Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cureus ; 16(4): e58515, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38765414

RESUMEN

Congenital dyserythropoietic anemias (CDAs) are rare hereditary disorders, of which type II CDA is the most common. Mutations in the SEC23B gene located on chromosome 20 result in this autosomal recessive disorder. In this case report, we present a case of CDA II with unique biopsy findings being detected via genetic testing. A female aged 30 years presented with major complaints of pallor weakness and easy fatiguability since childhood. The patient gave a history of 25 units of blood transfusion, the majority of which were transfused during pregnancy, followed by regular transfusions thereafter. On examination, all her vitals were in the normal range. Pallor, frontal bossing, and malocclusion of teeth were noted. Her laboratory workup showed the following: hemoglobin (Hb): 3.7 g/dl; mean corpuscular volume: 83 fl; mean corpuscular Hb: 29 g/dl; mean corpuscular Hb concentration: 34.9 g/dl; red cell distribution width: 30.4%; reticulocyte count (RC): 6.2%; corrected RC: 1.3%; lactate dehydrogenase: 441 IU/L; direct Coombs test/indirect Coombs test: negative; serum iron: 242 microgram/dl; transferrin saturation: 96.08%; ferritin: 1,880 ng/ml; and normal high-performance liquid chromatography and eosin-5'-maleimide binding test. The peripheral blood film showed normocytic normochromic anemia with anisopoikilocytosis in the form of a few spherocytes. No immature cells were seen. After obtaining the patient's consent, we performed a hereditary hemolytic anemia gene analysis test, which showed homozygous missense variation in exon 12 of the SEC23B gene. The bone marrow examination showed hyperplasia in the erythroid series with dyserythropoiesis, and surprisingly, myelofibrosis grade I-II (WHO 2017) was also observed on biopsy. Patients with CDA type II generally present with variable degrees of anemia along with pallor, icterus, splenomegaly, gallstones, and iron overload. In our case, the diagnosis of CDA type II was made at an adult age. Also, evidence of myelofibrosis was noted in our case, making it worth reporting. The use of a hereditary hemolytic anemia gene analysis panel test came as a rescue for its exact diagnosis. This case report emphasizes the role of molecular genetic testing for early and accurate diagnosis, which, in turn, could help in appropriate treatment planning and proper genetic counseling. The prevalence of CDA type II is still vaguely known; hence, extensive workup of persistent anemias and proper follow-up would be beneficial.

2.
Hematology ; 29(1): 2343163, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38655690

RESUMEN

BACKGROUND: Congenital dyserythropoietic anemia Ⅱ (CDA Ⅱ) is a rare inherited disorder of defective erythropoiesis caused by SEC23B gene mutation. CDA Ⅱ is often misdiagnosed as a more common type of clinically related anemia, or it remains undiagnosed due to phenotypic variability caused by the coexistence of inherited liver diseases, including Gilbert's syndrome (GS) and hereditary hemochromatosis. METHODS: We describe the case of a boy with genetically undetermined severe hemolytic anemia, hepatosplenomegaly, and gallstones whose diagnosis was achieved by targeted next generation sequencing. RESULTS: Molecular analysis revealed a maternally inherited novel intronic variant and a paternally inherited missense variant, c.[994-3C > T];[1831C > T] in the SEC23B gene, confirming diagnosis of CDA Ⅱ. cDNA analysis verified that the splice acceptor site variant results in two mutant transcripts, one with an exon 9 skip and one in which exons 9 and 10 are deleted. SEC23B mRNA levels in the patient were lower than those in healthy controls. The patient was also homozygous for the UGT1A1*6 allele, consistent with GS. CONCLUSION: Identification of the novel splice variant in this study further expands the spectrum of known SEC23B gene mutations. Molecular genetic approaches can lead to accurate diagnosis and management of CDA Ⅱ patients, particularly for those with GS coexisting.


Asunto(s)
Anemia Diseritropoyética Congénita , Enfermedad de Gilbert , Proteínas de Transporte Vesicular , Humanos , Anemia Diseritropoyética Congénita/genética , Anemia Diseritropoyética Congénita/diagnóstico , Masculino , Proteínas de Transporte Vesicular/genética , Enfermedad de Gilbert/genética , Enfermedad de Gilbert/complicaciones , Enfermedad de Gilbert/diagnóstico , Empalme del ARN , Mutación
3.
Genes (Basel) ; 15(1)2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275611

RESUMEN

Cranio-lenticulo-sutural dysplasia (CLSD, OMIM #607812) is a rare genetic condition characterized by late-closing fontanels, skeletal defects, dysmorphisms, and congenital cataracts that are caused by bi-allelic or monoallelic variants in the SEC23A gene. Autosomal recessive inheritance (AR-CLSD) has been extensively documented in several cases with homozygous or compound heterozygous variants in SEC23A, whereas autosomal dominant inheritance (AD-CLSD) involving heterozygous inherited variants has been reported just in three patients. The SEC23A gene encodes for one of the main components of a protein coat complex known as coat-protein-complex II (COPII), responsible for the generation of the envelope of the vesicles exported from the endoplasmic reticulum (ER) toward the Golgi complex (GC). AR-CLSD and AD-CLSD exhibit common features, although each form also presents distinctive and peculiar characteristics. Herein, we describe a rare case of a 10-year-old boy with a history of an anterior fontanel that closed only at the age of 9. The patient presents with short proportionate stature, low weight, and neurological impairment, including intellectual disability, global developmental delay, abnormal coordination, dystonia, and motor tics, along with dysmorphisms such as a wide anterior fontanel, hypertelorism, frontal bossing, broad nose, high-arched palate, and micrognathia. Trio clinical exome was performed, and a de novo heterozygous missense variant in SEC23A (p.Arg716Cys) was identified. This is the first reported case of CLSD caused by a de novo heterozygous missense variant in SEC23A presenting specific neurological manifestations never described before. For the first time, we have conducted a comprehensive phenotype-genotype correlation using data from our patient and the eight most well-documented cases in the literature. Our work has allowed us to identify the main specific and characteristic signs of both forms of CLSD (AR-CLSD, AD CLSD), offering valuable insights that can guide physicians in the diagnostic process. Notably, detailed descriptions of neurological features such as intellectual disability, global developmental delay, and motor impairment have not been documented before. Furthermore, our literature overview is crucial in the current landscape of CLSD due to the absence of guidelines for the clinical diagnosis and proper follow-up of these patients, especially during childhood.


Asunto(s)
Discapacidad Intelectual , Proteínas de Transporte Vesicular , Masculino , Humanos , Niño , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mutación Missense , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo
4.
Int J Hematol ; 119(2): 210-214, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38127226

RESUMEN

Congenital dyserythropoietic anemia type II (CDA II) refers to a group of extremely rare heterozygous disorders characterized by ineffective erythropoiesis and morphological abnormalities of erythrocytes and bone marrow erythroblasts. Six types of CDA with differing heterogenous genetic mutations have been identified to date. Due to the genetic and clinical heterogeneity of CDA, accurate diagnosis can be very challenging, especially with the clinical overlap observed between CDA and other dyserythropoietic diseases. A 1-month-old infant girl, born to a non-consanguineous family, presented with severe normocytic anemia that required transfusions every 2 to 3 weeks since birth, as well as jaundice. Whole exome sequencing revealed a novel compound heterozygosity in the SEC23B gene, thus establishing the diagnosis of CDA II. Analysis by multiple bioinformatics tools predicted that the mutant proteins were deleterious. Here, we report a novel variation in SEC23B that extends the mutation spectrum of SEC23B in the diagnosis of CDA II.


Asunto(s)
Anemia Diseritropoyética Congénita , Lactante , Recién Nacido , Femenino , Humanos , Anemia Diseritropoyética Congénita/diagnóstico , Anemia Diseritropoyética Congénita/genética , Mutación , Heterocigoto , Eritroblastos/metabolismo , Proteínas de Transporte Vesicular/genética
5.
BMC Med Genomics ; 16(1): 241, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828500

RESUMEN

BACKGROUND: Cranio-lenticulo-sutural dysplasia (CLSD) is a rare dysmorphic syndrome characterized by skeletal dysmorphism, late-closing fontanels, and cataracts. CLSD is caused by mutations in the SEC23A gene (OMIM# 607812) and can be inherited in either an autosomal dominant or autosomal recessive pattern. To date, only four mutations have been reported to cause CLSD. This study aims to identify the disease-causing variants in a large cohort of congenital cataract patients, to expand the genotypic and phenotypic spectrum of CLSD, and to confirm the association between SEC23A and autosomal recessive CLSD (ARCLSD). METHODS: We collected detailed medical records and performed comprehensive ocular examinations and whole-exome sequencing (WES) on 115 patients with congenital cataracts. After suspecting that a patient may have CLSD based on the sequencing results, we proceeded to conduct transmission electron microscopy (TEM) on the cultured skin fibroblasts. The clinical validity of the reported gene-disease relationships for the gene and the disease was evaluated using the ClinGen gene curation framework. RESULTS: Two novel compound heterozygous variants (c.710A > C p.Asp237Ala, c.1946T > C p.Leu649Pro) of the SEC23A gene, classified as variant of uncertain significance, were identified in the proband with skeletal, cardiac, ocular, and hearing defects. The observation of typical distended endoplasmic reticulum cisternae further supported the diagnosis of CLSD. Application of the ClinGen gene curation framework confirmed the association between SEC23A and ARCLSD. CONCLUSION: This study expands the genotypic and phenotypic spectrum of CLSD, proposes TEM as a supplemental diagnostic method, and indicates that congenital cataracts are a typical sign of ARCLSD.


Asunto(s)
Catarata , Pueblos del Este de Asia , Humanos , Catarata/congénito , Catarata/diagnóstico , Catarata/genética , Retículo Endoplásmico , Familia , Mutación , Linaje , Proteínas de Transporte Vesicular/genética
6.
J Exp Clin Cancer Res ; 42(1): 232, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670384

RESUMEN

BACKGROUND: Sec23 homolog A (SEC23A), a core component of coat protein complex II (COPII), has been reported to be involved in several cancers. However, the role of SEC23A in gastric cancer remains unclear. METHODS: The expression of SEC23A in gastric cancer was analyzed by using qRT-PCR, western blotting and IHC staining. The role of SEC23A in ER stress resistance was explored by functional experiments in vitro and vivo. The occupation of STAT3 on the SEC23A promoter region was verified by luciferase reporter plasmids and CHIP assay. The interaction between SEC23A and ANXA2 was identified by Co-IP and mass spectrometry analysis. RESULTS: We demonstrated that SEC23A was upregulated in gastric cancer and predicted poor prognosis in patients with gastric cancer. Mechanistically, SEC23A was transcriptional upregulated by ER stress-induced pY705-STAT3. Highly expressed SEC23A promoted autophagy by regulating the cellular localization of ANXA2. The SEC23A-ANXA2-autophay axis, in turn, protected gastric cancer cells from ER stress-induced apoptosis. Furthermore, we identified SEC23A attenuated 5-FU therapeutic effectiveness in gastric cancer cells through autophagy-mediated ER stress relief. CONCLUSION: We reveal an ER stress-SEC23A-autophagy negative feedback loop that enhances the ability of gastric cancer cells to resist the adverse survival environments. These results identify SEC23A as a promising molecular target for potential therapeutic intervention and prognostic prediction in patients with gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Retroalimentación , Autofagia , Apoptosis , Inmunoprecipitación de Cromatina , Proteínas de Transporte Vesicular
7.
Cell Rep ; 42(6): 112635, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37300835

RESUMEN

Coat protein complex II (COPII) plays an integral role in the packaging of secretory cargoes within membrane-enclosed transport carriers that leave the endoplasmic reticulum (ER) from discrete subdomains. Lipid bilayer remodeling necessary for this process is driven initially by membrane penetration mediated by the Sar1 GTPase and further stabilized by assembly of a multilayered complex of several COPII proteins. However, the relative contributions of these distinct factors to transport carrier formation and protein trafficking remain unclear. Here, we demonstrate that anterograde cargo transport from the ER continues in the absence of Sar1, although the efficiency of this process is dramatically reduced. Specifically, secretory cargoes are retained nearly five times longer at ER subdomains when Sar1 is depleted, but they ultimately remain capable of being translocated to the perinuclear region of cells. Taken together, our findings highlight alternative mechanisms by which COPII promotes transport carrier biogenesis.


Asunto(s)
GTP Fosfohidrolasas , Proteínas de Transporte Vesicular , GTP Fosfohidrolasas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Retículo Endoplásmico/metabolismo , Transporte de Proteínas , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo
8.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373084

RESUMEN

Congenital dyserythropoietic anemia type II (CDA II) is an inherited autosomal recessive blood disorder which belongs to the wide group of ineffective erythropoiesis conditions. It is characterized by mild to severe normocytic anemia, jaundice, and splenomegaly owing to the hemolytic component. This often leads to liver iron overload and gallstones. CDA II is caused by biallelic mutations in the SEC23B gene. In this study, we report 9 new CDA II cases and identify 16 pathogenic variants, 6 of which are novel. The newly reported variants in SEC23B include three missenses (p.Thr445Arg, p.Tyr579Cys, and p.Arg701His), one frameshift (p.Asp693GlyfsTer2), and two splicing variants (c.1512-2A>G, and the complex intronic variant c.1512-3delinsTT linked to c.1512-16_1512-7delACTCTGGAAT in the same allele). Computational analyses of the missense variants indicated a loss of key residue interactions within the beta sheet and the helical and gelsolin domains, respectively. Analysis of SEC23B protein levels done in patient-derived lymphoblastoid cell lines (LCLs) showed a significant decrease in SEC23B protein expression, in the absence of SEC23A compensation. Reduced SEC23B mRNA expression was only detected in two probands carrying nonsense and frameshift variants; the remaining patients showed either higher gene expression levels or no expression changes at all. The skipping of exons 13 and 14 in the newly reported complex variant c.1512-3delinsTT/c.1512-16_1512-7delACTCTGGAAT results in a shorter protein isoform, as assessed by RT-PCR followed by Sanger sequencing. In this work, we summarize a comprehensive spectrum of SEC23B variants, describe nine new CDA II cases accounting for six previously unreported variants, and discuss innovative therapeutic approaches for CDA II.


Asunto(s)
Anemia Diseritropoyética Congénita , Humanos , Anemia Diseritropoyética Congénita/genética , Anemia Diseritropoyética Congénita/metabolismo , Mutación , Mutación Missense , Exones , Alelos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Mol Oncol ; 17(12): 2743-2766, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37356089

RESUMEN

Although early diagnosis and therapeutic advances have transformed the living quality and outcome of cancer patients, the poor prognosis for metastatic patients has not been significantly improved. Mechanisms underlying the complexity of metastasis cannot be simply determined by the straightforward 'cause-and-effect relationships'. We have developed a 'dry-lab-driven knowledge discovery and wet-lab validation' approach to embrace the complexity of cancer and metastasis. We have revealed for the first time that polymetastatic (POL) melanoma cells can utilize both the secretory protein pathway (S100A11-Sec23a) and the exosomal crosstalk (miR-487a-5p) to transfer their 'polymetastatic competency' to the oligometastatic (OL) melanoma cells, via synergistic co-targeting of the tumor-suppressor Nudt21. The downstream deregulated glycolysis was verified to regulate metastatic colonization efficiency. Further, two gene sets conferring independent prognosis in melanoma were identified, which have the potential for clinical translation and merit future clinical validation.


Asunto(s)
Exosomas , Melanoma , MicroARNs , Humanos , Melanoma/patología , MicroARNs/genética , MicroARNs/metabolismo , Transporte Biológico , Exosomas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas S100/genética , Proteínas S100/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo
10.
Cancers (Basel) ; 15(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37046730

RESUMEN

BACKGROUND: Previous studies have described that the SEC23A gene is involved in the occurrence and development of various tumor entities. However, little is known about its expression and relevance in stomach adenocarcinoma (STAD). The aim of this study was to bioinformatically analyze the role of SEC23A in STAD, followed by patient tissue sample analyses. MATERIALS AND METHODS: SEC23A expression levels in STAD and normal gastric tissues were analyzed in the Cancer Genome Atlas and Gene Expression Omnibus databases; results were verified in fresh clinical STAD specimens on both gene and protein expression levels. SEC23A expression correlated with survival parameters by Kaplan-Meier and multivariate Cox regression analyses. The top genes co-expressed with SEC23A were identified by gene set enrichment analysis (GSEA) using the clusterProfiler package in R. Furthermore, the R package (immunedeconv), integrating the CIBERSORT algorithm, was used to estimate immune cell infiltration levels in STAD. RESULTS: SEC23A gene and sec23a protein expression were both significantly upregulated in STAD, and this correlated with the pT stage. Moreover, high SEC23A expression was associated with poor disease-free and overall survival of STAD patients. Cox analyses revealed that besides age and pathologic stage, SEC23A expression is an independent risk factor for STAD. GSEA indicated that SEC23A was positively associated with ECM-related pathways. In the CIBERSORT analysis, the level of SEC23A negatively correlated with various infiltrating immune cell subsets, including follicular helper T cells, Tregs, activated NK cells and myeloid dendritic cells. Finally, the expression levels of immune checkpoint-related genes, including HAVCR2 and PDCD1LG2, were significantly increased in the high SEC23A expression group. CONCLUSIONS: We observed the significantly upregulated expression of SEC23A in STAD, an association with disease progression, patients' prognosis and infiltrating immune cell subsets. Thus, we propose SEC23A as an independent prognostic factor with a putative role in immune response regulation in STAD.

11.
Res Sq ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36993182

RESUMEN

Co-assembly of the multilayered coat protein complex II (COPII) with the Sari GTPase at subdomains of the endoplasmic reticulum (ER) enables secretory cargoes to be concentrated efficiently within nascent transport intermediates, which subsequently deliver their contents to ER-Golgi intermediate compartments. Here, we define the spatiotemporal accumulation of native COPII subunits and secretory cargoes at ER subdomains under differing nutrient availability conditions using a combination of CRISPR/Cas9-mediated genome editing and live cell imaging. Our findings demonstrate that the rate of inner COPII coat assembly serves as a determinant for the pace of cargo export, irrespective of COPII subunit expression levels. Moreover, increasing inner COPII coat assembly kinetics is sufficient to rescue cargo trafficking deficits caused by acute nutrient limitation in a manner dependent on Sar1 GTPase activity. Our findings are consistent with a model in which the rate of inner COPII coat formation acts as an important control point to regulate cargo export from the ER.

12.
J Cancer Res Clin Oncol ; 149(8): 4771-4782, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36229542

RESUMEN

PURPOSE: Tubulointerstitial nephritis antigen-like 1 (TINAGL1) was reported to suppress tumor metastasis and growth in triple-negative (TN) breast cancer. We aimed to determine the associations of TINAGL1 expression with clinicopathological factors and prognosis in breast cancer patients with long-term follow-up. METHODS: A total of 599 consecutive primary invasive breast cancer patients with available tissue specimens from surgery in our hospital were included in the study. TINAGL1 mRNA expression was examined in all 599 tissue specimens using a TaqMan real-time PCR system. TINAGL1 protein expression was further examined in 299 patients with available tissue specimens for immunohistochemical staining. Survival analyses were performed using the Kaplan-Meier method and Cox proportional hazards models. RESULTS: The median follow-up period was 12.0 years. In the total patients, low TINAGL1 mRNA expression was associated with significantly shorter disease-free survival (DFS) and overall survival than high expression (P = 0.003 and P = 0.01, respectively). Furthermore, hormone receptor-positive/human epidermal growth factor receptor 2-negative breast cancer patients with low TINAGL1 mRNA expression had a worse prognosis. Multivariate analysis identified low TINAGL1 mRNA expression, combined with lymph node positivity, as an independent poor prognostic factor for DFS in invasive breast cancer patients (HR 1.41; 95% CI 1.02-1.96; P = 0.036). TINAGL1 mRNA expression also varied with menopausal status, with low TINAGL1 mRNA expression being positively associated with poor prognosis in premenopausal patients, but not in postmenopausal patients. CONCLUSION: Our findings demonstrate that TINAGL1 may be a promising candidate biomarker and therapeutic target in breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/patología , Pronóstico , Neoplasias de la Mama Triple Negativas/patología , Análisis de Supervivencia , Supervivencia sin Enfermedad , ARN Mensajero/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
13.
Front Pharmacol ; 13: 1028058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408272

RESUMEN

Objectives: Pulmonary artery hypertension (PAH) is a serious disease for which there is no effective treatment. Its pathogenesis is complex and has not yet been clarified. Tex261 is a protein-coding gene whose functional enrichment nodes include the transporter activity of COP II. However, the role of Tex261 in PAH remains unknown. Methods: Sugen5416/Hypoxic PAH models were established, and pulmonary arteries (PAs) were isolated for proteomic sequencing. The binding sites between Hif-1α and Tex261 were verified by dual-luciferase reporter gene assay. Cell proliferation was detected by MTS and EdU assays. For determination of the preventive and therapeutic effects of Tex261, intratracheal instillation of adeno-associated virus (AVV6) with Tex261 vectors was performed. Results: Tex261 was screened according to the proteomic sequencing data. Hif-1α inhibited Tex261 promoter activity under hypoxia. Decreased Tex261 expression promoted PASMC proliferation. Tex261 regulated Sec23 via the Ndrg1-mediated Akt pathway. Tex261 overexpression improved the pressure and vessel remodeling of PAs induced by Sugen5416/hypoxia. Conclusion: Hypoxia suppressed Tex261 expression through Hif-1α activation. The decreased Tex261 could promote Ndrg1 and depress Akt activity and then inhibit Sec23 activity, which leads to cell proliferation and vessel remodeling. Elevated Tex261 has some preventive and therapeutic effects on rats with PAH.

14.
Virchows Arch ; 481(4): 613-620, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35776191

RESUMEN

Myxoinflammatory fibroblastic sarcoma (MIFS) has been shown to harbor various recurrent molecular aberrations; most of which, however, seem to be present in only a minority of cases. In order to better characterize the molecular underpinnings of MIFS, fourteen cases were analyzed by targeted RNA-sequencing (RNA-seq), VGLL3 enumeration FISH probe, and BRAF break-apart and enumeration probes. Neither t(1;10)(p22;q24) nor BRAF gene amplifications were found. However, VGLL3 gene amplification was detected in 5 cases by FISH which corresponded with an increase in VGLL3 expression detected by RNA-seq. In 1 of these cases, RNA-seq additionally revealed a novel SND1::BRAF fusion. Two of the 9 cases lacking VGLL3 amplification harbored either a SEC23IP::VGLL3 or a TEAD1::MRTFB rearrangement by RNA-seq, both confirmed by RT-PCR and Sanger sequencing. The detected molecular aberrations have a potential to either activate the expression of genes regulated by the transcription factors of the TEAD family, which are involved in tumor initiation and progression, or switch on the MEK/ERK signaling cascade, which plays an important role in cell cycle progression. Our results broaden the molecular genetic spectrum of MIFS and point toward the importance of the VGLL3-TEAD interaction, as well as the deregulation of the MEK/ERK pathway in the pathogenesis of MIFS, and may represent a potential target for therapy of recurrent or advanced disease.


Asunto(s)
Fibrosarcoma , Neoplasias Cutáneas , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Fibrosarcoma/genética , Fusión Génica , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , ARN , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética
15.
Cell Commun Signal ; 20(1): 22, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236368

RESUMEN

BACKGROUND: The genesis and developments of solid tumors, analogous to the renewal of healthy tissues, are driven by a subpopulation of dedicated stem cells, known as cancer stem cells (CSCs), that exhibit long-term clonal repopulation and self-renewal capacity. CSCs may regulate tumor initiation, growth, dormancy, metastasis, recurrence and chemoresistance. While autophagy has been proposed as a regulator of the stemness of CSCs, the underlying mechanisms requires further elucidation. METHODS: The CSC component in human melanoma cell lines M14 and A375 was isolated and purified by repetitive enrichments for cells that consistently display anchorage-independent spheroid growth. The stemness properties of the CSCs were confirmed in vitro by the expressions of stemness marker genes, the single-cell cloning assay and the serial spheroid formation assay. Subcutaneous tumor transplantation assay in BALB/c nude mice was performed to test the stemness properties of the CSCs in vivo. The autophagic activity was confirmed by the protein level of LC3 and P62, mRFP-LC3B punta and cytoplasmic accumulation of autolysosomes. The morphology of ER was detected with transmission electron microscopy. RESULTS: In the present study, by employing stable CSC cell lines derived from human melanoma cell lines M14 and A375, we show for the first time that Sec23a inhibits the self-renewal of melanoma CSCs via inactivation of ER-phagy. Mechanistically, inhibition of Sec23a reduces ER stress and consequently FAM134B-induced ER-phagy. Furthermore, TCGA data mining and analysis show that Sec23a is a favorable diagnostic and prognostic marker for human skin cutaneous melanoma. CONCLUSION: This study has elucidated a new mechanism underlying the regulation of autophagy on stemness, i.e. CSCs can exploit the SEC23A/ER-stress/FAM134B/ER-phagy axis for the self-renewal. These observations provide new ideas for exploration of the regulatory network of CSC self-renewal to develop CSCs-based therapy strategies for malignant tumors. Video Abstract.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Autofagia , Línea Celular Tumoral , Melanoma/patología , Ratones , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Neoplasias Cutáneas/metabolismo , Melanoma Cutáneo Maligno
16.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166391, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35304860

RESUMEN

Glomerular diseases involving podocyte/glomerular epithelial cell (GEC) injury feature protein misfolding and endoplasmic reticulum (ER) stress. Inositol-requiring enzyme 1α (IRE1α) mediates chaperone production and autophagy during ER stress. We examined the role of IRE1α in selective autophagy of the ER (reticulophagy). Control and IRE1α knockout (KO) GECs were incubated with tunicamycin to induce ER stress and subjected to proteomic analysis. This showed IRE1α-dependent upregulation of secretory pathway mediators, including the coat protein complex II component Sec23B. Tunicamycin enhanced expression of Sec23B and the reticulophagy adaptor reticulon-3-long (RTN3L) in control, but not IRE1α KO GECs. Knockdown of Sec23B reduced autophagosome formation in response to ER stress. Tunicamycin stimulated colocalization of autophagosomes with Sec23B and RTN3L in an IRE1α-dependent manner. Similarly, during ER stress, glomerular α5 collagen IV colocalized with RTN3L and autophagosomes. Degradation of RTN3L and collagen IV increased in response to tunicamycin, and the turnover was blocked by deletion of IRE1α; thus, the IRE1α pathway promotes RTN3L-mediated reticulophagy and collagen IV may be an IRE1α-dependent reticulophagy substrate. In experimental glomerulonephritis, expression of Sec23B, RTN3L, and LC3-II increased in glomeruli of control mice, but not in podocyte-specific IRE1α KO littermates. In conclusion, during ER stress, IRE1α redirects a subset of Sec23B-positive vesicles to deliver RTN3L-coated ER fragments to autophagosomes. Reticulophagy is a novel outcome of the IRE1α pathway in podocytes and may play a cytoprotective role in glomerular diseases.


Asunto(s)
Endorribonucleasas/metabolismo , Podocitos , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Endorribonucleasas/genética , Inositol/metabolismo , Ratones , Podocitos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Transductores , Respuesta de Proteína Desplegada
17.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35163229

RESUMEN

Biallelic pathogenic variants in the SEC23B gene cause congenital dyserythropoietic anemia type II (CDA II), a rare hereditary disorder hallmarked by ineffective erythropoiesis, hemolysis, erythroblast morphological abnormalities, and hypo-glycosylation of some red blood cell membrane proteins. Abnormalities in SEC23B, which encodes the homonymous cytoplasmic COPII (coat protein complex II) component, disturb the endoplasmic reticulum to Golgi trafficking and affect different glycosylation pathways. The most harmful complication of CDA II is the severe iron overload. Within our case series (28 CDA II patients), approximately 36% of them exhibit severe iron overload despite mild degree of anemia and slightly increased levels of ERFE (the only erythroid regulator of hepcidin suppression). Thus, we hypothesized a direct role of SEC23B loss-of-function in the pathomechanism of hepatic iron overload. We established a hepatic cell line, HuH7, stably silenced for SEC23B. In silenced cells, we observed significant alterations of the iron status, due to both the alteration in BMP/SMADs pathway effectors and a reduced capability to sense BMP6 stimulus. We demonstrated that the loss-of-function of SEC23B is responsible of the impairment in glycosylation of the membrane proteins involved in the activation of the BMP/SMADs pathway with subsequent hepcidin suppression. Most of these data were confirmed in another hepatic cell line, HepG2, stably silenced for SEC23B. Our findings suggested that the pathogenic mechanism of iron overload in CDA II is associated to both ineffective erythropoiesis and to a specific involvement of SEC23B pathogenic variants at hepatic level. Finally, we demonstrated the ability of SEC23B paralog, i.e., SEC23A, to rescue the hepcidin suppression, highlighting the functional overlap between the two SEC23 paralogs in human hepatic cells.


Asunto(s)
Hepatocitos/metabolismo , Hepcidinas/genética , Proteínas de Transporte Vesicular/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Eritropoyesis/genética , Glicosilación , Aparato de Golgi/metabolismo , Hepcidinas/metabolismo , Humanos , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/metabolismo , Hígado/patología , Mutación con Pérdida de Función/genética , Fenotipo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiología
18.
Biochem Genet ; 60(6): 2000-2014, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35190931

RESUMEN

This study aims to investigate the effects of miR-29b-3p on the inflammation injury of human umbilical vein endothelial cells (HUVECs) induced by lipopolysaccharide (LPS) and explore the underlying mechanisms. The effects of different concentrations of LPS (0, 1, 5 and 10 µg/mL) on inflammation injury in HUVECs are detected by ELISA, CCK-8, EdU, flow cytometry and western blot analyses to determine the optimal stimulus concentration. After stimulating HUVECs with 10 µg/mL LPS, the expression levels of miR-29b-3p are detected, and the effects of miR-29b-3p on inflammation injury are detected by ELISA, CCK-8, EdU, flow cytometry and western blot analyses. Bioinformatic analysis, luciferase reporter assay and confirmatory experiments are applied to identify the target gene bound with miR-29b-3p. Rescue experiments have verified the roles of miR-29b-3p and the target gene in inflammation injury. We found that pro-inflammatory factor was increased, apoptosis was promoted, and cell proliferation was inhibited after the treatment of LPS in HUVECs. Overexpression of miR-29b-3p inhibited LPS-induced inflammatory response and apoptosis while promoting proliferation in HUVECs. Besides, bioinformatics analysis indicated that SEC23A was the target gene of miR-29b-3p and the confirmatory experiments showed that SEC23A was negatively correlated with miR-29b-3p and positively correlated with LPS concentration. Rescue experiments revealed that overexpression of SEC23A partially enhanced the inflammation injury effects in LPS-induced HUVECs with overexpression of miR-29b-3p. Hence, miR-29b-3p repressed inflammatory response, cell apoptosis and promoted cell proliferation in LPS-induced HUVECs by targeting SEC23A, providing a potential target for treating sepsis.


Asunto(s)
MicroARNs , Proteínas de Transporte Vesicular , Humanos , Apoptosis/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamación/inducido químicamente , Inflamación/genética , Lipopolisacáridos/toxicidad , MicroARNs/genética , Proteínas de Transporte Vesicular/genética
19.
Am J Med Genet A ; 188(1): 319-325, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34580982

RESUMEN

Cranio-lenticulo-sutural dysplasia (CLSD; MIM 607812) is a rare or underdiagnosed condition, as only two families have been reported. The original family (Boyadjiev et al., Human Genetics, 2003, 113, 1-9 and Boyadjiev et al., Nature Genetics, 2006, 38, 1192-1197) showed recessive inheritance of the condition with a biallelic SEC23A missense variant in affected individuals. In contrast, another child with sporadic CLSD had a monoallelic SEC23A variant inherited from the reportedly unaffected father (Boyadjiev et al., Clinical Genetics, 2011, 80, 169-176), raising questions on possible digenism. Here, we report a 2-month-old boy seen because of large fontanels with wide cranial sutures, a large forehead, hypertelorism, a thin nose, a high arched palate, and micrognathia. His mother was clinically unremarkable, while his father had a history of large fontanels in infancy who had closed only around age 10 years; he also had a large forehead, hypertelorism, a thin, beaked nose and was operated for bilateral glaucoma with exfoliation of the lens capsule. Trio genome sequencing and familial segregation revealed a monoallelic c.1795G > A transition in SEC23A that was de novo in the father and transmitted to the proband. The variant predicts a nonconservative substitution (p.E599K) in an ultra-conserved residue that is seen in 3D models of yeast SEC23 to be involved in direct binding between SEC23 and SAR1 subunits of the coat protein complex II coat. This observation confirms the link between SEC23A variants and CLSD but suggests that in addition to the recessive inheritance described in the original family, SEC23A variants may result in dominant inheritance of CLSD, possibly by a dominant-negative disruptive effect on the SEC23 multimer.


Asunto(s)
Mutación Missense , Proteínas de Transporte Vesicular , Secuencia de Bases , Niño , Humanos , Lactante , Masculino , Mutación Missense/genética , Proteínas de Transporte Vesicular/genética
20.
Int J Biol Sci ; 17(12): 3000-3012, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421345

RESUMEN

Metastasis of melanoma to the distant organs is a multistep process in which the tumor microenvironment (TME) may play an important role. However, the relationship between metastatic progression and TME is intricate. In the present study, using melanoma derivative cell lines OL (oligometastatic) and POL (polymetastatic) that differ in their metastatic colonization capability, we have elucidated a new mechanism involving "SEC23A-PF4-MAPK/ERK axis" in which PF4 transported by COPII hinders metastasis through inhibition of MAPK/ERK signaling pathway. Furthermore, SPARC can act cooperatively to enhance the inhibition of Pf4 on ERK phosphorylation and melanoma cell metastasis. Our findings show the possibility of targeting cancer cell secretome for therapeutic development.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Melanoma Experimental/patología , Osteonectina/metabolismo , Factor Plaquetario 4/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Línea Celular Tumoral , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Fosforilación , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA