Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Total Environ ; 913: 169773, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38181940

RESUMEN

Particulate matter less than 2.5 µm particle diameter (PM2.5) is the most significant environmental issue globally. PM2.5 is an integral component of air quality monitoring and management, human health, weather, climate, and epidemiological research. In this work, we investigate the seasonal variation in PM2.5 mass concentrations and the association between the sea-land breeze system and particulate matter in five coastal urban locations in India (Kolkata, Visakhapatnam, Chennai, Thiruvananthapuram, and Mumbai). The relative occurrence of high PM2.5 mass concentrations was the greatest during the winter season (December through February) while the relative occurrence of low PM2.5 mass concentrations was the greatest during the monsoon season (June through September). Amongst locations, Kolkata experiences the highest PM2.5 loading in winter while Thiruvananthapuram experiences the lowest PM2.5 loading in monsoon. Indo-Gangetic Plain (IGP) outflow onto the Bay of Bengal significantly impacts locations along the eastern coast of India with reduced impact from north (Kolkata) to south (Chennai). The sea-breeze component analysis revealed daily cycles of the sea-land breeze with varying magnitudes of the breeze between the different seasons. Overall, we found a negative association between the sea-land breeze magnitude and PM2.5 mass concentrations, implying that the weakened sea-land breeze may deteriorate air quality in coastal locations due to poor ventilation. The vertical profiles of aerosol extinction showed elevated aerosol layers within 1 km from the surface in almost all locations. The decreasing trend in the land-sea temperature contrast in coastal locations is expected to deteriorate air quality in coastal locations in the warming future. Nevertheless, critical analyses using ground-based remote sensing techniques are required for a better understanding the impact of sea-land breeze dynamics on air quality in coastal locations.

2.
Sci Total Environ ; 885: 163905, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37142018

RESUMEN

Tetrodotoxin (TTX), a potent neurotoxin mostly associated with pufferfish poisoning, is also found in bivalve shellfish. Recent studies into this emerging food safety threat reported TTX in a few, mainly estuarine, shellfish production areas in some European countries, including the United Kingdom. A pattern in occurrences has started to emerge, however the role of temperature on TTX has not been investigated in detail. Therefore, we conducted a large systematic TTX screening study, encompassing over 3500 bivalve samples collected throughout 2016 from 155 shellfish monitoring sites along the coast of Great Britain. Overall, we found that only 1.1 % of tested samples contained TTX above the reporting limit of 2 µg/kg whole shellfish flesh and these samples all originated from ten shellfish production sites in southern England. Subsequent continuous monitoring of selected areas over a five-year period showed a potential seasonal TTX accumulation in bivalves, starting in June when water temperatures reached around 15 °C. For the first time, satellite-derived data were also applied to investigate temperature differences between sites with and without confirmed presence of TTX in 2016. Although average annual temperatures were similar in both groups, daily mean values were higher in summer and lower in winter at sites where TTX was found. Here, temperature also increased significantly faster during late spring and early summer, the critical period for TTX. Our study supports the hypothesis that temperature is one of the key triggers of events leading to TTX accumulation in European bivalves. However, other factors are also likely to play an important role, including the presence or absence of a de novo biological source, which remains elusive.


Asunto(s)
Bivalvos , Mariscos , Animales , Tetrodotoxina , Temperatura , Alimentos Marinos
3.
Fish Oceanogr ; 32(1): 91-105, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37063112

RESUMEN

Fish populations may spawn a vast number of offspring, while only a small and highly variable fraction of a new cohort survives long enough to enter into the fisheries as recruits. It is intuitive that the size and state of the spawning stock, the adult part of the fish population, is important for recruitment. Additionally, environmental conditions can greatly influence survival through vulnerable early life stages until recruitment. To understand what regulates recruitment, an essential part of fish population dynamics, it is thus necessary to explain the impact of fluctuations in both spawning stock and environment, including interactions. Here, we examine if the connection between the environment and recruitment is affected by the state of the spawning stock, including biomass, mean age and age diversity. Specifically, we re-evaluate the hypothesis stating that recruitment from a spawning stock dominated by young fish and few age classes is more vulnerable to environmental fluctuations. We expand upon earlier work on the Barents Sea stock of Atlantic cod, now with data series extended in time both backwards and forwards to cover the period 1922-2019. While our findings are correlative and cannot prove a specific cause and effect mechanism, they support earlier work and strengthen the evidence for the hypothesis above. Furthermore, this study supports that advice to fisheries management should include considerations of environmental status.

4.
J Fish Biol ; 101(4): 960-971, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35781814

RESUMEN

One of the consequences of climate change is an increase in the temperature of the oceans, which is considered to be one of the greatest impacts on biodiversity. Fish may respond to this impact in several ways, including shifts in their patterns of occurrence. The present study investigated the variation in the structure of a H. reidi population between 2015 and 2017 in the northern Guaíba Island area, highlighting a possible relationship to thermal anomaly associated with the El Niño phenomenon. The seahorse population monitoring was performed monthly, recording sex ratio, abundance, juvenile and adult proportion, depth of occurrence, total length and the holdfast which the seahorse were found attached. The influence of the El Niño event on the study population was evaluated by the correlation of the thermal anomaly data reported for the Tropical South Atlantic Index. Seahorse density on northern Guaíba island was positively and significantly correlated with water temperature, but the sex ratio and number of juveniles were not. The diversity of holdfasts used increased over the study period and was inversely proportional to the thermal anomaly. These results suggest that the thermal anomalies caused by the El Niño in the South Atlantic might trigger migration behaviour in the study species, providing a large aggregation during that period in Guaíba island.


Asunto(s)
Estuarios , Smegmamorpha , Animales , Brasil , El Niño Oscilación del Sur , Océano Atlántico , Agua
5.
Ecol Evol ; 12(4): e8780, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35386868

RESUMEN

Wild Atlantic salmon populations have declined in many regions and are affected by diverse natural and anthropogenic factors. To facilitate management guidelines, precise knowledge of mechanisms driving population changes in demographics and life history traits is needed.Our analyses were conducted on (a) age and growth data from scales of salmon caught by angling in the river Etneelva, Norway, covering smolt year classes from 1980 to 2018, (b) extensive sampling of the whole spawning run in the fish trap from 2013 onwards, and (c) time series of sea surface temperature, zooplankton biomass, and salmon lice infestation intensity.Marine growth during the first year at sea displayed a distinct stepwise decline across the four decades. Simultaneously, the population shifted from predominantly 1SW to 2SW salmon, and the proportion of repeat spawners increased from 3 to 7%. The latter observation is most evident in females and likely due to decreased marine exploitation. Female repeat spawners tended to be less catchable than males by anglers.Depending on the time period analyzed, marine growth rate during the first year at sea was both positively and negatively associated with sea surface temperature. Zooplankton biomass was positively associated with growth, while salmon lice infestation intensity was negatively associated with growth.Collectively, these results are likely to be linked with both changes in oceanic conditions and harvest regimes. Our conflicting results regarding the influence of sea surface temperature on marine growth are likely to be caused by long-term increases in temperature, which may have triggered (or coincided with) ecosystem shifts creating generally poorer growth conditions over time, but within shorter datasets warmer years gave generally higher growth. We encourage management authorities to expand the use of permanently monitored reference rivers with complete trapping facilities, like the river Etneelva, generating valuable long-term data for future analyses.

6.
Environ Int ; 157: 106858, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34530291

RESUMEN

Marine fish from the North East Atlantic Ocean (NEAO) are nutrient rich and considered a valuable economic resource. However, marine fish are also a major dietary source of several contaminants, including persistent organic pollutants (POPs) and heavy metals. Using one of the world's largest seafood datasets (n > 25,000 individuals), comprising 12 commercially important fish species collected during 2006-2019 in the NEAO, we assessed the co-occurrence of elements and POPs, and evaluated potential risks to human consumers. Several positive correlations between concentrations of mercury (Hg), dioxins, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were observed. Concentrations of Hg, dioxins, PCBs and PBDEs increased from North to South and associations between marine sediment contamination, sea temperature, and fish Hg and POPs concentrations were identified using multi-linear regression (MLR) models. In general, Hg concentrations in fillet and liver of fish were positively associated with increases in both sediment contamination and sea temperature. POPs concentrations in both fillet and liver were positively associated with increases in sediment contamination, and only POPs concentrations in the liver of benthopelagic and demersal species were found to be positively correlated with sea temperature. Using a probabilistic approach to estimate human contaminant exposure from seafood, we showed that intake of pelagic species posed the highest risk of dioxins and dioxin-like PCBs (DL-PCBs) exposure, while intake of benthopelagic and demersal species posed the highest risk of Hg exposure. This study can serve as a model to further understand the distribution, co-occurrence, and trends of contaminants in seafood harvested from the NEAO and their potential risks to human consumers.


Asunto(s)
Bifenilos Policlorados , Contaminantes Químicos del Agua , Animales , Océano Atlántico , Peces , Éteres Difenilos Halogenados/análisis , Humanos , Bifenilos Policlorados/análisis , Medición de Riesgo , Alimentos Marinos/análisis , Contaminantes Químicos del Agua/análisis
7.
Mar Environ Res ; 170: 105410, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34271484

RESUMEN

Quantifying scale-dependent patterns and linking ecological to environmental variation is required to understand mechanisms regulating biodiversity. We conducted a large-scale survey in rocky shores along the SE Brazilian coast to examine spatial variability in body size and density of an intertidal barnacle (Chthamalus bisinuatus) and its relationships with benthic and oceanographic predictors. Both the size and density of barnacles showed most variation at the smallest spatial scales. On average, barnacle body size was larger on shores located in areas characterised by higher chlorophyll levels, colder waters, low wave action and low influence of freshwater. Barnacles were more abundant at wave-exposed shores. We identified critical scales of spatial variation of an important species and linked population patterns to essential environmental predictors. Our results show that populations of this barnacle are coupled to scale-dependent oceanographic variation. This study offers insights into the mechanisms regulating coastal populations along a little studied coastline.


Asunto(s)
Ecosistema , Thoracica , Animales , Biodiversidad , Invertebrados , Dinámica Poblacional
8.
Ecol Evol ; 10(14): 7050-7061, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32760510

RESUMEN

Predicting how species will respond to increased environmental temperatures is key to understanding the ecological consequences of global change. The physiological tolerances of a species define its thermal limits, while its thermal affinity is a summary of the environmental temperatures at the localities at which it actually occurs. Experimentally derived thermal limits are known to be related to observed latitudinal ranges in marine species, but accurate range maps from which to derive latitudinal ranges are lacking for many marine species. An alternative approach is to combine widely available data on global occurrences with gridded global temperature datasets to derive measures of species-level "thermal affinity"-that is, measures of the central tendency, variation, and upper and lower bounds of the environmental temperatures at the locations at which a species has been recorded to occur. Here, we test the extent to which such occupancy-derived measures of thermal affinity are related to the known thermal limits of marine species using data on 533 marine species from 24 taxonomic classes and with experimentally derived critical upper temperatures spanning 2-44.5°C. We show that thermal affinity estimates are consistently and positively related to the physiological tolerances of marine species, despite gaps and biases in the source data. Our method allows thermal affinity measures to be rapidly and repeatably estimated for many thousands more marine species, substantially expanding the potential to assess vulnerability of marine communities to warming seas.

9.
Rev. biol. trop ; 68mar. 2020.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1507621

RESUMEN

Introducción: Para Costa Rica, los estudios realizados en el Pacífico Tropical Este o PTE son importantes ya que se relacionan con el Corredor Marino del Pacífico Este Tropical, el cual es un esfuerzo de conservación multinacional. El presente estudio describe los parámetros físicos de temperatura del mar y salinidad del océano de las masas de agua que rodean a la Isla del Coco y su entorno, el PTE, a través del análisis de perfiles de CTD obtenidos durante campañas hidrográficas realizadas entre el año 2008 y el 2012; y comparar los resultados de los datos in-situ con los del reanálisis del modelo HYCOM-NCODA. Métodos: Se compilaron los resultados de 8 diferentes campañas científicas a la Isla del Coco de abril de 2008, marzo de 2009, abril de 2010, julio de 2011 y marzo de 2012. También se analizan las campañas de octubre de 2010 y marzo de 2011 en donde se realizó un transecto latitudinal y un transecto longitudinal en las aguas del Pacífico Tropical Este de Costa Rica. En julio de 2012 se realizaron 3 transectos latitudinales en las aguas en torno a la Isla del Coco. Las mediciones se hicieron por medio de un CTD, instrumento utilizado para determinar la conductividad, temperatura y presión de la columna de agua, entre otras variables. Resultados: Se observó la presencia de Agua Superficial Tropical en los primeros 50m de profundidad, con temperaturas superiores a 25°C y salinidades menores 33psu y Agua Sub-superficial Sub-tropical bajo los 60m con temperaturas menores a 25°C y salinidades alrededor de las 35ups. La zona de transición entre ellas se presentó entre los 50-60m. Los resultados de la temperatura del mar y la salinidad de los transectos analizados reflejan las condiciones climáticas y atmosféricas observadas, en donde se nota que las variaciones estacionales en el PTE están fuertemente influenciadas por la migración meridional de la Zona de Convergencia Inter-Tropical. Conclusiones: El estudio mostró que los datos del reanálisis del modelo de circulación general HYCOM-NCODA son comparables con los resultados de los perfiles del CTD en el PTE. La distribución de la temperatura de los muestreos tiende a ser similar a los datos del modelo oceánico y las principales diferencias se dan en la capa profunda para la salinidad, por lo que el modelo HYCOM es capaz de reproducir las características observadas en el PTE de temperatura y salinidad y puede ser usado para estudiar la dinámica tropical oceánica, en regiones más extensas y en otras épocas del año.


Introduction: In Costa Rica, studies done in the Eastern Tropical Pacific or ETP are important because of their interaction/relationship with the Eastern Tropical Pacific Seascape, a known multinational conservation initiative. The present study describes the physical parameters of sea temperature and salinity around Cocos Island and its environment, the ETP, using CTD profiles. Methods: Data were obtained in April 2008, March 2009, April 2010, July 2011 and March 2012 near this island. Latitudinal and longitudinal transects were also done during October 2010 and March 2011 in a broader Costa Rican ETP region. In July 2012, three latitudinal transects were done around Cocos Island. Records were obtained using a CTD, measuring conductivity, temperature and pressure, among other variables. Results: Tropical Surface Water was observed in the upper 50m, showing temperatures above 25°C and salinities below 33psu. Below the surface waters, Subsurface Subtropical Water was detected below a 60m depth, showing temperatures colder than 25°C and salinities around 35psu. The transition between these waters was around 50-60m in depth. Temperature and salinity results were related with the atmosphere conditions observed, in which ETP variability was strongly influenced by the Inter Tropical Convergence Zone migration. Conclusions: This study also showed that reanalysis data from the HYCOM-NCODA general circulation model are comparable and in a good agreement with the CTD profiles. Temperature and salinity HYCOM data also reproduced, in general terms, the main characteristics of CTD data, having some small differences in the deeper levels. This reanalysis data set could also be used to study the tropical ocean dynamics, in wider ETP regions and for different seasons.

10.
Animals (Basel) ; 8(12)2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487407

RESUMEN

The use of molecular techniques in biodiversity research increasingly results in the recognition of multiple divergent mitochondrial DNA (mtDNA) lineages below the morphospecies level. However, the overlapping distribution of multiple divergent lineages raises the question of whether some of these lineages are in fact cryptic species. Assessing the status of these divergent lineages, delimiting evolutionarily significant units (ESUs), and identifying the dominant evolutionary and ecological drivers are critical components of successful wildlife conservation and management strategies. Amplified fragment length polymorphism (AFLP) markers were applied to characterize the phylogeography pattern of a cold water species, the Japanese sand lance Ammodytes personatus, in warm and cold ocean currents. A total of 211 individuals sampled from 12 populations through the species' range, including samples from Kuroshio Current, Oyashio Current, Tsushima Current, and Yellow Sea, were analyzed. The Bayesian assignment probability test and Neighbor joining (NJ) analysis divided these populations into two genetically and geographically distinct clades (northern and southern clades) characterized by different sea surface temperatures. The incongruence between nuclear clades and previous mitochondrial lineages suggested that A. personatus is indeed composed of at least two genetically divergent cryptic species. Pleistocene glaciation isolation after secondary contact, local thermal adaptation, and isolation by distance may explain the observed geographic pattern of two cryptic species and genetic structure within clades.

11.
Front Plant Sci ; 8: 1446, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28878790

RESUMEN

Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum (Topt) for gross photosynthesis of Z. muelleri, which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The Topt for photosynthesis of the tropical species, H. uninervis and C. serrulata, was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature (Topt varied by 1°C in C. serrulata and 2°C in H. uninervis, and the variation did not follow changes in ambient water temperature). The Topt for gross photosynthesis were higher than Topt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis (33°C), but remained unchanged at 35°C in C. serrulata. Both estimated plant net productivity and Topt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The thermal optimum for plant net productivity was lower than ambient summer water temperature in Z. muelleri, indicating likely contemporary heat stress. In contrast, thermal optima of H. uninervis and C. serrulata exceeded ambient water temperature. This study found limited capacity to acclimate: thus the thermal optima can forewarn of both the present and future vulnerability to ocean warming during periods of elevated water temperature.

12.
Sensors (Basel) ; 17(6)2017 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-28555006

RESUMEN

Oceanic conditions play an important role in determining the effects of climate change and these effects can be monitored through the changes in the physical properties of sea water. In fact, Oceanographers use various probes for measuring the properties within the water column. CTDs (Conductivity, Temperature and Depth) provide profiles of physical and chemical parameters of the water column. A CTD device consists of Conductivity (C), Temperature (T) and Depth (D) probes to monitor the water column changes with respect to relative depth. An optical fibre-based point sensor used as a combined pressure (depth) and temperature sensor and the sensor system are described. Measurements accruing from underwater trials of a miniature sensor for pressure (depth) and temperature in the ocean and in fresh water are reported. The sensor exhibits excellent stability and its performance is shown to be comparable with the Sea-Bird Scientific commercial sensor: SBE9Plus.

13.
Integr Environ Assess Manag ; 13(3): 483-487, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28440930

RESUMEN

Marine plastic pollution is currently a major scientific focus, with attention paid to its distribution and impacts within ecosystems. With recent estimates indicating that the mass of plastic released to the marine environment may reach 250 million metric tons by 2025, the effects of plastic on our oceans are set to increase. Distribution of microplastics, those plastics measuring less than 5 mm, are of increasing concern because they represent an increasing proportion of marine litter and are known to interact with species in a range of marine habitats. The local abundance of microplastic is dependent on a complex interaction between the scale of local plastic sources and prevailing environmental conditions; as a result, microplastic distribution is highly heterogeneous. Circulation models have been used to predict plastic distribution; however, current models do not consider future variation in circulation patterns and weather systems caused by a changing climate. In this study, we discuss the potential impacts of global climate change on the abundance and distribution of marine plastic pollution. Integr Environ Assess Manag 2017;13:483-487. © 2017 SETAC.


Asunto(s)
Monitoreo del Ambiente , Plásticos/análisis , Residuos/análisis , Movimientos del Agua , Océanos y Mares , Contaminantes Químicos del Agua/análisis
14.
Glob Chang Biol ; 23(2): 490-502, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27250039

RESUMEN

The Arctic is warming more rapidly than other region on the planet, and the northern Barents Sea, including the Svalbard Archipelago, is experiencing the fastest temperature increases within the circumpolar Arctic, along with the highest rate of sea ice loss. These physical changes are affecting a broad array of resident Arctic organisms as well as some migrants that occupy the region seasonally. Herein, evidence of climate change impacts on terrestrial and marine wildlife in Svalbard is reviewed, with a focus on bird and mammal species. In the terrestrial ecosystem, increased winter air temperatures and concomitant increases in the frequency of 'rain-on-snow' events are one of the most important facets of climate change with respect to impacts on flora and fauna. Winter rain creates ice that blocks access to food for herbivores and synchronizes the population dynamics of the herbivore-predator guild. In the marine ecosystem, increases in sea temperature and reductions in sea ice are influencing the entire food web. These changes are affecting the foraging and breeding ecology of most marine birds and mammals and are associated with an increase in abundance of several temperate fish, seabird and marine mammal species. Our review indicates that even though a few species are benefiting from a warming climate, most Arctic endemic species in Svalbard are experiencing negative consequences induced by the warming environment. Our review emphasizes the tight relationships between the marine and terrestrial ecosystems in this High Arctic archipelago. Detecting changes in trophic relationships within and between these ecosystems requires long-term (multidecadal) demographic, population- and ecosystem-based monitoring, the results of which are necessary to set appropriate conservation priorities in relation to climate warming.


Asunto(s)
Aves , Cambio Climático , Ecosistema , Mamíferos , Animales , Regiones Árticas , Mar del Norte , Noruega , Dinámica Poblacional , Svalbard
15.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25143035

RESUMEN

Natural populations of widely distributed organisms often exhibit genetic clinal variation over their geographical ranges. The European anchovy, Engraulis encrasicolus, illustrates this by displaying a two-clade mitochondrial structure clinally arranged along the eastern Atlantic. One clade has low frequencies at higher latitudes, whereas the other has an anti-tropical distribution, with frequencies decreasing towards the tropics. The distribution pattern of these clades has been explained as a consequence of secondary contact after an ancient geographical isolation. However, it is not unlikely that selection acts on mitochondria whose genes are involved in relevant oxidative phosphorylation processes. In this study, we performed selection tests on a fragment of 1044 bp of the mitochondrial cytochrome b gene using 455 individuals from 18 locations. We also tested correlations of six environmental features: temperature, salinity, apparent oxygen utilization and nutrient concentrations of phosphate, nitrate and silicate, on a compilation of mitochondrial clade frequencies from 66 sampling sites comprising 2776 specimens from previously published studies. Positive selection in a single codon was detected predominantly (99%) in the anti-tropical clade and temperature was the most relevant environmental predictor, contributing with 59% of the variance in the geographical distribution of clade frequencies. These findings strongly suggest that temperature is shaping the contemporary distribution of mitochondrial DNA clade frequencies in the European anchovy.


Asunto(s)
Adaptación Biológica , ADN Mitocondrial/genética , Ambiente , Peces/clasificación , Peces/genética , Temperatura , Animales , Océano Atlántico , Secuencia de Bases , Genes Mitocondriales , Genética de Población , Mar Mediterráneo , Datos de Secuencia Molecular , Filogenia
16.
Adv Mar Biol ; 68: 65-210, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24981733

RESUMEN

Maturity size, reproductive cycle, sex ratio and fecundity of female Nephrops were investigated at SW, S and SE Iceland for the period 1960-2010. Time series of biological parameters and fisheries data displayed significant relationships. In addition, female biological data from 20 areas in the Atlantic and Mediterranean were compared. Fifty percentage maturity estimates had an overall range of 23.9-34.4mm CL with some anomalies in the 2000s. The reproductive cycle in Iceland has been biennial during the whole study period from mid-1960s to 2010 with minor change in phase in the 2000s. Biennial moulting retards female growth more than annual spawning, and the length of incubation and hatch time of year show significant relationships with latitude and sea temperature. Variations in sex ratio were observed and relationships found between female sex ratio and CL, CPUE and stock biomass during 1961-2010, displaying apparent fishery-induced effects on sex ratio. Potential and realized fecundity estimates in Iceland are 35-50% of those reported from more southerly waters. Biennial spawning and low fecundity limit the number of progeny in Icelandic Nephrops and necessitate lower fishing mortality. Ambient temperature in Icelandic waters has risen by 1°C since the late 1990s, generating around 30 days shorter incubation time in the 2000s, but around 3°C rise is necessary for possible annual spawning.


Asunto(s)
Nephropidae/fisiología , Animales , Océano Atlántico , Femenino , Islandia , Mar Mediterráneo , Reproducción/fisiología , Estaciones del Año , Factores de Tiempo
17.
J Fish Dis ; 37(8): 739-51, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23980568

RESUMEN

Pancreas disease (PD) is a viral disease causing negative impacts on economy of salmon farms and fish welfare. Its transmission route is horizontal, and water transport by ocean currents is an important factor for transmission. In this study, the effect of temperature changes on PD dynamics in the field has been analysed for the first time. To identify the potential time of exposure to the virus causing PD, a hydrodynamic current model was used. A cohort of salmon was assumed to be infected the month it was exposed to virus from other infective cohorts by estimated water contact. The number of months from exposure to outbreak defined the incubation period, which was used in this investigation to explore the relationship between temperature changes and PD dynamics. The time of outbreak was identified by peak in mortality based on monthly records from active sites. Survival analysis demonstrated that cohorts exposed to virus at decreasing sea temperature had a significantly longer incubation period than cohorts infected when the sea temperature was increasing. Hydrodynamic models can provide information on the risk of being exposed to pathogens from neighbouring farms. With the knowledge of temperature-dependent outbreak probability, the farmers can emphasize prophylactic management, avoid stressful operations until the sea temperature is decreasing and consider removal of cohorts at risk, if possible.


Asunto(s)
Infecciones por Alphavirus/veterinaria , Enfermedades de los Peces/virología , Enfermedades Pancreáticas/epidemiología , Estaciones del Año , Infecciones por Alphavirus/epidemiología , Animales , Acuicultura , Enfermedades de los Peces/epidemiología , Noruega/epidemiología , Enfermedades Pancreáticas/veterinaria , Enfermedades Pancreáticas/virología , Factores de Riesgo , Sensibilidad y Especificidad , Temperatura
18.
Rev. biol. trop ; 60(supl.2): 159-171, abr. 2012. graf, mapas, tab
Artículo en Español | LILACS, SaludCR | ID: lil-657842

RESUMEN

Climate and subsurface sea temperature in Bahía Culebra, Costa Rica. Bahía Culebra, Golfo de Papagayo, Costa Rica is a seasonal upwelling area. To determine the relationship of climate and the subsurface temperature variability at Bahía Culebra, we analyzed nine records of sea subsurface temperature from the Bay, continuously recorded from 1998 to 2010. The analysis characterized the annual cycle and explored the influence of different climate variability sources on the subsurface sea temperature and air temperature recorded in Bahía Culebra. Data from an automatic meteorological station in the bay were studied, obtaining the annual and daily cycle for air surface temperature and wind speed. Sea surface temperature (SST) trend from 1854 to 2011 was calculated from reanalysis for the region that coverts 9-11°N, 85-87°W. Because of the positive SST trend identified in this region, results showed that annual and daily cycles in Bahía Culebra should be studied under a warming scenario since 1854, that is coherent with the global warming results and its climate variability is influenced by El Niño-Southern Oscillation (ENSO) in the Equatorial Pacific and by atmospheric forcing triggered by climate variability with Atlantic Ocean origin, because warm (cold) events in Bahía Culebra tend to occur in concordance with positive & negative (negative & positive) anomalies in Niño 3.4 (NAO) index.


Bahía Culebra, Golfo de Papagayo, Costa Rica es una región de afloramiento estacional. Para determinar la relación entre el clima y la variabilidad de la temperatura sub-superficial, se analizaron los registros de la temperatura sub-superficial del mar de nueve estaciones localizadas en la Bahía. El análisis permitió caracterizar su ciclo anual y explorar su relación con fuentes de variabilidad climática que influencian el clima regional para el periodo 1998-2010. Los resultados se contextualizaron usando además los datos de una estación meteorológica automática que funcionó en la bahía junto con el registro de la temperatura superficial del mar para una rejilla que cubre la región de 9-11°N, 85-87°W, para el periodo 1854-2011. Debido a la tendencia positiva encontrada en la región para la temperatura superficial del mar, se concluye que los resultados mostrados asociados a los ciclos anuales y diarios en Bahía Culebra deben ser interpretados bajo un escenario de cambio climático, asociado a un calentamiento ocurrido desde 1854, además coherente con lo observado globalmente, y que su variabilidad climática está influenciada no sólo por aquella ligada a la de El Niño-Oscilación del Sur, en el Pacífico Ecuatorial, sino también por influencias de tipo atmosférico relacionadas con la variabilidad en el Océano Atlántico, debido a que los eventos cálidos (fríos) en Bahía Culebra tienden a ocurrir en concordancia con anomalías positivas y negativas (negativas y positivas) de los índices Niño 3.4 y OAN, respectivamente.


Asunto(s)
Temperatura , Cambio Climático , Bahías , Costa Rica , Elevación del Nivel del Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...