Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Oncol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956984

RESUMEN

Small cell lung cancer (SCLC) is a highly aggressive cancer with a dismal 5-year survival of < 7%, despite the addition of immunotherapy to first-line chemotherapy. Specific tumor biomarkers, such as delta-like ligand 3 (DLL3) and schlafen11 (SLFN11), may enable the selection of more efficacious, novel immunomodulating targeted treatments like bispecific T-cell engaging monoclonal antibodies (tarlatamab) and chemotherapy with PARP inhibitors. However, obtaining a tissue biopsy sample can be challenging in SCLC. Circulating tumor cells (CTCs) have the potential to provide molecular insights into a patient's cancer through a "simple" blood test. CTCs have been studied for their prognostic ability in SCLC; however, their value in guiding treatment decisions is yet to be elucidated. This review explores novel and promising targeted therapies in SCLC, summarizes current knowledge of CTCs in SCLC, and discusses how CTCs can be utilized for precision medicine.

2.
Cureus ; 16(5): e59515, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38832156

RESUMEN

Schlafen12 is a member of the Schlafen gene family where Slfns have been linked to many functions such as anti-proliferation and cell differentiation, viral replication inhibition, migration of cancer cells and invasion prevention, and sensitivity to DNA-damaging medicines. Researchers are interested in studying the biochemical mechanisms that control thymocyte development to extract and describe gene expression and transcriptionally elevated by the process of positive selection that led to the discovery of this novel gene family. This review aims to give adequate knowledge about human SLFN12 by reviewing the most notable papers from five reliable databases regarding SLFN12 milestones and alterations in SLFN12 expression in various disease discoveries from 1997 to the present. In conclusion, SLFN12 seems to be linked with autoimmune diseases such as multiple sclerosis. Furthermore, SLFN12 levels could modify the effects of radiation and chemotherapy.

3.
Viruses ; 16(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38932225

RESUMEN

The innate immune system, particularly the interferon (IFN) system, constitutes the initial line of defense against viral infections. IFN signaling induces the expression of interferon-stimulated genes (ISGs), and their products frequently restrict viral infection. Retroviruses like the human immunodeficiency viruses and the human T-lymphotropic viruses cause severe human diseases and are targeted by ISG-encoded proteins. Here, we discuss ISGs that inhibit the translation of retroviral mRNAs and thereby retrovirus propagation. The Schlafen proteins degrade cellular tRNAs and rRNAs needed for translation. Zinc Finger Antiviral Protein and RNA-activated protein kinase inhibit translation initiation factors, and Shiftless suppresses translation recoding essential for the expression of retroviral enzymes. We outline common mechanisms that underlie the antiviral activity of multifunctional ISGs and discuss potential antiretroviral therapeutic approaches based on the mode of action of these ISGs.


Asunto(s)
Interferones , Biosíntesis de Proteínas , Retroviridae , Humanos , Interferones/inmunología , Interferones/metabolismo , Interferones/genética , Retroviridae/genética , Retroviridae/fisiología , Inmunidad Innata , Animales , Transducción de Señal , Infecciones por Retroviridae/virología , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/genética
4.
Cancers (Basel) ; 16(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791884

RESUMEN

The interferon (IFN) family of immunomodulatory cytokines has been a focus of cancer research for over 50 years with direct and indirect implications in cancer therapy due to their properties to inhibit malignant cell proliferation and modulate immune responses. Among the transcriptional targets of the IFNs is a family of genes referred to as Schlafens. The products of these genes, Schlafen proteins, exert important roles in modulating cellular proliferation, differentiation, immune responses, viral replication, and chemosensitivity of malignant cells. Studies have demonstrated that abnormal expression of various Schlafens contributes to the pathophysiology of various cancers. Schlafens are now emerging as promising biomarkers and potentially attractive targets for drug development in cancer research. Here, we highlight research suggesting the use of Schlafens as cancer biomarkers and the rationale for the development of specific drugs targeting Schlafen proteins.

5.
World J Gastrointest Oncol ; 16(5): 2060-2073, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38764821

RESUMEN

BACKGROUND: Targeting DNA damage response (DDR) pathway is a cutting-edge strategy. It has been reported that Schlafen-11 (SLFN11) contributes to increase chemosensitivity by participating in DDR. However, the detailed mechanism is unclear. AIM: To investigate the role of SLFN11 in DDR and the application of synthetic lethal in esophageal cancer with SLFN11 defects. METHODS: To reach the purpose, eight esophageal squamous carcinoma cell lines, 142 esophageal dysplasia (ED) and 1007 primary esophageal squamous cell carcinoma (ESCC) samples and various techniques were utilized, including methylation-specific polymerase chain reaction, CRISPR/Cas9 technique, Western blot, colony formation assay, and xenograft mouse model. RESULTS: Methylation of SLFN11 was exhibited in 9.15% of (13/142) ED and 25.62% of primary (258/1007) ESCC cases, and its expression was regulated by promoter region methylation. SLFN11 methylation was significantly associated with tumor differentiation and tumor size (both P < 0.05). However, no significant associations were observed between promoter region methylation and age, gender, smoking, alcohol consumption, TNM stage, or lymph node metastasis. Utilizing DNA damaged model induced by low dose cisplatin, SLFN11 was found to activate non-homologous end-joining and ATR/CHK1 signaling pathways, while inhibiting the ATM/CHK2 signaling pathway. Epigenetic silencing of SLFN11 was found to sensitize the ESCC cells to ATM inhibitor (AZD0156), both in vitro and in vivo. CONCLUSION: SLFN11 is frequently methylated in human ESCC. Methylation of SLFN11 is sensitive marker of ATM inhibitor in ESCC.

6.
Viruses ; 16(4)2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38675845

RESUMEN

Schlafen (SLFN) is a family of proteins upregulated by type I interferons with a regulatory role in translation. Intriguingly, SLFN14 associates with the ribosome and can degrade rRNA, tRNA, and mRNA in vitro, but a role in translation is still unknown. Ribosomes are important regulatory hubs during translation elongation of mRNAs rich in rare codons. Therefore, we evaluated the potential role of SLFN14 in the expression of mRNAs enriched in rare codons, using HIV-1 genes as a model. We found that, in a variety of cell types, including primary immune cells, SLFN14 regulates the expression of HIV-1 and non-viral genes based on their codon adaptation index, a measurement of the synonymous codon usage bias; consequently, SLFN14 inhibits the replication of HIV-1. The potent inhibitory effect of SLFN14 on the expression of the rare codon-rich transcript HIV-1 Gag was minimized by codon optimization. Mechanistically, we found that the endoribonuclease activity of SLFN14 is required, and that ribosomal RNA degradation is involved. Therefore, we propose that SLFN14 impairs the expression of HIV-1 transcripts rich in rare codons, in a catalytic-dependent manner.


Asunto(s)
Uso de Codones , VIH-1 , Replicación Viral , Humanos , Codón/genética , Regulación Viral de la Expresión Génica , Células HEK293 , Infecciones por VIH/virología , Infecciones por VIH/genética , VIH-1/genética , VIH-1/fisiología , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Línea Celular Tumoral
7.
Cancers (Basel) ; 15(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067362

RESUMEN

Triple-negative breast cancer (TNBC) has a poor prognosis and no targeted therapy for treatment. The Schlafen gene family, particularly SLFN12, critically mediates TNBC biology. Higher expression of SLFN12 correlates with decreased TNBC viability and increased chemosensitivity and patient survival, yet no treatment is known to upregulate SLFN12 in TNBC. We hypothesized that Interferon-α (IFN-α2) upregulates SLFN12 in TNBC, subsequently reducing cell viability. We utilized short hairpin adenovirus to knockout SLFN12 (AdvShSLFN12) in MDA-MB-231, Hs-578T, and BT-549 TNBC cells. Cells were treated with AdvShSLFN12 and IFN-α2. After treatment, TNBC cell viability, SLFN family mRNA, and protein expression were analyzed. Treating TNBC cells with IFN-α2 increased SLFN12 expression and reduced cell viability. However, when AdvShSLFN12 knocked down SLFN12 during IFN-α2 treatment, TNBC cell viability was still reduced. We, therefore, investigated the potential involvement of other SLFN members IFN-α2 effects on cell viability. IFN-α2 increased SLFN5, SLFN12-Like, and SLFN14 but not SLFN11 or SLFN13. During AdvShSLFN12 + IFN-α2 treatment, the expressions of SLFN5, SLFN12-Like, and SLFN14 further increased. However, when siRNA knocked down SLFN5, SLFN12-Like, and SLFN14, the IFN-α2 reduction in viability was blunted. Although the interpretation of these results may be limited by the potential interactions between different siRNAs, these data suggest a complex regulatory signaling cascade among SLFN family members. Targeting this cascade to manipulate SLFN levels may, in the future, offer the potential to manipulate the chemosensitivity of TNBC tumors.

8.
Cells ; 12(11)2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37296610

RESUMEN

The aggressive features of glioblastoma (GBM) are associated with dormancy. Our previous transcriptome analysis revealed that several genes were regulated during temozolomide (TMZ)-promoted dormancy in GBM. Focusing on genes involved in cancer progression, Chemokine (C-C motif) Receptor-Like (CCRL)1, Schlafen (SLFN)13, Sloan-Kettering Institute (SKI), Cdk5 and Abl Enzyme Substrate (Cables)1, and Dachsous Cadherin-Related (DCHS)1 were selected for further validation. All showed clear expression and individual regulatory patterns under TMZ-promoted dormancy in human GBM cell lines, patient-derived primary cultures, glioma stem-like cells (GSCs), and human GBM ex vivo samples. All genes exhibited complex co-staining patterns with different stemness markers and with each other, as examined by immunofluorescence staining and underscored by correlation analyses. Neurosphere formation assays revealed higher numbers of spheres during TMZ treatment, and gene set enrichment analysis of transcriptome data revealed significant regulation of several GO terms, including stemness-associated ones, indicating an association between stemness and dormancy with the involvement of SKI. Consistently, inhibition of SKI during TMZ treatment resulted in higher cytotoxicity, proliferation inhibition, and lower neurosphere formation capacity compared to TMZ alone. Overall, our study suggests the involvement of CCRL1, SLFN13, SKI, Cables1, and DCHS1 in TMZ-promoted dormancy and demonstrates their link to stemness, with SKI being particularly important.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica
9.
Gastroenterology ; 164(7): 1261-1278, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36863689

RESUMEN

BACKGROUND & AIMS: The therapeutic effect of immune checkpoint inhibitors (ICIs) is poor in hepatocellular carcinoma (HCC) and varies greatly among individuals. Schlafen (SLFN) family members have important functions in immunity and oncology, but their roles in cancer immunobiology remain unclear. We aimed to investigate the role of the SLFN family in immune responses against HCC. METHODS: Transcriptome analysis was performed in human HCC tissues with or without response to ICIs. A humanized orthotopic HCC mouse model and a co-culture system were constructed, and cytometry by time-of-flight technology was used to explore the function and mechanism of SLFN11 in the immune context of HCC. RESULTS: SLFN11 was significantly up-regulated in tumors that responded to ICIs. Tumor-specific SLFN11 deficiency increased the infiltration of immunosuppressive macrophages and aggravated HCC progression. HCC cells with SLFN11 knockdown promoted macrophage migration and M2-like polarization in a C-C motif chemokine ligand 2-dependent manner, which in turn elevated their own PD-L1 expression by activating the nuclear factor-κB pathway. Mechanistically, SLFN11 suppressed the Notch pathway and C-C motif chemokine ligand 2 transcription by binding competitively with tripartite motif containing 21 to the RNA recognition motif 2 domain of RBM10, thereby inhibiting tripartite motif containing 21-mediated RBM10 degradation to stabilize RBM10 and promote NUMB exon 9 skipping. Pharmacologic antagonism of C-C motif chemokine receptor 2 potentiated the antitumor effect of anti-PD-1 in humanized mice bearing SLFN11 knockdown tumors. ICIs were more effective in patients with HCC with high serum SLFN11 levels. CONCLUSIONS: SLFN11 serves as a critical regulator of microenvironmental immune properties and an effective predictive biomarker of ICIs response in HCC. Blockade of C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 signaling sensitized SLFN11low HCC patients to ICI treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ligandos , Macrófagos/metabolismo , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral , Quimiocina CCL2 , Proteínas de Unión al ARN/metabolismo , Proteínas Nucleares/metabolismo
10.
Cancer Res Commun ; 2(9): 966-978, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36382088

RESUMEN

Glioblastoma (GBM) is an aggressive and incurable brain tumor in nearly all instances, whose disease progression is driven in part by the glioma stem cell (GSC) subpopulation. Here, we explored the effects of Schlafen family member 11 (SLFN11) in the molecular, cellular and tumor biology of GBM. CRISPR/Cas9 mediated knockout (KO) of SLFN11 inhibited GBM cell proliferation and neurosphere growth and was associated with reduced expression of progenitor/stem cell marker genes, such as NES, SOX2 and CD44. Loss of SLFN11 stimulated expression of NF-κB target genes, consistent with a negative regulatory role for SLFN11 on the NF-κB pathway. Further, our studies identify p21 as a direct transcriptional target of NF-κB2 in GBM whose expression was stimulated by loss of SLFN11. Genetic disruption of SLFN11 blocked GBM growth and significantly extended survival in an orthotopic patient-derived xenograft model. Together, our results identify SLFN11 as a novel component of signaling pathways that contribute to GBM and GSC with implications for future diagnostic and therapeutic strategies.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , FN-kappa B/genética , Línea Celular Tumoral , Transducción de Señal/genética , Proteínas Nucleares/metabolismo
11.
Cells ; 11(20)2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36291149

RESUMEN

BACKGROUND: The intestinal lining renews itself in a programmed fashion that can be affected by adaptation to surgical procedures such as gastric bypass. METHODS: To assess adaptive mechanisms in the human intestine after Roux-en-Y gastric bypass (RYGB), we biopsied proximal jejunum at the anastomotic site during surgery to establish a baseline and endoscopically re-biopsied the same area 6-9 months after bypass for comparison. Laser microdissection was performed on pre- and post-RYGB biopsies to isolate enterocytes for RNA sequencing. RESULTS: RNA sequencing suggested significant decreases in gene expression associated with G2/M DNA damage checkpoint regulation of the cell cycle pathway, and significant increases in gene expression associated with the CDP-diacylglycerol biosynthesis pathway TCA cycle II pathway, and pyrimidine ribonucleotide salvage pathway after RYGB. Since Schlafen 12 (SLFN12) is reported to influence enterocytic differentiation, we stained mucosa for SLFN12 and observed increased SLFN12 immunoreactivity. We investigated SLFN12 overexpression in HIEC-6 and FHs 74 Int intestinal epithelial cells and observed similar increased expression of the following genes that were also increased after RYGB: HES2, CARD9, SLC19A2, FBXW7, STXBP4, SPARCL1, and UTS. CONCLUSIONS: Our data suggest that RYGB promotes SLFN12 protein expression, cellular mechanism and replication pathways, and genes associated with differentiation and restitution (HES2, CARD9, SLC19A2), as well as obesity-related genes (FBXW7, STXBP4, SPARCL1, UTS).


Asunto(s)
Diferenciación Celular , Enterocitos , Derivación Gástrica , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Obesidad , Humanos , Citidina Difosfato Diglicéridos/metabolismo , Enterocitos/citología , Enterocitos/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Expresión Génica , Intestinos , Proteínas de Transporte de Membrana/metabolismo , Obesidad/genética , Obesidad/cirugía , Obesidad/metabolismo , Análisis de Secuencia de ARN , Proteínas de Transporte Vesicular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Diferenciación Celular/genética
12.
Front Immunol ; 13: 922138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090985

RESUMEN

The Schlafen (SLFN) gene family plays an important role in immune cell differentiation and immune regulation. Previous studies have found that the increased SLFN5 expression in patients with intestinal metaplasia correlates with gastric cancer (GC) progression. However, no investigation has been conducted on the SLFN family in GC. Therefore, we systematically explore the expression and prognostic value of SLFN family members in patients with GC, elucidating their possible biological function and its correlation with tumor immune cells infiltration. TCGA database results indicated that the SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN13 expression was significantly higher in GC. The UALCAN and KM plotter databases indicated that enhanced the SLFN family expression was associated with lymph node metastasis, tumor stage, and tumor grade and predicted an adverse prognosis. cBioportal database revealed that the SLFN family had a high frequency of genetic alterations in GC (about 12%), including mutations and amplification. The GeneMANIA and STRING databases identified 20 interacting genes and 16 interacting proteins that act as potential targets of the SLFN family. SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN14 may be implicated in the immunological response, according to Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Additionally, Timer and TISIDB databases indicate that SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN14 are involved in the immune response. Furthermore, Timer, TCGA, and TISIDB databases suggested that the SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN14 expression in GC is highly linked with immune cell infiltration levels, immune checkpoint, and the many immune cell marker sets expression. We isolated three samples of peripheral blood mononuclear cell (PBMC) and activated T cells; the results showed the expression of SLFN family members decreased significantly when T cell active. In conclusion, the SLFN family of proteins may act as a prognostic indicator of GC and is associated with immune cell infiltration and immune checkpoint expression in GC. Additionally, it may be involved in tumor immune evasion by regulating T cell activation.


Asunto(s)
Neoplasias Gástricas , Proteínas de Ciclo Celular/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Metaplasia , Proteínas Nucleares , Pronóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
14.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35105802

RESUMEN

Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of viral immune evasion, targeting intrinsic, innate, and adaptive immunity. We have employed two orthogonal multiplexed tandem mass tag-based proteomic screens to identify host proteins down-regulated by viral factors expressed during the latest phases of viral infection. This approach revealed that the HIV-1 restriction factor Schlafen-11 (SLFN11) was degraded by the poorly characterized, late-expressed HCMV protein RL1, via recruitment of the Cullin4-RING E3 Ubiquitin Ligase (CRL4) complex. SLFN11 potently restricted HCMV infection, inhibiting the formation and spread of viral plaques. Overall, we show that a restriction factor previously thought only to inhibit RNA viruses additionally restricts HCMV. We define the mechanism of viral antagonism and also describe an important resource for revealing additional molecules of importance in antiviral innate immunity and viral immune evasion.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Evasión Inmune , Proteínas Nucleares/inmunología , Proteolisis , Proteínas del Envoltorio Viral/inmunología , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Humanos , Proteínas Nucleares/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/inmunología , Proteínas del Envoltorio Viral/genética
15.
Viruses ; 14(2)2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35216035

RESUMEN

The Schlafen gene family encodes for proteins involved in various biological tasks, including cell proliferation, differentiation, and T cell development. Schlafens were initially discovered in mice, and have been studied in the context of cancer biology, as well as their role in protecting cells during viral infection. This protein family provides antiviral barriers via direct and indirect effects on virus infection. Schlafens can inhibit the replication of viruses with both RNA and DNA genomes. In this review, we summarize the cellular functions and the emerging relationship between Schlafens and innate immunity. We also discuss the functions and distinctions of this emerging family of proteins as host restriction factors against viral infection. Further research into Schlafen protein function will provide insight into their mechanisms that contribute to intrinsic and innate host immunity.


Asunto(s)
Endorribonucleasas/inmunología , Interacciones Huésped-Patógeno/inmunología , Evasión Inmune , Virosis/inmunología , Animales , Proteínas de Ciclo Celular/inmunología , Humanos , Inmunidad Innata , Ratones
16.
Front Oncol ; 12: 978875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741698

RESUMEN

Recently, Schlafen family member 11 (SLFN11) has been reported to increase the sensitivity of cancer cells to DNA-damaging agents, including platinum derivatives; thus, SLFN11 may be a predictive biomarker for platinum-based chemoradiotherapy (CRT). In this study, we examined whether SLFN11 expression was associated with the therapeutic outcome of platinum-based CRT in head and neck squamous cell carcinoma (HNSCC). We performed immunohistochemical analyses for SLFN11 expression in 161 HNSCC tissues from patients who had been administered cisplatin-based CRT and examined the correlation between SLFN11 expression and progression-free survival (PFS). Additionally, SLFN11 expression was examined in 10 paired samples obtained before and after CRT in patients with local failure. Furthermore, in vitro experiments were performed using several HNSCC cell lines and isogenic SLFN11-knockout cells to assess the association between SLFN11 expression and drug sensitivity. PFS was found to be significantly better in the SLFN11-positive group than in the SLFN11-negative group among the 161 patients (5-year PFS: 78.8% vs. 52.8%, respectively, p < 0.001). Similar results were observed for the PFS at each primary site. The percentage of SLFN11 positivity was lower in tumor samples from patients with local failure after CRT than that in the corresponding primary tumors before CRT in 8 of 10 cases. Results of the in vitro assay demonstrated that SLFN11-knockout cells exhibited reduced sensitivity to DNA-damaging agents but not to the non-DNA-damaging agent docetaxel. Our findings suggest that SLFN11 may serve as a potential biomarker for predicting the response of HNSCC patients to platinum-based CRT.

17.
Cells ; 10(9)2021 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-34571887

RESUMEN

Schlafens (SLFN) are a family of genes widely expressed in mammals, including humans and rodents. These intriguing proteins play different roles in regulating cell proliferation, cell differentiation, immune cell growth and maturation, and inhibiting viral replication. The emerging evidence is implicating Schlafens in cancer biology and chemosensitivity. Although Schlafens share common domains and a high degree of homology, different Schlafens act differently. In particular, they show specific and occasionally opposing effects in some cancer types. This review will briefly summarize the history, structure, and non-malignant biological functions of Schlafens. The roles of human and mouse Schlafens in different cancer types will then be outlined. Finally, we will discuss the implication of Schlafens in the anti-tumor effect of interferons and the use of Schlafens as predictors of chemosensitivity.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias/metabolismo , Animales , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Invasividad Neoplásica , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Isoformas de Proteínas , Transducción de Señal
18.
Cancers (Basel) ; 13(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34572827

RESUMEN

Precision medicine aims to implement strategies based on the molecular features of tumors and optimized drug delivery to improve cancer diagnosis and treatment. DNA replication is a logical approach because it can be targeted by a broad range of anticancer drugs that are both clinically approved and in development. These drugs increase deleterious replication stress (RepStress); however, how to selectively target and identify the tumors with specific molecular characteristics are unmet clinical needs. Here, we provide background information on the molecular processes of DNA replication and its checkpoints, and discuss how to target replication, checkpoint, and repair pathways with ATR inhibitors and exploit Schlafen 11 (SLFN11) as a predictive biomarker.

19.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502386

RESUMEN

Understanding the pathophysiology of rheumatoid arthritis (RA) has led to the successful development of molecule-targeted drugs for the treatment of RA. However, some RA patients are refractory to these treatments, suggesting that the pathological mechanism of the disease is not entirely understood. Genome and transcriptome analysis is essential for understanding the unknown pathophysiology of human diseases. Rapid and more comprehensive gene analysis technologies have revealed notable changes in the expression of coding RNA and non-coding RNA in RA patients. This review focuses on the current state of non-coding RNA research in relation to RA, especially on tRNA fragments. Interestingly, it has been found that tRNA fragments repress translation and are antiapoptotic. The association between tRNA fragments and various diseases has been studied, and this article reviews the possible role of tRNA fragments in RA.


Asunto(s)
Artritis Reumatoide/genética , ARN de Transferencia/genética , ARN no Traducido/genética , Artritis Reumatoide/fisiopatología , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Humanos , Biosíntesis de Proteínas/genética , ARN/genética , ARN de Transferencia/metabolismo , ARN no Traducido/metabolismo , Silicio , Estrés Fisiológico/genética , Titanio
20.
Cell Rep ; 33(3): 108296, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33086069

RESUMEN

CellMiner-SCLC (https://discover.nci.nih.gov/SclcCellMinerCDB/) integrates drug sensitivity and genomic data, including high-resolution methylome and transcriptome from 118 patient-derived small cell lung cancer (SCLC) cell lines, providing a resource for research into this "recalcitrant cancer." We demonstrate the reproducibility and stability of data from multiple sources and validate the SCLC consensus nomenclature on the basis of expression of master transcription factors NEUROD1, ASCL1, POU2F3, and YAP1. Our analyses reveal transcription networks linking SCLC subtypes with MYC and its paralogs and the NOTCH and HIPPO pathways. SCLC subsets express specific surface markers, providing potential opportunities for antibody-based targeted therapies. YAP1-driven SCLCs are notable for differential expression of the NOTCH pathway, epithelial-mesenchymal transition (EMT), and antigen-presenting machinery (APM) genes and sensitivity to mTOR and AKT inhibitors. These analyses provide insights into SCLC biology and a framework for future investigations into subtype-specific SCLC vulnerabilities.


Asunto(s)
Minería de Datos/métodos , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Algoritmos , Línea Celular Tumoral , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica/métodos , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Genómica/métodos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fenómenos Farmacológicos y Toxicológicos , Reproducibilidad de los Resultados , Programas Informáticos , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA