RESUMEN
Four synthetic Schiff bases (PSB1 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-dibromophenol], PSB2 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-diiodophenol], PSB3 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-iodophenol], and PSB4 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-chloro-6-iodophenol]) were fully characterized. These compounds exhibit an intramolecular hydrogen bond between the hydroxyl group of the phenolic ring and the nitrogen of the azomethine group, contributing to their stability. Their antimicrobial activity was evaluated against various Gram-negative and Gram-positive bacteria, and it was found that the synthetic pyridine Schiff bases, as well as their precursors, showed no discernible antimicrobial effect on Gram-negative bacteria, including Salmonella Typhi (and mutant derivatives), Salmonella Typhimurium, Escherichia coli, and Morganella morganii. In contrast, a more pronounced biocidal effect against Gram-positive bacteria was found, including Bacillus subtilis, Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus haemolyticus. Among the tested compounds, PSB1 and PSB2 were identified as the most effective against Gram-positive bacteria, with PSB2 showing the most potent biocidal effects. Although the presence of reactive oxygen species (ROS) was noted after treatment with PSB2, the primary mode of action for PSB2 does not appear to involve ROS generation. This conclusion is supported by the observation that antioxidant treatment with vitamin C only partially mitigated bacterial inhibition, indicating an alternative biocidal mechanism.
Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Piridinas , Bases de Schiff , Bases de Schiff/química , Bases de Schiff/farmacología , Bases de Schiff/síntesis química , Piridinas/química , Piridinas/farmacología , Piridinas/síntesis química , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Bacterias Grampositivas/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Halógenos/química , Antiinfecciosos/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Estructura MolecularRESUMEN
Sulfonamide derivatives have numerous pharmaceutical applications having antiviral, antibacterial, antifungal, antimalarial, anticancer, and antidepressant activities. The structural flexibility of sulfonamide derivatives makes them an excellent candidate for the development of new multi-target agents, although long-time exposure to sulfonamide drugs results in many toxic impacts on human health. However, sulfonamides may be functionalized for developing less toxic and more competent drugs. In this work, sulfonamides including Sulfapyridine (a), Sulfathiazole (b), Sulfamethoxazole (c), and Sulfamerazine (d) are used to synthesize Schiff bases of 7-hydroxy-4-methyl-2-oxo-2H-chromene-8-carbalde-hyde (1a-1d). The synthesized compounds were spectroscopically characterized and tested against hospital isolates of three Gram-positive (Methicillin-resistant Staphylococcus aureus PH217, Ampicillin-resistant Coagulase-negative Staphylococcus aureus, multidrug-resistant (MDR) Enterococcus faecalis PH007R) and two Gram-negative bacteria (multidrug-resistant Escherichia coli, and Salmonella enterica serovar Typhi), compared to the quality control strains from ATCC (S. aureus 29213, E. faecalis 25922, E. coli 29212) and MTCC (S. Typhi 734). Two of the four Schiff bases 1a and 1b are found to be more active than their counterpart 1c and 1d; while 1a have showed significant activity by inhibiting MRSA PH217 and MDR isolates of E. coli at the minimum inhibitory concentration (MIC) of 150 µg/mL and 128 µg/mL with MBC of 1024 µg/mL, respectively. On the other hand, the MIC of 1b was 150 µg/mL against both S. aureus ATCC 29213 and Salmonella Typhi MTCC 734, compared to the control antibiotics Ampicillin and Gentamycin. Scanning electron microscopy demonstrated the altered surface structure of bacterial cells as a possible mechanism of action, supported by the in-silico molecular docking analysis.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Humanos , Simulación del Acoplamiento Molecular , Cromonas/farmacología , Escherichia coli , Bases de Schiff/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Sulfanilamida , Ampicilina/farmacología , Sulfonamidas/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
We present the synthesis and characterization of organic Salphen compounds containing bromine substituents at the para/ortho-para positions, in their symmetric and non-symmetric versions, and describe the X-ray structure and full characterization for the new unsymmetrical varieties. We report for the first time antiproliferative activity in metal-free brominated Salphen compounds, by evaluations in four human cancer cell lines, cervix (HeLa), prostate (PC-3), lung (A549) and colon (LSâ 180) and one non-cancerous counterpart (ARPE-19). We assessed inâ vitro cell viability against controls using the MTT assay ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide)) and determined the concentration required for 50 % growth inhibition (IC50 ), together with their selectivity vs. non-cancerous cells. We found promising results against prostate (9.6â µM) and colon (13.5â µM) adenocarcinoma cells. We also found a tradeoff between selectivity (up to 3-fold vs. ARPE-19) and inhibition, depending upon the symmetry and bromine-substitution of the molecules, showing up to 20-fold higher selectivity vs. doxorubicin controls.
Asunto(s)
Antineoplásicos , Bromo , Masculino , Femenino , Humanos , Bromo/farmacología , Células HeLa , Fenilendiaminas/farmacología , Antineoplásicos/química , Proliferación Celular , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Estructura MolecularRESUMEN
The synthesis of four pentacoordinated organotin(IV) complexes prepared in a one-pot reaction from 2-hydroxy-1-naphthaldehyde, 2-amino-3-hydroxypyridine and organotin oxides is reported. The complexes were characterized by UV-Vis, IR, MS, 1H, 13C and 119Sn NMR techniques. The compound based on 2,2-diphenyl-6-aza-1,3-dioxa-2-stannanaphtho[1,2-h]pyrido[3,2-d]cyclononene revealed the formation of a monomeric complex with a distorted five-coordinated molecular geometry intermediate between the trigonal bipyramidal and square pyramidal. In order to find possible applications in photovoltaic devices, hybrid films of organotin(IV) complexes embedded in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with graphene were deposited. The topographic and mechanical properties were examined. The film with the complex integrated into the cyclohexyl substituent has high plastic deformation, with a maximum stress of 1.69 × 107 Pa and a Knoop hardness of 0.061. The lowest values of 1.85 eV for the onset gap and 3.53 eV for the energy gap were obtained for the heterostructure having the complex with the phenyl substituent. Bulk heterojunction devices were fabricated; these devices showed ohmic behavior at low voltages and a space-charge-limited current (SCLC) conduction mechanism at higher voltages. A value of 0.02 A was found for the maximum carried current. The SCLC mechanism suggests hole mobility values of between 2.62 × 10-2 and 3.63 cm2/V.s and concentrations of thermally excited holes between 2.96 × 1018 and 4.38 × 1018 m-3.
RESUMEN
Benzimidazole (BI) and its derivatives are interesting molecules in medicinal chemistry because several of these compounds have a diversity of biological activities and some of them are even used in clinical applications. In view of the importance of these compounds, synthetic chemists are still interested in finding new procedures for the synthesis of these classes of compounds. Astemizole (antihistaminic), Omeprazole (antiulcerative), and Rabendazole (fungicide) are important examples of compounds used in medicinal chemistry containing BI nuclei. It is interesting to observe that several of these compounds contain 2-aminobenzimidazole (2ABI) as the base nucleus. The structures of 2ABI derivatives are interesting because they have a planar delocalized structure with a cyclic guanidine group, which have three nitrogen atoms with free lone pairs and labile hydrogen atoms. The 10-π electron system of the aromatic BI ring conjugated with the nitrogen lone pair of the hexocyclic amino group, making these heterocycles to have an amphoteric character. Synthetic chemists have used 2ABI as a building block to produce BI derivatives as medicinally important molecules. In view of the importance of the BIs, and because no review was found in the literature about this topic, we reviewed and summarized the procedures related to the recent methodologies used in the N-substitution reactions of 2ABIs by using aliphatic and aromatic halogenides, dihalogenides, acid chlorides, alkylsulfonic chlorides, carboxylic acids, esters, ethyl chloroformates, anhydrides, SMe-isothioureas, alcohols, alkyl cyanates, thiocyanates, carbon disulfide and aldehydes or ketones to form Schiff bases. The use of diazotized 2ABI as intermediate to obtain 2-diazoBIs was included to produce Nsubstituted 2ABIs of pharmacological interest. Some commentaries about their biological activity were included.
Asunto(s)
Bencimidazoles , Farmacóforo , Aldehídos , NitrógenoRESUMEN
A panel of 2,3-disubstituted thiazolidin-4-ones 4a-n was synthesised from Schiff bases 3a-n derived from sulfanilamide, by reaction with thioglycolic acid. The compounds were characterised by means of IR, NMR, and Mass spectral data. Compounds 4a-n were screened for DPPH scavenging assay and compounds 4e, 4h, 4i, and 4n exhibited moderate activity. Compounds 4e, 4h, and 4i were tested at 200 mg/kg and 4e at 50 mg/kg b.w. orally for antidiabetic activity in fructose induced diabetic rats. They exhibited significant antidiabetic activity compared to the control group. Pioglitazone was used as a standard drug. The tested compounds exhibited better and ignificant serum cholesterol lowering activity when compared with the control and standard groups. They also reduced the triglyceride level after the 21st day; however, it was insignificant when compared to the control group. Compound 4n displayed the highest binding energy when docked with PPAR-γ followed by compounds 4e, 4h, and 4i when compared to pioglitazone. The physicochemical, drug likeness and ADME properties of the title compounds were found to be satisfactory.
Se sintetizó un panel de tiazolidinas-4-onas 2,3-disustituidas 4a-n a partir de las bases de Schiff 3a-n derivadas de la sulfanilamida por reacción con ácido tioglicólico. Los compuestos se caracterizaron por IR, RMN y datos espectrales de masa. Los compuestos 4a-n se analizaron para DPPH y los compuestos 4e, 4h, 4i y 4n mostraron una actividad moderada. Los compuestos 4e, 4h y 4i se probaron a 200 mg/kg y 4e a 50 mg/kg b.w. oralmente para la actividad antidiabética en ratas diabéticas, inducida por fructosa. Los compuestos mostraron una actividad antidiabética muy significativa en comparación con el grupo control. La pioglitazona se utilizó como fármaco estándar. Los compuestos ensayados mostraron una mejor y significativa actividad reductora del colesterol sérico en comparación con los grupos control y estándar. Estos compuestos también redujeron el nivel de triglicéridos después del 21° día, aunque fue insignificante en comparación con el grupo control. El compuesto 4n mostró la mayor afinidad de unión cuando se acopló a PPAR-γ, seguido de 4e, 4h y 4i en comparación con la pioglitazona. Las propiedades fisicoquímicas, la similitud con el fármaco y las propiedades ADME de los compuestos fueron satisfactorias, lo que los convierte en útiles agentes antidiabéticos.
Um painel de 2,3-disubstituído thiazolidina-4-ones 4a-n foram sintetizados a partir de bases Schiff 3a-n derivado da sulfanilamida por reacção com ácido tioglicólico. Os compostos eram caracterizado por IR, NMR e dados espectrais de massa. Os compostos 4a-n foram rastreados para O ensaio DPPH de limpeza radical e os compostos 4e, 4h, 4i e 4n exibiram actividade moderada. Os compostos 4e, 4h e 4i foram testados a 200 mg/kg e 4e a 50 mg/kg de peso corporal por via oral para antidiabéticos. actividade em ratos diabéticos induzidos por frutose. Exibiram uma actividade antidiabética altamente significativa actividade em comparação com o controlo. A pioglitazona foi utilizada como droga padrão. Os compostos testados exibiu uma melhor e significativa actividade de redução do colesterol sérico quando comparado comde triglicéridos após o 21° dia; no entanto, foi insignificante quando comparado com o controlo. O composto 4n mostrou a maior afinidade de ligação quando acoplado com PPAR-γ seguido de 4e, 4h, 4i quando comparado com pioglitazona. O propriedades físico-químicas, de semelhança com drogas e ADME dos compostos do título de propriedade também foram encontrados paraser satisfatórios, tornando-os agentes antidiabéticos úteis.
RESUMEN
Due to the growing prevalence of cancer diseases, new therapeutic options are urgently needed, and drugs based on metal ions other than platinum are alternatives with exciting possibilities. We report the synthesis, characterization and biological effect of mixed-ligand Fe(III)-aminophenolate complexes derived from salicylaldehyde and L-tryptophan with quinoline derivatives as co-ligands, namely 8-hydroxyquinoline (8HQ), [Fe(L)(8HQ)(H2O)] (1) and its 5-cloro derivative (Cl8HQ), [Fe(L)(Cl8HQ)(H2O)] (2). The complex bearing the aminophenolate and lacking the quinoline co-ligand, [Fe(L)(Cl)(H2O)2] (3), was prepared for comparison. The analytical and spectroscopic characterization revealed that 1 and 2 are octahedral Fe(III) complexes with the aminophenolate acting as a dianionic tridentate ligand and 8HQ co-ligands as bidentate chelates. Spectroscopic techniques and molecular docking studies were used to evaluate the ability of these complexes to bind bovine serum albumin (BSA) and calf thymus DNA. Complex 2 [Fe(L)(Cl8HQ)(H2O)] was the one showing higher affinity for both biomolecules. Cell viability was assessed in breast, colorectal and bone human cancer cell lines. 1 and 2 were found to be more active than cisplatin in all cell lines tested. A non-tumoral fibroblast line (L929, mouse non-tumoral fibroblasts) was used to evaluate selectivity. The results evidence that 2 shows much higher selectivity than 1 in all cell lines tested, but particularly in bone cancer cells in which selectivity index (SI) values are 8.0 and 18.8 for 1 and 2, respectively.
Asunto(s)
Antineoplásicos , Complejos de Coordinación , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Cisplatino , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Compuestos Férricos , Humanos , Ligandos , Ratones , Simulación del Acoplamiento Molecular , Oxiquinolina/farmacología , Platino (Metal) , Bases de Schiff/química , Bases de Schiff/farmacología , Albúmina Sérica Bovina/metabolismo , TriptófanoRESUMEN
The present work reports the theoretical investigation of Co(II), Ni(II), and Zn(II) complexes containing Schiff bases (used as ligands) derived from the reaction of 2-hydroxy-1-naphthaldehyde with N-(2-aminoethyl) pyrazoles. The spectral analyses were carried out using infrared, Raman, and UV-Vis spectroscopy. Vibrational analyses were performed in order to investigate the mechanisms involving metal-ligand and intra-ligand vibrations and indicated the possibility of charge transfer related to the transitions n[Formula: see text]* and [Formula: see text]*. Structure optimizations and normal coordinate force field calculations were performed via the density functional theory (DFT) method at the HSE06/6-311G(d,p)/LanL2DZ level. A thorough analysis was also conducted regarding the nonlinear optical (NLO) properties and the natural bond orbital (NBO) of the complexes. The results show that these complexes have prospective application as materials for NLO. Furthermore, the NBO analysis confirms the coordination between the lone pair (LP) electrons of the donor atoms (O and N) and the metal acceptors. Finally, studies were conducted regarding the electronic properties of the complexes; among the properties investigated included the frontier molecular orbitals (FMO) and the molecular electrostatic potential (MEP), allowing to determine the energy gap and charge distribution.
Asunto(s)
Iminas , Vibración , Electrónica , Ligandos , Modelos Moleculares , Pirazoles , Teoría Cuántica , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , ZincRESUMEN
Searching for adequate and effective compounds displaying antimicrobial activities, especially against Gram-positive bacteria, is an important research area due to the high hospitalization and mortality rates of these bacterial infections in both the human and veterinary fields. In this work, we explored (E)-4-amino-3-((3,5-di-tert-butyl-2-hydroxybenzylidene)amino) benzoic acid (SB-1, harboring an intramolecular hydrogen bond) and (E)-2-((4-nitrobenzilidene)amino)aniline (SB-2), two Schiff bases derivatives. Results demonstrated that SB-1 showed an antibacterial activity determined by the minimal inhibitory concentration (MIC) against Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus (Gram-positive bacteria involved in human and animal diseases such as skin infections, pneumonia, diarrheal syndrome, and urinary tract infections, among others), which was similar to that shown by the classical antibiotic chloramphenicol. By contrast, this compound showed no effect against Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, and Salmonella enterica). Furthermore, we provide a comprehensive physicochemical and theoretical characterization of SB-1 (as well as several analyses for SB-2), including elemental analysis, ESMS, 1H and 13C NMR (assigned by 1D and 2D techniques), DEPT, UV-Vis, FTIR, and cyclic voltammetry. We also performed a computational study through the DFT theory level, including geometry optimization, TD-DFT, NBO, and global and local reactivity analyses.
Asunto(s)
Bacterias Grampositivas , Bases de Schiff , Animales , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Bases de Schiff/química , Bases de Schiff/farmacologíaRESUMEN
The azo-azomethine imines, R1-N=N-R2-CH=N-R3, are a class of active pharmacological ligands that have been prominent antifungal, antibacterial, and antitumor agents. In this study, four new azo-azomethines, R1 = Ph, R2 = phenol, and R3 = pyrazol-Ph-R' (R = H or NO2), have been synthesized, structurally characterized using X-ray, IR, NMR and UV-Vis techniques, and their antifungal activity evaluated against certified strains of Candida albicans and Cryptococcus neoformans. The antifungal tests revealed a high to moderate inhibitory activity towards both strains, which is regulated as a function of both the presence and the location of the nitro group in the aromatic ring of the series. These biological assays were further complemented with molecular docking studies against three different molecular targets from each fungus strain. Molecular dynamics simulations and binding free energy calculations were performed on the two best molecular docking results for each fungus strain. Better affinity for active sites for nitro compounds at the "meta" and "para" positions was found, making them promising building blocks for the development of new Schiff bases with high antifungal activity.
Asunto(s)
Antifúngicos , Candida albicans/crecimiento & desarrollo , Cryptococcus neoformans/crecimiento & desarrollo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pirazoles , Antifúngicos/síntesis química , Antifúngicos/química , Antifúngicos/farmacología , Pirazoles/síntesis química , Pirazoles/química , Pirazoles/farmacologíaRESUMEN
BACKGROUND/AIM: To identify the best of three isatin-based scaffolds in terms of anticancer activity. MATERIALS AND METHODS: Synthesis of isatin-based scaffolds was performed through a reaction to form Schiff bases. In silico analyses consisted of a target prediction with the Swiss Target Prediction tool and a molecular docking by AutoDock Vina. Anticancer activity and cytotoxicity were determined using the WST1 viability assay. RESULTS: Three scaffolds (IA, IB, and IC) were synthesized and confirmed with good reaction yields. The Swiss Target Prediction tool showed a trend towards kinases. Molecular docking assays demonstrated higher affinity of IC towards CDK2. Anticancer activity assays identified IC as the most active against the cancer cell lines. Cytotoxicity results in non-cancer cells suggested a lack of selectivity. CONCLUSION: The scaffold IC was identified as the best in terms of anticancer activity and these effects may be due to inhibition of CDK2, as evidenced by molecular docking.
Asunto(s)
Antineoplásicos/farmacología , Quinasa 2 Dependiente de la Ciclina/metabolismo , Isatina/farmacología , Simulación del Acoplamiento Molecular/métodos , Neoplasias/tratamiento farmacológico , Bases de Schiff/química , Antineoplásicos/química , Apoptosis , Proliferación Celular , Humanos , Isatina/química , Neoplasias/metabolismo , Neoplasias/patología , Relación Estructura-Actividad , Células Tumorales CultivadasRESUMEN
Metal-based drugs, including lanthanide complexes, have been extremely effective in clinical treatments against various diseases and have raised major interest in recent decades. Hence, in this work, a series of lanthanum (III) and cerium (III) complexes, including Schiff base ligands derived from (1H-benzimidazol-2-yl)aniline, salicylaldehyde, and 2,4-dihydroxybenzaldehyde were synthesized and characterized using different spectroscopic methods. Besides their cytotoxic activities, they were examined in human U-937 cells, primate kidney non-cancerous COS-7, and six other, different human tumor cell lines: U251, PC-3, K562, HCT-15, MCF-7, and SK-LU-1. In addition, the synthesized compounds were screened for in vitro antiparasitic activity against Leishmania braziliensis, Plasmodium falciparum, and Trypanosoma cruzi. Additionally, antibacterial activities were examined against two Gram-positive strains (S. aureus ATCC® 25923, L. monocytogenes ATCC® 19115) and two Gram-negative strains (E. coli ATCC® 25922, P. aeruginosa ATCC® 27583) using the microdilution method. The lanthanide complexes generally exhibited increased biological activity compared with the free Schiff base ligands. Interactions between the tested compounds and model membranes were examined using differential scanning calorimetry (DSC), and interactions with calf thymus DNA (CT-DNA) were investigated by ultraviolet (UV) absorption. Molecular docking studies were performed using leishmanin (1LML), cruzain (4PI3), P. falciparum alpha-tubulin (GenBank sequence CAA34101 [453 aa]), and S.aureus penicillin-binding protein 2a (PBP2A; 5M18) as the protein receptors. The results lead to the conclusion that the synthesized compounds exhibited a notable effect on model membranes imitating mammalian and bacterial membranes and rolled along DNA strands through groove interactions. Interactions between the compounds and studied receptors depended primarily on ligand structures in the molecular docking study.
RESUMEN
Metal ions and metal complexes are important components of nucleic acid biochemistry, participating both in regulation of gene expression and as therapeutic agents. Three new transition metal complexes of copper(II), zinc(II) and oxidovanadium(IV) with a ligand derived from o-vanillin and thiophene were previously synthesized and their antitumor properties were studied in our laboratory. To elucidate some molecular mechanisms tending to explain the cytotoxic effects observed over tumor cells, we investigated the interaction of these complexes with DNA by gel electrophoresis, UV-Vis spectroscopy, docking studies and molecular dynamics simulations. Our spectroscopy and computational results have shown that all of them were able to bind to DNA, Cu(II) complex is located in the minor groove while Zn(II) and oxidovanadium(IV) complexes act as major groove binding molecules. Interestingly, only the Cu(II) complex caused double-strand DNA nicks, consistent with its higher cytotoxic activities previously observed in tumor cell lines. We propose that the DNA-complex interaction destabilize the molecule either disrupting the phosphodiester bonds or impairing DNA replication, giving those complexes strong antitumor potential.
Asunto(s)
Cobre/química , ADN/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Vanadatos/química , Zinc/química , Bases de SchiffRESUMEN
RESUMO Um processo eletroanalítico da detecção quantitativa dos íons de zinco bivalente sobre as novas bases de Schiff no modo galvanostático tem sido simulado teoricamente. O respectivo modelo matemático tem sido desenvolvido e analisado mediante a teoria de estabilidade linear e da análise de bifurcações. Foi estabelecido que o sistema é eficiente tanto do ponto de vista eletroanalítico, como do ponto de vista eletrossintético, por ser facilmente estabilizado o estado estacionário. Todavia, o comportamento oscilatorio, neste sistema é mais provável que no caso clássico do desempenho de sensores, baseados em polímeros condutores e outros materiais orgânicos, por haver influências na dupla camada elétrica, causadas pela reação química da formação de complexo.
SUMMARY An electroanalytical process of the quantitative determination of bivalent zinc ions over the novel Schiff bases in galvanostatic mode has been theoretically simulated. The correspondent mathematical model has been developed and analyzed by means of linear stability theory and bifurcation analysis. It was shown that the system is efficient from both electroanalytical and electrosynthetical points of view, as the steady-state is easily stabilized. Nevertheless, the oscillatory behavior in this system is more probable than in the classic case of the sensors, based on conducting polymers and other organic materials, as there are double electric layer influences, caused by complex formation.
RESUMEN
The aim of this study was to synthesize and investigate the in vitro antifungal properties of 23 cinnamyl Schiff bases. In addition, cytotoxic effects of such cinnamyl Schiff bases against human lung, kidney or red blood cells were also checked. The compounds were synthesized in a single-step, 2 min of reaction under microwave irradiation produced up to 97% yield. Six of the 23 cinnamyl Schiff bases possessed antifungal activities against strains of Candida, Aspergillus, Fonsecaea and, particularly, Cryptococcus species. Indeed, cinnamyl Schiff bases 1 and 23 exhibited minimum inhibitory concentration (MIC) values more than twofold lower than fluconazole (FCZ) against all the Cryptococcus neoformans strains (MIC = 1·33, 1·4 and 5·2 µg ml-1 , respectively) and Cryptococcus gattii strains (MIC = 5·3, 2·8 and 9·2 µg ml-1 , respectively) (12 strains of each species) while cinnamyl Schiff base 11 was as potent as FCZ against all strains from both Cryptococcus species. No significant cytotoxic effects were observed for Schiff bases against human lung, kidney or red blood cells, all presenting selective indexes higher than 10. In conclusion, this study revealed cinnamyl Schiff bases, especially 1 and 23, as new lead anticryptococcal agents for the discovery of novel antifungal drugs. SIGNIFICANCE AND IMPACT OF THE STUDY: The occurrence and severity of fungal infections have increased in recent decades due to resistance to available antifungal drugs and the appearance of new emerging pathogens. Thus, the search for new antifungal agents is mandatory. From a series of 23 cinnamyl Schiff bases, two compounds (1 and 23) were interrogated as new anticryptococcal agents without significant cytotoxicity against human lung, kidney or red blood cells. In turns, these new Schiff bases are lead compounds for the discovery of novel antifungal drugs.
Asunto(s)
Antifúngicos/farmacología , Micosis/tratamiento farmacológico , Bases de Schiff/farmacología , Antifúngicos/síntesis química , Antineoplásicos/farmacología , Aspergillus/efectos de los fármacos , Candida/efectos de los fármacos , Cryptococcus gattii/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Fluconazol/farmacología , Fonsecaea/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Bases de Schiff/síntesis químicaRESUMEN
A new series of Cu(II) complexes [bis[{(µ2-chloro)-2-MeO-Ph-CH2-(N=CH)-2,4-tert-butyl-2-OC6H2)}Cu(II)] (Cu1); bis[{(µ2-chloro)-2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(OC6H2)}Cu(II)] (Cu2); bis[{(µ2-chloro)-2-MeO-Ph-CH2-(N=CH)-2-(OC10H6)} Cu(II)] (Cu3); bis[{(µ2-chloro)-2-MeS-Ph-CH2-(N=CH)-2-(OC10H6)}Cu(II)] complex (Cu4); bis[{2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(OC6H2)}Cu(II)] (Cu5)] have been synthesized and characterized by elemental analysis, IR, UV-Visible and by X-ray crystallography for Cu1, Cu4 and Cu5. In the solid state, Cu1 features of a chloro-bridged dimer complex with κ2 coordination of the monoanionic phenoxy-imine ligand onto the copper center. On the other hand, the molecular structure of Cu4 reveals the naphthoxy-imine ligand with pendant S-group coordinated to the copper atom in tridentate meridional fashion. Treatment of [Cu(OAc)2·H2O] with two equiv. of [2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(HOC6H2)] led to a monomeric complex Cu5, with the ONS-donor Schiff base acting as a bidentate ligand. The redox behavior was explored by cyclic voltammetry. The reduction/oxidation potential of Cu(II) complexes depends on the structure and conformation of the central atom in the coordination compounds. Antioxidant activities of the complexes, Cu1 - Cu5, were determined by in vitro assays such as 1,1-diphenyl-2-picryl-hydrazyl free radicals (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals (ABTS+). The dinuclear compounds Cu1-Cu4, from the concentration of 5 µM, presented a good activity in scavenging DPPH radical. In addition, most of the Cu(II) complexes showed ABTS.+ radical-scavenging activity. The monomeric complex Cu5 at all concentrations tested showed antioxidant inability. The cytotoxicity of the Cu1 and Cu3 was determined in V79 cell line by reduction of 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay.
Asunto(s)
Complejos de Coordinación/farmacología , Depuradores de Radicales Libres/farmacología , Bases de Schiff/farmacología , Animales , Línea Celular , Complejos de Coordinación/síntesis química , Cobre/química , Cricetulus , Cristalografía por Rayos X , Electroquímica , Depuradores de Radicales Libres/síntesis química , Ligandos , Estructura Molecular , Oxidación-Reducción , Bases de Schiff/síntesis química , Relación Estructura-ActividadRESUMEN
The treatment of schistosomiasis is based on a single drug, the praziquantel (PZQ), an oral bioavailable and efficient agent which causes minimal side effects. The main concern about this approach, however, is that relying on only one drug to treat a helminthic disease is a dangerous strategy since history shows that pathogens easily evolve to resistant forms. Actually, reports about experimental strains exhibiting low sensibility to PZQ can be found in literature. The search for new antischistosomals, consequently, is urgent. Here we report the synthesis of seventeen Schiff bases of 4-(4-Substituted phenyl)-N-(4-substituted benzylidene)thiazole-2-amines which were tested in vitro and in vivo against Schistosoma mansoni adult worms. Moreover, in silico studies to propose potential macromolecular targets and to predict the oral bioavailability were also performed. The analog GPQF-108 exhibited the best in vitro performance (IC50: 29.4 µM, SI:6.1) associated with promising in vivo activity, with a significant decrease in the adult life forms and oviposition. Oral bioavailability could be impaired by the predicted low water solubility of GPQF-108, although it also exhibited good membrane permeability. The water solubility, however, could be improved by decreasing the particles size. Serine/Threonine- and Tyrosine Kinases, Carbonic Anhydrase, Tyrosine Phosphatase and Arginase were predicted as potential macromolecular targets through which the GPQF-108 could be acting against the helminth. This class of compounds exhibited an interesting initial therapeutic profile with the advantage of being chemically diverse from the PZQ and be easily synthesized from commercial reagents which could lead to low-cost drugs. These aspects make this class of compounds interesting hits to be explored against schistosomiasis.
Asunto(s)
Antihelmínticos , Bases de Schiff , Esquistosomiasis mansoni/tratamiento farmacológico , Tiazoles , Animales , Antihelmínticos/química , Antihelmínticos/farmacocinética , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Simulación por Computador , Enzimas/metabolismo , Femenino , Proteínas del Helminto/metabolismo , Masculino , Ratones , Simulación del Acoplamiento Molecular , Bases de Schiff/química , Bases de Schiff/farmacocinética , Bases de Schiff/farmacología , Bases de Schiff/uso terapéutico , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/metabolismo , Tiazoles/química , Tiazoles/farmacocinética , Tiazoles/farmacología , Tiazoles/uso terapéuticoRESUMEN
In order to discover a new compound having anti-inflammatory activity, a nitro-Schiff base was evaluated. The compound was synthesized and characterized by 1H NMR and 13C NMR. The cytotoxic activity was evaluated in vitro by hemolysis and MTT cell viability assay. To evaluate genotoxicity, the micronucleus assay was performed in vivo. The anti-inflammatory effects of the compound were examined using in vivo models of inflammation such as neutrophil migration assay, paw edema, and exudation assay. The production of NO was also estimated in vivo and in vitro. The data showed that the compound did not induce hemolysis at all the tested concentrations. Similarly, the compound did not induce cytotoxicity and genotoxicity to the cells. The neutrophil migration assay showed that the compound reduced the number of neutrophils recruited to the peritoneal cavity by approximately 60% at all the tested concentrations. In the exudation assay, the compound showed a reduction in extravasation by 24%. The paw edema model demonstrated a significant reduction in the paw volume at all the evaluated time points. The production of NO was decreased both in vitro and in vivo. These results suggest that the nitro-Schiff base compound efficiently inhibited inflammation and might be a good candidate for the treatment of inflammatory-associated conditions.
Asunto(s)
Antiinflamatorios/síntesis química , Antiinflamatorios/farmacología , Bases de Schiff/química , Animales , Permeabilidad Capilar/efectos de los fármacos , Carragenina/farmacología , Edema/tratamiento farmacológico , Eritrocitos/efectos de los fármacos , Femenino , Inflamación , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Neutrófilos/efectos de los fármacos , Óxido Nítrico/metabolismoRESUMEN
To improve biological activity of chitosans, new Zn(II), Pd(II) and Pt(II) complexes with biopolymeric amphiphilic Schiff bases anchored in different molecular weight chitosans matrices modified with salicylaldehyde and glycidol were prepared. Salicylaldehyde was introduced to generate complexing Schiff base sites in the chitosans matrix while glycidol is intended to increase the water solubility of the resulting biopolymeric complexes. These novel complexes were characterized using various techniques and assayed for antimicrobial and antitumor activity. The effectiveness of modification was evaluated using FTIR spectroscopy, and thermal behavior of the complexes by TG/DTG-DTA. XPRD showed that the crystallinity of the ligand diminished after the metal complexation. Surface morphologies, investigated by SEM, revealed that the complexes are rougher than chitosan matrix, and the presence of metallic ions was confirmed by EDX. Electronic spectra suggested square planar geometry for Pd(II) and Pt(II) complexes. Concerning antimicrobial activity, the novel complexes exhibited higher antibacterial efficiency against Pseudomonas syringae than against the Fusarium graminearum fungi regarding the free ligand. Complexes also exhibited high antitumor effects against the MCF-7 breast cancer cells, with certain selectivity regarding non-tumor cells (Balb/C 3T3 clone A31) depending on concentration and molar mass, indicating that they could potentially be used for antitumor applications.
Asunto(s)
Antibacterianos/química , Biopolímeros/química , Quitosano/química , Complejos de Coordinación/química , Aldehídos/química , Antibacterianos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Biopolímeros/farmacología , Proliferación Celular/efectos de los fármacos , Quitosano/farmacología , Complejos de Coordinación/farmacología , Hongos/efectos de los fármacos , Hongos/patogenicidad , Humanos , Ligandos , Células MCF-7 , Peso Molecular , Paladio/química , Platino (Metal)/química , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/patogenicidad , Bases de Schiff/química , Espectroscopía Infrarroja por Transformada de Fourier , Tensoactivos/química , Tensoactivos/farmacología , Zinc/químicaRESUMEN
Chitosans are versatile biopolymers recognized for their wide range of biological activities. However, the low solubility in neutral and basic solutions restricts the applications. Thus amphiphilic biopolymeric Schiff bases from chitosans, salicylaldehyde and glycidol were successfully synthesized and characterized using 1H-NMR, UV/Vis, FTIR, TG/DTG-DTA and tested for their antimicrobial activities against plant pathogenic microorganisms and human breast cancer cells (MCF-7). Overall, functionalization of chitosans with salicylaldehyde and glycidol with different molecular weight (Mw¯) was performed to improve the biological actives of chitosans. Thus the biological activity of the new amphiphilic compounds prepared in this work were evaluated regarding microorganisms with agricultural relevance and tumor cells. The biopolymeric amphiphilic Schiff bases showed significant effects against Pseudomonas syringae (IC50 < 5 µg mL-1) compared to the natural chitosans with medium Mw¯ (CHM 223 kDa) and low Mw¯ (CHL 64 kDa), which had IC50 values of 42 and 37 µg mL-1, respectively. In addition, they improved antitumor activity against tumor cells compared to the natural chitosan.