Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Spine J ; 17(4): 574-578, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27916685

RESUMEN

BACKGROUND CONTEXT: Compromise of pedicle screw purchase is a concern in maintaining rigid spinal fixation, especially with osteoporosis. Little consistency exists among various tapping techniques. Pedicle screws are often prepared with taps of a smaller diameter, which can further exacerbate inconsistency. PURPOSE: The objective of this study was to determine whether a mismatch between tap thread depth (D) and thread pitch (P) and screw D and P affects fixation when under-tapping in osteoporotic bone. STUDY DESIGN: This study is a polyurethane foam block biomechanical analysis. MATERIALS AND METHODS: A foam block osteoporotic bone model was used to compare pullout strength of pedicle screws with a 5.3 nominal diameter tap of varying D's and P's. Blocks were sorted into seven groups: (1) probe only; (2) 0.5-mm D, 1.5-mm P tap; (3) 0.5-mm D, 2.0-mm P tap; (4) 0.75-mm D, 2.0-mm P tap; (5) 0.75-mm D, 2.5-mm P tap; (6) 0.75-mm D, 3.0-mm P tap; and (7) 1.0-mm D, 2.5-mm P tap. A pedicle screw, 6.5 mm in diameter and 40 mm in length, was inserted to a depth of 40 mm. Axial pullout testing was performed at a rate of 5 mm/min on 10 blocks from each group. RESULTS: No significant difference was noted between groups under axial pullout testing. The mode of failure in the probe-only group was block fracture, occurring in 50% of cases. Among the other six groups, only one screw failed because of block fracture. The other 59 failed because of screw pullout. CONCLUSIONS: In an osteoporotic bone model, changing the D or P of the tap has no statistically significant effect on axial pullout. Osteoporotic bone might render tap features marginal. Our findings indicate that changing the characteristics of the tap D and P does not help with pullout strength in an osteoporotic model. The high rate of fracture in the probe-only group might imply the potential benefit of tapping to prevent catastrophic failure of bone.


Asunto(s)
Tornillos Pediculares/efectos adversos , Fenómenos Biomecánicos , Ensayo de Materiales , Tornillos Pediculares/normas , Poliuretanos/química
2.
Vet Comp Orthop Traumatol ; 29(6): 466-474, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27709222

RESUMEN

OBJECTIVE: Monocortical screws are commonly employed in locking plate fixation, but specific recommendations for their placement are lacking and use of short monocortical screws in metaphyseal bone may be contraindicated. Objectives of this study were to evaluate axial pullout strength of two different lengths of monocortical screws placed in various regions of the canine humerus compared to bicortical screws, and to derive cortical thickness and bone density values for those regions using quantitative computed tomography analysis (QCT). METHODS: The QCT analysis was performed on 36 cadaveric canine humeri for six regions of interest (ROI). A bicortical, short monocortical, or 50% transcortical 3.5 mm screw was implanted in each ROI and axial pullout testing was performed. RESULTS: Bicortical screws were stronger than monocortical screws in all ROI except the lateral epicondylar crest. Short monocortical metaphyseal screws were weaker than those placed in other regions. The 50% transcortical screws were stronger than the short monocortical screws in the condyle. A linear relationship between screw length and pullout strength was observed. CLINICAL SIGNIFICANCE: Cortical thickness and bone density measurements were obtained from multiple regions of the canine humerus using QCT. Use of short monocortical screws may contribute to failure of locking plate fixation of humeral fractures, especially when placed in the condyle. When bicortical screw placement is not possible, maximizing monocortical screw length may optimize fixation stability for distal humeral fractures.


Asunto(s)
Tornillos Óseos/veterinaria , Perros/cirugía , Húmero/cirugía , Animales , Fenómenos Biomecánicos , Placas Óseas/veterinaria , Diáfisis , Húmero/diagnóstico por imagen , Ensayo de Materiales/veterinaria , Tomografía Computarizada por Rayos X/veterinaria
3.
Spine J ; 15(1): 146-52, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25088957

RESUMEN

BACKGROUND CONTEXT: The use of a rod reduction device can have deleterious consequences on pedicle screw pullout strength (POS) in the thoracic spine. However, posterior-only osteotomies in the thoracic spine are often performed to improve flexibility of the spine and offset forces of deformity correction maneuvers. PURPOSE: To investigate the effect on pedicle screw POS caused by the rod reduction technique in the presence of facet osteotomies in the thoracic spine. STUDY DESIGN/SETTING: The study is a biomechanical study using human cadaveric spine specimens. METHODS: Thoracic Ponte osteotomies were performed on 3 thoracic levels in 15 cadaveric specimens. The right rod was contoured with a 5-mm residual gap at the middle level and was reduced using a rod reduction device. On the left side (paired control), a rod with no mismatch was placed. Biomechanical testing was performed with tensile load to failure "in line" with the screw axis and POS measured in Newtons (N). RESULTS: After rod reduction, thoracic pedicle screw POS was significantly decreased (40%) compared with the control (419±426 N vs. 708±462 N, p=.002) and remained statistically significant after adjusting for bone mineral density (BMD) (p=.05). Eleven (73%) of the pedicle screws had visible pullout/failure during the reduction attempt and occurred irrespective of BMD. CONCLUSIONS: Despite thoracic Ponte osteotomies and increased flexibility of the spinal segments, the rod reduction device still significantly decreased pedicle screw POS, typically resulting in outright failure of the screw-bone interface. Therefore, rod reduction technique of any kind should be performed with caution as it frequently results in suboptimal pedicle screw fixation.


Asunto(s)
Osteotomía/métodos , Tornillos Pediculares , Fusión Vertebral/métodos , Vértebras Torácicas/cirugía , Fenómenos Biomecánicos , Humanos , Columna Vertebral/cirugía
4.
Korean J Spine ; 11(3): 117-20, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25346756

RESUMEN

OBJECTIVE: We describe a surgical tool that uses the distractor pin as a reference for determining proper screw length in ACDF. It is critical that screw purchase depth be as deep as possible without violating or penetrating the posterior cortical wall, which ensures strong pull out strength. METHODS: We enrolled 81 adult patients who underwent ACDF using an anterior cervical plate from 2010 to 2012. Patients were categorized into Groups A (42 patients: retractor pin used as a reference for screw length) and B (39 patients: control group). Intraoperative lateral x-rays were taken after screwing the retractor pin to confirm the approaching vertebral level. The ratio of retractor pin length to body anteroposterior (A-P) diameter was measured as a reference. Proper screw length was determined by comparison to the reference. RESULTS: The average distance from screw tip to posterior wall was 3.0±1.4mm in Group A and 4.1±2.3mm in Group B. The ratio of screw length to body sagittal diameter was 86.2±5.7% in Group A and 80.8±9.0% in Group B. Screw length to body sagittal diameter ratios higher than 4/5 occurred in 33 patients (90%) in Group A and 23 patients (59%) in Group B. No cases violated the posterior cortical wall. CONCLUSION: We introduce a useful surgical method for determining proper screw length in ACDF using the ratio of retractor pin length to body A-P diameter as a reference. This method allows for deeper screw purchase depth without violation of the posterior cortical wall.

5.
J Mech Behav Biomed Mater ; 40: 354-361, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25265033

RESUMEN

For cancellous bone screws, the respective roles of the applied insertion torque (TInsert) and of the quality of the host bone (microarchitecture, areal bone mineral density (aBMD)), in contributing to the mechanical holding strength of the bone-screw construct (FPullout), are still unclear. During orthopaedic surgery screws are tightened, typically manually, until adequate compression is attained, depending on surgeons' manual feel. This corresponds to a subjective insertion torque control, and can lead to variable levels of tightening, including screw stripping. The aim of this study, performed on cancellous screws inserted in human femoral heads, was to investigate which, among the measurements of aBMD, bone microarchitecture, and the applied TInsert, has the strongest correlation with FPullout. Forty six femoral heads were obtained, over which microarchitecture and aBMD were evaluated using micro-computed tomography and dual X-ray absorptiometry. Using an automated micro-mechanical test device, a cancellous screw was inserted in the femoral heads at TInsert set to 55% to 99% of the predicted stripping torque beyond screw head contact, after which FPullout was measured. FPullout exhibited strongest correlations with TInsert (R=0.88, p<0.001), followed by structure model index (SMI, R=-0.81, p<0.001), bone volume fraction (BV/TV, R=0.73, p<0.001) and aBMD (R=0.66, p<0.01). Combinations of TInsert with microarchitectural parameters and/or aBMD did not improve the prediction of FPullout. These results indicate that, for cancellous screws, FPullout depends most strongly on the applied TInsert, followed by microarchitecture and aBMD of the host bone. In trabecular bone, screw tightening increases the holding strength of the screw-bone construct.


Asunto(s)
Densidad Ósea/fisiología , Tornillos Óseos , Cabeza Femoral/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos/fisiología , Femenino , Cabeza Femoral/cirugía , Humanos , Masculino , Persona de Mediana Edad , Radiografía , Torque
6.
Korean Journal of Spine ; : 117-120, 2014.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-148289

RESUMEN

OBJECTIVE: We describe a surgical tool that uses the distractor pin as a reference for determining proper screw length in ACDF. It is critical that screw purchase depth be as deep as possible without violating or penetrating the posterior cortical wall, which ensures strong pull out strength. METHODS: We enrolled 81 adult patients who underwent ACDF using an anterior cervical plate from 2010 to 2012. Patients were categorized into Groups A (42 patients: retractor pin used as a reference for screw length) and B (39 patients: control group). Intraoperative lateral x-rays were taken after screwing the retractor pin to confirm the approaching vertebral level. The ratio of retractor pin length to body anteroposterior (A-P) diameter was measured as a reference. Proper screw length was determined by comparison to the reference. RESULTS: The average distance from screw tip to posterior wall was 3.0+/-1.4mm in Group A and 4.1+/-2.3mm in Group B. The ratio of screw length to body sagittal diameter was 86.2+/-5.7% in Group A and 80.8+/-9.0% in Group B. Screw length to body sagittal diameter ratios higher than 4/5 occurred in 33 patients (90%) in Group A and 23 patients (59%) in Group B. No cases violated the posterior cortical wall. CONCLUSION: We introduce a useful surgical method for determining proper screw length in ACDF using the ratio of retractor pin length to body A-P diameter as a reference. This method allows for deeper screw purchase depth without violation of the posterior cortical wall.


Asunto(s)
Adulto , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA