Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MethodsX ; 13: 102857, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39105094

RESUMEN

We increase the dynamical range of a scanning tunneling microscope (STM) by actively subtracting dominant current-harmonics generated by nonlinearities in the current-voltage characteristics that could saturate the current preamplifier at low junction impedances or high gains. The strict phase relationship between a cosinusoidal excitation voltage and the current-harmonics allows excellent cancellation using the displacement-current of a driven compensating capacitor placed at the input of the preamplifier. Removal of DC currents has no effect on, and removal of the first harmonic only leads to a rigid shift in differential conductance that can be numerically reversed by adding the known removal current. Our method requires no permanent change of the hardware but only two phase synchronized voltage sources and a multi-frequency lock-in amplifier to enable high dynamic range spectroscopy and imaging. • Active power filter • Dynamic range compression • High gain preamplifier.

2.
Nano Lett ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141815

RESUMEN

The successful synthesis of borophene beyond the monolayer limit has expanded the family of two-dimensional boron nanomaterials. While atomic-resolution topographic imaging has been previously reported, vibrational mapping has the potential to reveal deeper insight into the chemical bonding and electronic properties of bilayer borophene. Herein, inelastic electron tunneling spectroscopy (IETS) is used to resolve the low-energy vibrational and electronic properties of bilayer-α (BL-α) borophene on Ag(111) at the atomic scale. Using a carbon monoxide (CO)-functionalized scanning tunneling microscopy tip, the BL-α borophene IETS spectra reveal unique features compared to single-layer borophene and typical CO vibrations on metal surfaces. Distinct vibrational spectra are further observed for hollow and filled boron hexagons within the BL-α borophene unit cell, providing evidence for interlayer bonding between the constituent borophene layers. These experimental results are compared with density functional theory calculations to elucidate the interplay between the vibrational modes and electronic states in bilayer borophene.

3.
Adv Mater ; 36(31): e2405178, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38762788

RESUMEN

Graphyne (GY) and graphdiyne (GDY)-based monolayers represent the next generation 2D carbon-rich materials with tunable structures and properties surpassing those of graphene. However, the detection of band formation in atomically thin GY/GDY analogues has been challenging, as both long-range order and atomic precision have to be fulfilled in the system. The present work reports direct evidence of band formation in on-surface synthesized metallated Ag-GDY sheets with mesoscopic (≈1 µm) regularity. Employing scanning tunneling and angle-resolved photoemission spectroscopies, energy-dependent transitions of real-space electronic states above the Fermi level and formation of the valence band are respectively observed. Furthermore, density functional theory (DFT) calculations corroborate the observations and reveal that doubly degenerate frontier molecular orbitals on a honeycomb lattice give rise to flat, Dirac and Kagome bands close to the Fermi level. DFT modeling also indicates an intrinsic band gap for the pristine sheet material, which is retained for a bilayer with h-BN, whereas adsorption-induced in-gap electronic states evolve at the synthesis platform with Ag-GDY decorating the (111) facet of silver. These results illustrate the tremendous potential for engineering novel band structures via molecular orbital and lattice symmetries in atomically precise 2D carbon materials.

4.
Nano Lett ; 24(17): 5110-5116, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38624179

RESUMEN

The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crystals, with precise and uniform thickness and finite lateral dimensions in the 100 nm range, to study the evolution of a topological insulator from three to two dimensions. For a thickness of 4-6 quintuple layers, scanning tunneling spectroscopy shows an 8 nm wide, nonscattering state encircling the platelet. We discuss the nature of this edge state with a low-energy continuum model and ab initio GW-Tight Binding theory. Our results also provide an indication of the maximum density of such states on a device.

5.
ACS Nano ; 18(11): 7937-7944, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38441035

RESUMEN

Strongly correlated states commonly emerge in twisted bilayer graphene (TBG) with "magic-angle" (1.1°), where the electron-electron (e-e) interaction U becomes prominent relative to the small bandwidth W of the nearly flat band. However, the stringent requirement of this magic angle makes the sample preparation and the further application facing great challenges. Here, using scanning tunneling microscopy (STM) and spectroscopy (STS), we demonstrate that the correlation-induced symmetry-broken states can also be achieved in a 3.45° TBG, via engineering this nonmagic-angle TBG into regimes of U/W > 1. We enhance the e-e interaction through controlling the microscopic dielectric environment by using a MoS2 substrate. Simultaneously, the width of the low-energy van Hove singularity (VHS) peak is reduced by enhancing the interlayer coupling via STM tip modulation. When partially filled, the VHS peak exhibits a giant splitting into two states flanked by the Fermi level and shows a symmetry-broken LDOS distribution with a stripy charge order, which confirms the existence of strong correlation effect in our 3.45° TBG. Our result demonstrates the feasibility of the study and application of the correlation physics in TBGs with a wider range of twist angle.

6.
Adv Mater ; 36(19): e2308007, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38315969

RESUMEN

Two-dimensional (2D) lateral heterojunction arrays, characterized by well-defined electronic interfaces, hold significant promise for advancing next-generation electronic devices. Despite this potential, the efficient synthesis of high-density lateral heterojunctions with tunable interfacial band alignment remains a challenging. Here, a novel strategy is reported for the fabrication of lateral heterojunction arrays between monolayer Si2Te2 grown on Sb2Te3 (ML-Si2Te2@Sb2Te3) and one-quintuple-layer Sb2Te3 grown on monolayer Si2Te2 (1QL-Sb2Te3@ML-Si2Te2) on a p-doped Sb2Te3 substrate. The site-specific formation of numerous periodically arranged 2D ML-Si2Te2@Sb2Te3/1QL-Sb2Te3@ML-Si2Te2 lateral heterojunctions is realized solely through three epitaxial growth steps of thick-Sb2Te3, ML-Si2Te2, and 1QL-Sb2Te3 films, sequentially. More importantly, the precisely engineering of the interfacial band alignment is realized, by manipulating the substrate's p-doping effect with lateral spatial dependency, on each ML-Si2Te2@Sb2Te3/1QL-Sb2Te3@ML-Si2Te2 junction. Atomically sharp interfaces of the junctions with continuous lattices are observed by scanning tunneling microscopy. Scanning tunneling spectroscopy measurements directly reveal the tailored type-II band bending at the interface. This reported strategy opens avenues for advancing lateral epitaxy technology, facilitating practical applications of 2D in-plane heterojunctions.

7.
Adv Sci (Weinh) ; 11(16): e2309081, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38353319

RESUMEN

Homogenous enantioselective catalysis is nowadays the cornerstone in the manufacturing of enantiopure substances, but its technological implementation suffers from well-known impediments like the lack of endurable catalysts exhibiting long-term stability. The catalytically active intermetallic compound Palladium-Gallium (PdGa), conserving innate bulk chirality on its surfaces, represent a promising system to study asymmetric chemical reactions by heterogeneous catalysis, with prospective relevance for industrial processes. Here, this work investigates the adsorption of 10,10'-dibromo-9,9'-bianthracene (DBBA) on the PdGa:A( 1 ¯ 1 ¯ 1 ¯ $\bar{1}\bar{1}\bar{1}$ ) Pd3-terminated surface by means of scanning tunneling microscopy (STM) and spectroscopy (STS). A highly enantioselective adsorption of the molecule evolving into a near 100% enantiomeric excess below room temperature is observed. This exceptionally high enantiomeric excess is attributed to temperature activated conversion of the S to the R chiral conformer. Tip-induced bond cleavage of the R conformer shows a very high regioselectivity of the DBBA debromination. The experimental results are interpreted by density functional theory atomistic simulations. This work extends the knowledge of chirality transfer onto the enantioselective adsorption of non-planar molecules and manifests the ensemble effect of PdGa surfaces resulting in robust regioselective debromination.

8.
Nanotechnology ; 35(19)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38316053

RESUMEN

Three-dimensional Dirac semimetals with square-net non-symmorphic symmetry, such as ternary ZrXY (X = Si, Ge; Y = S, Se, Te) compounds, have attracted significant attention owing to the presence of topological nodal lines, loops, or networks in their bulk. Orbital symmetry plays a profound role in such materials as the different branches of the nodal dispersion can be distinguished by their distinct orbital symmetry eigenvalues. The presence of different eigenvalues suggests that scattering between states of different orbital symmetry may be strongly suppressed. Indeed, in ZrSiS, there has been no clear experimental evidence of quasiparticle scattering reported between states of different symmetry eigenvalues at small wave vectorq⃗.Here we show, using quasiparticle interference, that atomic step-edges in the ZrSiS surface facilitate quasiparticle scattering between states of different symmetry eigenvalues. This symmetry eigenvalue mixing quasiparticle scattering is the first to be reported for ZrSiS and contrasts quasiparticle scattering with no mixing of symmetry eigenvalues, where the latter occurs with scatterers preserving the glide mirror symmetry of the crystal lattice, e.g. native point defects in ZrSiS. Finally, we show that the electronic structure of the ZrSiS surface, including its unique floating band surface state, can be tuned by a vertical electric field locally applied by the tip of a scanning tunneling microscope (STM), enabling control of a spin-orbit induced avoided crossing near the Fermi level by as much as 300%.

9.
J Phys Condens Matter ; 36(17)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38194720

RESUMEN

A detailed interpretation of scanning tunneling spectra obtained on unconventional superconductors enables one to gain information on the pairing boson. Decisive for this approach are inelastic tunneling events. Due to the lack of momentum conservation in tunneling from or to the sharp tip, those are enhanced in the geometry of a scanning tunneling microscope compared to planar tunnel junctions. This work extends the method of obtaining the bosonic excitation spectrum by deconvolution from tunneling spectra to nodald-wave superconductors. In particular, scanning tunneling spectra of slightly underdopedBi2Sr2CaCu2O8+δwith aTcof 82 K and optimally dopedYBa2Cu3O6+xwith aTcof 92 K reveal a resonance mode in their bosonic excitation spectrum atΩres≈63 meVandΩres≈61 meVrespectively. In both cases, the overall shape of the bosonic excitation spectrum is indicative of predominant spin scattering with a resonant mode atΩres<2Δand overdamped spin fluctuations for energies larger than 2Δ. To perform the deconvolution of the experimental data, we implemented an efficient iterative algorithm that significantly enhances the reliability of our analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA