RESUMEN
In recent years, antimony sulfide (Sb2S3) has been investigated as a photovoltaic absorber material due to its suitable absorber coefficient, direct band gap, extinction coefficient, earth-abundant, and environmentally friendly constituents. Therefore, this work proposes Sb2S3 film preparation by an effective two-step process using a new graphite box design and sulfur distribution, which has a high repeatability level and can be scalable. First, an Sb thin film was deposited using the RF-Sputtering technique, and after that, the samples were annealed with elemental sulfur into a graphite box, varying the sulfurization time from 20 to 50 min. The structural, optical, morphological, and chemical characteristics of the resulting thin films were analyzed. Results reveal the method's effectivity and the best properties were obtained for the sample sulfurized during 40 min. This Sb2S3 thin film presents an orthorhombic crystalline structure, elongated grains, a band gap of 1.69 eV, a crystallite size of 15.25 Å, and a nearly stoichiometric composition. In addition, the formation of a p-n junction was achieved by depositing silver back contact on the Glass/FTO/CdS/Sb2S3 structure. Therefore, the graphite box design has been demonstrated to be functional to obtain Sb2S3 by a two-step process.
RESUMEN
Bulk and surface trap-states in the Sb2S3films are considered one of the crucial energy loss mechanisms for achieving high photovoltaic performance in planar Sb2S3solar cells. Because ionic liquid additives offer interesting physicochemical properties to control the synthesis of inorganic material, in this work we propose the addition of 1-Butyl-3-methylimidazolium hydrogen sulfate (BMIMHS) into a Sb2S3hydrothermal precursor solution as a facile way to fabricate low-defect Sb2S3solar cells. Lower presence of small particles on the surface, as well as higher crystallinity are demonstrated in the BMIMHS-assisted Sb2S3films. Moreover, analyses of dark current density-voltageJ-Vcurves, surface photovoltage transient and intensity-modulated photocurrent spectroscopy have suggested that adding BMIMHS results in high-quality Sb2S3films and a successful defect passivation. Consequently, the best-performing BMIMHS-assisted device exhibits a 15.4% power conversion efficiency enhancement compared to that of control device. These findings show that ionic liquid BMIMHS can effectively be used to obtain high-quality Sb2S3films with low-defects and improved optoelectronic properties.
RESUMEN
To achieve superior photovoltaic performance on Sb2S3 solid state solar cells (ssSCs), the concomitant development of efficient hole transport materials (HTMs) is required. Herein, a novel solution processed HTM obtained by mixing NiOx nanoparticles (NiOx-NP) and poly(3-hexylthiophene) (P3HT) is reported. These P3HT:NiOx-NP nanocomposite HTMs were obtained with different controlled concentrations of NiOx-NP using a common solvent. Incorporation of NiOx-NP significantly impacts on the structural and hole-transport layer properties of the nanocomposite films, which in turn contributes to improve the photovoltaic performance of the corresponding devices. Thus, Sb2S3 ssSCs based on HTM with an optimum concentration of NiOx-NP in P3HT, i.e. P3HT:2% NiOx-NP, yield a 50% improvement in the power conversion efficiency relative to control devices fabricated with pristine P3HT. The improved hole separation and injection at the Sb2S3/HTM interface, determined by steady-state photoluminescence quenching and electrochemical impedance spectroscopy studies, correlate well with the higher hole mobility of the nanocomposite and the current density and fill factor enhancements.