmission patterns. These patterns may rely on the interactions between different hosts living in the same ecological niche rather than a simple infection among hosts belonging to the same taxon, reinforcing the idea that the S. scabiei historic classification into "var" might have little ongoing relevance.


Title: La gale sarcoptique chez les félidés : Sarcoptes scabiei var. felis existe-t-il ? Première étude moléculaire. Abstract: Les félidés domestiques et sauvages sont considérés comme des hôtes appropriés pour l'acarien parasite Sarcoptes scabiei, et la gale sarcoptique est signalée chez plusieurs espèces de félidés dans la littérature scientifique. Cependant, la classification traditionnelle des acariens du genre Sarcoptes en variétés spécifiques à l'hôte n'inclut pas S. scabiei var. felis. On ne sait pas si la transmission de la gale sarcoptique chez les félidés implique des canidés, d'autres espèces sympatriques ou exclusivement des félidés. Cette étude visait à caractériser la structure génétique des acariens S. scabiei des chats domestiques (Felis catus) et du lynx eurasien (Lynx lynx carpathicus), en les comparant aux Sarcoptes des carnivores domestiques et sauvages sympatriques. Dix marqueurs microsatellites de Sarcoptes ont été utilisés pour génotyper 81 acariens issus de grattages cutanés de 36 carnivores : 4 chats domestiques, un chien (Canis lupus familiaris), 4 lynx eurasiens, 23 renards roux (Vulpes vulpes) et 4 loups gris (Canis lupus lupus) d'Italie, de Suisse ou de France. Deux groupes génétiques de S. scabiei, qui suivent un modèle de distribution géographique, ont été détectés. Les acariens des chats originaires du centre de l'Italie se regroupent avec ceux des loups sympatriques. En revanche, tous les autres acariens de Suisse, de France et d'Italie du Nord sont groupés ensemble. Ces résultats renforcent l'hypothèse précédemment avancée selon laquelle les variants génétiques de S. scabiei ont une distribution géographique prédominante avec des schémas de transmission cryptiques. Ces modèles peuvent reposer sur les interactions entre différents hôtes vivant dans la même niche écologique plutôt que sur une simple transmission parmi des hôtes appartenant au même taxon, renforçant l'idée que la classification historique de S. scabiei en "var" a peu de pertinence.


Asunto(s)
Carnívoros , Felidae , Felis , Lynx , Escabiosis , Lobos , Animales , Perros , Gatos , Escabiosis/epidemiología , Escabiosis/veterinaria , Escabiosis/parasitología , Sarcoptes scabiei/genética , Zorros/parasitología
16.
Open Vet J ; 13(2): 131-142, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37073249

RESUMEN

Dermatological diseases of parasitic origin are one of the most frequent in the clinical practice of dogs and cats. Mites such as Sarcoptes scabiei, Otodectes cynotis, Demodex canis, and Cheyletiella spp., commonly affect domestic dogs. However, the impact generated by these mites on populations of wildlife animals and the mechanisms involved in their epidemiological dynamics are still not clear. In recent decades, the migration of populations and their interaction with domestic environments and vice versa have generated a worrying threat due to the transmission of some of these ectoparasites. Some reports have suggested that sarcoptic mange represents an emerging threat to wildlife. Given the outbreaks of greater magnitude and geographical extension. The objective of this review is to contribute to the state of the art of the main mites that cause dermatopathies in members of the Canis lupus familiaris family and other members of the Canidae family. For this, a systematic search was carried out in the Embase and PubMed databases. Infections caused by mites, mainly scabies, continue to be diseases with a worldwide distribution, affecting mammals and humans. Although they are long-standing diseases, the effects that are generated in wild canids are still unknown. A comprehensive evaluation is required to generate guidelines in favor of the conservation of some species of foxes and wolves present in different regions of the world.


Asunto(s)
Canidae , Enfermedades de los Gatos , Enfermedades de los Perros , Escabiosis , Animales , Perros , Humanos , Gatos , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/parasitología , Escabiosis/epidemiología , Escabiosis/veterinaria , Escabiosis/parasitología , Sarcoptes scabiei , Animales Salvajes
17.
J Wildl Dis ; 59(2): 269-280, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37018594

RESUMEN

Sarcoptic mange epidemics erupted in two of the remaining populations of endangered San Joaquin kit foxes (Vulpes macrotis mutica). Both populations are in urban habitats in the cities of Bakersfield and Taft, California, USA. The risk of disease spread from the two urban populations to nearby nonurban populations, and then throughout the species range, is of considerable conservation concern. To date, mange has not been detected in any nonurban populations despite considerable surveillance effort. The reasons for the lack of detections of mange among nonurban foxes are unknown. We monitored urban kit fox movements using geographic positioning system (GPS) collars to test the hypothesis that urban foxes were not venturing into nonurban habitats. Of 24 foxes monitored December 2018 to November 2019, 19 (79%) made excursions from urban into nonurban habitats from 1-124 times. The mean number of excursions per 30 d was 5.5 (range 0.1-13.9 d). The mean proportion of locations in nonurban habitats was 29.0% (range 0.6-99.7%). The mean maximum distance that foxes traveled into nonurban areas from the urban-nonurban interface was 1.1 km (range 0.1-2.9 km). Mean number of excursions, proportion of nonurban locations, and maximum distance into nonurban habitats were similar between Bakersfield and Taft, females and males, and adults and juveniles. At least eight foxes apparently used dens in nonurban habitats; shared use of dens may be an important mode of mange mite transmission between conspecifics. Two of the collared foxes died of mange during the study and two others had mange when captured at the end of the study. Three of these four foxes had made excursions into nonurban habitats. These results confirm a significant potential for mange to spread from urban to nonurban kit fox populations. We recommend continued surveillance in nonurban populations and continued treatment efforts in the affected urban populations.


Asunto(s)
Zorros , Escabiosis , Femenino , Masculino , Animales , Escabiosis/epidemiología , Escabiosis/veterinaria , Ciudades , Ecosistema
18.
Artículo en Inglés | MEDLINE | ID: mdl-36906936

RESUMEN

Sarcoptes scabiei is the microscopic burrowing mite responsible for sarcoptic mange, which is reported in approximately 150 mammalian species. In Australia, sarcoptic mange affects a number of native and introduced wildlife species, is particularly severe in bare-nosed wombats (Vombatus ursinus) and an emerging issue in koala and quenda. There are a variety of acaricides available for the treatment of sarcoptic mange which are generally effective in eliminating mites from humans and animals in captivity. In wild populations, effective treatment is challenging, and concerns exist regarding safety, efficacy and the potential emergence of acaricide resistance. There are risks where acaricides are used intensively or inadequately, which could adversely affect treatment success rates as well as animal welfare. While reviews on epidemiology, treatment strategies, and pathogenesis of sarcoptic mange in wildlife are available, there is currently no review evaluating the use of specific acaricides in the context of their pharmacokinetic and pharmacodynamic properties, and subsequent likelihood of emerging drug resistance, particularly for Australian wildlife. This review critically evaluates acaricides that have been utilised to treat sarcoptic mange in wildlife, including dosage forms and routes, pharmacokinetics, mode of action and efficacy. We also highlight the reports of resistance of S. scabiei to acaricides, including clinical and in vitro observations.


Asunto(s)
Acaricidas , Escabiosis , Animales , Humanos , Escabiosis/tratamiento farmacológico , Escabiosis/veterinaria , Escabiosis/epidemiología , Animales Salvajes , Acaricidas/uso terapéutico , Acaricidas/farmacología , Australia/epidemiología , Sarcoptes scabiei , Mamíferos
19.
Molecules ; 27(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558200

RESUMEN

Herbal remedia are widely employed in folk medicine, and have been more and more often studied and considered in the treatment of several infections. Sarcoptic mange (scabies, when referring to human patients) is a highly contagious skin disease caused by Sarcoptes scabiei (sarcoptiformes, Sarcoptinae), an astigmatid mite which burrows into the epidermis, actively penetrating the stratum corneum. This parasitosis negatively affects livestock productions and represents a constraint on animal and human health. The treatment relies on permethrine and ivermectine but, since these molecules do not have ovicidal action, more than a single dose should be administered. Toxicity, the possible onset of parasite resistance, the presence of residues in meat and other animal products and environmental contamination are the major constraints. These shortcomings could be reduced by the use of plant extracts that have been in vitro or in vivo checked against these mites, sometimes with promising results. The aim of the present study was to review the literature dealing with the treatment of both scabies and sarcoptic mange by plant-derived agents, notably essential oils.


Asunto(s)
Sarcoptes scabiei , Escabiosis , Animales , Humanos , Escabiosis/tratamiento farmacológico , Escabiosis/parasitología , Piel , Ivermectina , Epidermis
20.
Transbound Emerg Dis ; 69(6): 3724-3736, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36251176

RESUMEN

Sarcoptic mange, a disease caused by the burrowing mite Sarcoptes scabiei, is globally endemic and an emerging threat to wildlife. Although many studies have shown that wildlife diseases play key roles in biodiversity conservation, knowledge about sarcoptic mange is still insufficient. In this study, we aim to improve the understanding of the impacts of sarcoptic mange on wildlife populations, the mechanisms involved in its eco-epidemiology and the associated risks to public and ecosystem health by investigating mass death events in gorals and serows in the Qinling Mountains. We conducted interviews with practitioners and local people in the central Qinling Mountains. From the same locations, we collected 24 cutaneous samples from various animals and surveillance data from infrared cameras. Pathological, parasitological and microbiological examinations of the samples were performed. Mite-induced cutaneous lesions, mites and eggs were observed in samples from dead gorals and one dead serow but not in other species. Molecular analysis confirmed the mites to be S. scabiei and shared the same cox 1 genotype. The data obtained from the interviews and infrared cameras indicated that the death of wildlife was related to sarcoptic mange infection and that there had been a decrease in the goral population since the outbreak of the disease. We confirmed that sarcoptic mange was the major cause of the mass death events and may have spread from the western to eastern Qinling Mountains. Based on our findings, we propose several protection strategies to help preserve biodiversity in the Qinling Mountains.


Asunto(s)
Escabiosis , Animales , Escabiosis/epidemiología , Escabiosis/veterinaria , Ecosistema , Óvulo , Animales Salvajes , Biodiversidad , China/epidemiología , Rumiantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...