Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Nutr Metab (Lond) ; 21(1): 60, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095887

RESUMEN

BACKGROUND: Obesity and its associated complications raise significant public concern, revealing gender disparities in the susceptibility to metabolic disorders, with females often displaying greater resistance to obesity-related metabolic disorder than males. Sestrin2 is a crucial protein involved in metabolism and energy balance. This study seeks to explore whether Sesn2 knockout (KO) exacerbates high-fat diet (HFD) induced obesity in female mice. METHODS: Female mice with wild-type (WT) and Sesn2 KO were subjected to a 12-week regimen of normal diet or HFD. Using a Body Composition Analyzer, body composition was gauged. Biochemical assays encompassed glucose, lipid, and liver function measurements, alongside 24-hour urine albumin excretion. Echocardiographic evaluation assessed cardiac function. Histopathological analysis of key metabolic tissues (liver, kidney, and heart tissues) were conducted. Western blotting or qRT-PCR evaluated key proteins and genes linked to inflammation, mitochondrial, and lipid metabolism in adipose tissues. RESULTS: In comparison to mice fed a regular diet, those on a HFD exhibited significant increases in body weight and fat mass. Notably, Sesn2 KO further aggravated obesity, showcasing the most pronounced metabolic anomalies: elevated body weight, fat mass, impaired glucose tolerance, and insulin sensitivity, alongside heightened levels of free fatty acids and triglycerides. Additionally, KO-HFD mice displayed exacerbated multi-tissue impairments, including elevated hepatic enzymes, increased urinary albumin excretion, compromised cardiac function, and accumulation of lipids in the liver, kidney, and heart. Moreover, adipose tissue showcased altered lipid dynamics and function, characterized by enhanced triglyceride breakdown and modified adipokine levels. Browning was diminished, along with decreased Pgc1α and Sirt1 in KO-HFD mice. CONCLUSION: Sesn2 KO exacerbates HFD-induced obesity and metabolic disorders in female mice. These findings underscore Sestrin2's novel role as a regulator of obesity in female mice.

2.
Mol Biomed ; 5(1): 31, 2024 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-39117956

RESUMEN

Sestrin2 (Sesn2) has been previously confirmed to be a stress-response molecule. However, the influence of Sesn2 on myogenic differentiation remains elusive. This study was conducted to analyze the role of Sesn2 in the myogenic differentiation of C2C12 myoblasts and related aspects in mdx mice, an animal model of Duchenne muscular dystrophy (DMD). Our results showed that knockdown of Sesn2 reduced the myogenic differentiation capacity of C2C12 myoblasts. Predictive analysis from two databases suggested that miR-182-5p is a potential regulator of Sesn2. Further experimental validation revealed that overexpression of miR-182-5p decreased both the protein and mRNA levels of Sesn2 and inhibited myogenesis of C2C12 myoblasts. These findings suggest that miR-182-5p negatively regulates myogenesis by repressing Sesn2 expression. Extending to an in vivo model of DMD, knockdown of Sesn2 led to decreased Myogenin (Myog) expression and increased Pax7 expression, while its overexpression upregulated Myog levels and enhanced the proportion of slow-switch myofibers. These findings indicate the crucial role of Sesn2 in promoting myogenic differentiation and skeletal muscle regeneration, providing potential therapeutic targets for muscular dystrophy.


Asunto(s)
Diferenciación Celular , Ratones Endogámicos mdx , MicroARNs , Desarrollo de Músculos , Mioblastos , Miogenina , Animales , Mioblastos/metabolismo , Ratones , Desarrollo de Músculos/fisiología , Desarrollo de Músculos/genética , Línea Celular , Miogenina/genética , Miogenina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Técnicas de Silenciamiento del Gen , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , Regulación de la Expresión Génica , Sestrinas
3.
J Nutr Biochem ; 133: 109703, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39025457

RESUMEN

Sestrin2 is a highly conserved protein that can be induced under various stress conditions. Researches have revealed that the signaling pathway of the mammalian target of rapamycin (mTOR) is essential in modulating both glucose and lipid metabolism. However, the precise involvement of Sestrin2 in the hypothalamus, particularly in pro-opiomelanocortin (POMC) neurons, in control of energy homeostasis remains uncertain. In this study, we aimed to investigate the functional role of Sestrin2 in hypothalamic POMC neurons in regulation of energy balance, as well as revealing the underlying mechanisms. Therefore, cre-dependent AAV virus encoding or silencing Sestrin2 was injected into the hypothalamic ARC of pomc-cre transgenic mice. The results demonstrated that Sestrin2 overexpression in POMC neurons ameliorated high-fat diet (HFD)-induced obesity and increased energy expenditure. Conversely, Sestrin2 deficiency in POMC neurons predisposed mice to HFD induced obesity. Additionally, the thermogenesis of brown adipose tissue and lipolysis of inguinal white adipose tissue were both enhanced by the increased sympathetic nerve innervation in Sestrin2 overexpressed mice. Further exploration revealed that Sestrin2 overexpression inhibited the mTOR signaling pathway in hypothalamic POMC neurons, which may account for the alleviation of systematic metabolic disturbance induced by HFD in these mice. Collectively, our findings demonstrate that Sestrin2 in POMC neurons plays a pivotal role in maintaining energy balance in a context of HFD-induced obesity by inhibiting the mTOR pathway, providing new insights into how hypothalamic neurons respond to nutritional signals to protect against obesity-associated metabolic dysfunction.

4.
Life Sci ; 353: 122918, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39034027

RESUMEN

AIMS: Nitidine chloride (NC), a natural phytochemical alkaloid derived from Zanthoxylum nitidum (Roxb.) DC, exhibits multiple bioactivities, including antitumor, anti-inflammatory, and other therapeutic effects. However, the primary targets of NC and the mechanism of action (MOA) have not been explicitly defined. METHODS: We explored the effects of NC on mTORC1 signaling by immunoblotting and fluorescence microscopy in wild-type and gene knockout cell lines generated by the CRISPR/Cas9 gene editing technique. We identified IGF2R as a direct target of NC via the drug affinity-responsive target stability (DARTS) method. We investigated the antitumor effects of NC using a mouse melanoma B16 tumor xenograft model. KEY FINDINGS: NC inhibits mTORC1 activity by targeting amino acid-sensing signaling through activating transcription factor 4 (ATF4)-mediated Sestrin2 induction. NC directly binds to IGF2R and promotes its lysosomal degradation. Moreover, NC displayed potent cytotoxicity against various cancer cells and inhibited B16 tumor xenografts. SIGNIFICANCE: NC inhibits mTORC1 signaling through nutrient sensing and directly targets IGF2R for lysosomal degradation, providing mechanistic insights into the MOA of NC.


Asunto(s)
Factor de Transcripción Activador 4 , Benzofenantridinas , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Transducción de Señal , Animales , Ratones , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Transducción de Señal/efectos de los fármacos , Humanos , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Benzofenantridinas/farmacología , Ratones Endogámicos C57BL , Línea Celular Tumoral , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Sestrinas
5.
J Integr Neurosci ; 23(7): 124, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39082288

RESUMEN

OBJECTIVES: Endothelial-to-mesenchymal transition (EndoMT) is a significant biological phenomenon wherein endothelial cells undergo a loss of their endothelial traits and progressively acquire mesenchymal characteristics. Consequently, this transformation leads to both a compromised ability to maintain lumen permeability and alterations in vascular structure, which hampers the preservation of blood-brain barrier integrity. This study aimed to investigate inflammation-induced EndoMT and its etiology, with the goal of impeding the infiltration of peripheral inflammation into the central nervous system. MATERIALS AND METHODS: Lipolysaccharide (LPS) was administered intraperitoneally to mice several times to establish a chronic inflammatory model. A cellular inflammatory model was established by LPS in human brain microvascular endothelial cells (HBMECs). The mRNA expressions of inflammatory cytokines interleukin-1ß (IL-1ß) and IL-6 were detected by real-time polymerase chain reaction (PCR). Immunofluorescence staining of platelet endothelial cell adhesion molecule-1 (CD31) and alpha smooth muscle actin (α-SMA) was conducted to assess the level of EndoMT. The expression levels of Occludin, zona occludens protein 1 (ZO-1), Sestrin2, microtubule-associated protein1 light chain 3 (LC3) and inducible nitric oxide synthase (iNOS) were detected by western blotting. RESULTS: LPS treatment induced the downregulation of ZO-1 and Occludin, which was accompanied by the elevated expressions of iNOS, α-SMA, Sestrin2 and LC3-II in the mouse cortex and HBMECs. Mechanistically, the knockdown of Sestrin2 in HBMECs exacerbated the EndoMT induced by LPS treatment, while the overexpression of Sestrin2 inhibited this process. Moreover, the induction of autophagy by rapamycin rescued the EndoMT induced by Sestrin2 knockdown. CONCLUSION: This study revealed that Sestrin2 inhibited endothelial inflammation and EndoMT via enhanced autophagy, which may provide a potential drug target for cerebrovascular inflammatory injury.


Asunto(s)
Autofagia , Células Endoteliales , Lipopolisacáridos , Animales , Lipopolisacáridos/farmacología , Lipopolisacáridos/administración & dosificación , Ratones , Autofagia/efectos de los fármacos , Autofagia/fisiología , Humanos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL , Masculino , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/fisiología , Proteínas Nucleares/metabolismo , Inflamación/metabolismo , Modelos Animales de Enfermedad
6.
Mech Ageing Dev ; 221: 111964, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019118

RESUMEN

Age-related hearing loss (ARHL) is an auditory disease characterized by gradual loss of high-frequency hearing sensitivity. Excessive reactive oxygen species trigger NLRP3-inflammasome activation that may be crucial for ARHL pathogenesis. The antioxidant factor Sestrin2 (SESN2) has been reported to be involved in the remission of oxidative stress and ARHL. However, the mechanism by which SESN2 protects auditory cells in the aging mouse cochlea remains unknown. Here, we observed that ectopic overexpression of SESN2 delayed ARHL, whereas SESN2 knockdown accelerated it. Importantly, we elucidated that SESN2 exerts a hearing-protective effect by inhibiting the production of NLRP3 by acting as a mitophagy agonist. Our study proposes a new theoretical basis for SESN2 prevention of ARHL and provides a novel therapeutic strategy for maintaining SESN2 activity in the aging cochlea.

7.
BMC Nephrol ; 25(1): 231, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030467

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD) is one of the most serious microvascular complications of diabetes mellitus (DM) and the leading cause of chronic kidney disease (CKD) worldwide. Since obesity and type 2 DM (T2DM) are considered as inflammatory conditions, thus reducing their accompanied systemic inflammation may lessen their complications. Sestrin 2 belongs to a group of stress induced proteins which are produced in response to oxidative stress, inflammation and DNA damage. Betatrophin; a hormone that stimulates the growth, proliferation and mass expansion of pancreatic beta-cells and improves glucose tolerance. The objective of the study was to evaluate levels of serum Sestrin 2 and betatrophin in patients with different stages of diabetic nephropathy (DN)) and compare results with healthy control. METHODS: This cross sectional study was carried out on 60 patients above 18 years old, recruited from Tanta University hospitals out patients clinics and 20 apparently healthy individuals of matched sex and age as a control group. Participants were divided into two groups: group I: 20 normal subjects as control group and group II: 60 patients with type 2 DM,. further subdivided in to three equal groups: group 1IIA(20 patients) with normo-albuminuria (ACR < 30 mg/g), group IIB (20 patients) with micro albuminuria (ACR = 30 to 300 mg/g) and group IIC (20 patients) with macro albuminuria (ACR > 300 mg/g). They were subjected to detailed history taking, careful clinical examination and laboratory investigations including blood urea, serum creatinine, estimated glomerular filtration rate (eGFR), urinary albumin creatinine ratio, and specific laboratory tests for Sestrin 2 and Betatrophin by using ELISA technique. RESULTS: Serum Sestrin 2 significantly decreased, while serum betatrophin level significantly increased in macroalbuminuric group compared to control and other 2 diabetic groups (P value < 0.05). The cut off value of serum sestrin 2 was 0.98 ng/ml with sensitivity 99%, specificity 66% while the cut off value of serum betatrophin was > 98.25 ng/ml with sensitivity 98%, specificity 82%. Serum betatrophin positively correlated with age, fasting, 2 h postprandial, BMI, triglyceride, total cholesterol, serum creatinine, blood urea, UACR, and negatively correlated with eGFR and serum albumin. Serum Sestrin 2 positively correlated with serum albumin. BMI, serum urea, UACR and serum albumin. Serum betatrophin are found to be risk factors or predictors for diabetic nephropathy. CONCLUSIONS: Patients with DN, particularly the macroalbuminuria group, had a significant increase in betatrophin levels and a significant decrease in serum Sestrin 2 level. The function of Sestrin 2 is compromised in DN, and restoring it can reverse a series of molecular alterations with subsequent improvement of the renal functions, albuminuria and structural damage.


Asunto(s)
Proteína 8 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Hormonas Peptídicas , Humanos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/sangre , Masculino , Femenino , Persona de Mediana Edad , Hormonas Peptídicas/sangre , Proteínas Similares a la Angiopoyetina/sangre , Estudios Transversales , Proteínas Nucleares/sangre , Biomarcadores/sangre , Adulto , Albuminuria/sangre , Proteínas de Choque Térmico/sangre , Anciano , Sestrinas
8.
Inflammation ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037665

RESUMEN

Abstract-Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in neonates, and effective strategies to prevent and treat NEC are still lacking. Studies have shown that N-acetylcysteine (NAC) has protective effects against NEC, however, the specific mechanism underlying its effects on intestinal functions remains unclear. Recently, NAC has been shown to suppress ferroptosis in many diseases, while it is unclear whether the beneficial effects of NAC on NEC are related to ferroptosis. In this study, we revealed that ferroptosis was significantly induced in intestinal samples from infants with NEC. NAC alleviated intestinal inflammation, barrier damage and ferroptosis in multifactorial NEC models in vivo and in vitro. Sestrin2 (SESN2) was identified as an important mediator of NAC-induced ferroptosis resistance in intestinal epithelial cells. Furthermore, SESN2 knockdown inhibited the inflammatory response, alleviated barrier damage and ferroptosis in intestinal epithelial cells and enhanced the protective effects of NAC to a certain extent. Conversely, cells overexpressing SESN2 showed the opposite changes. In summary, our study demonstrated that NAC attenuates NEC progression by decreasing SESN2 expression to inhibit ferroptosis in intestinal epithelial cells, suggesting that NAC might be an effective clinical treatment for NEC.

9.
J Clin Med ; 13(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38929943

RESUMEN

Background/Objectives: This study investigates the correlation between the serum levels of Sestrin 2 and the presence of endometrial polyps or uterine leiomyomas, aiming to enhance the understanding of the pathophysiology underlying these gynecological conditions and evaluate the potential of Sestrin 2 as an early diagnostic biomarker. Methods: In a prospective case-control format, patients with preliminary diagnoses of endometrial polyps or uterine leiomyomas confirmed by histopathological analysis following surgery were included. This study analyzed serum Sestrin 2 levels across different patient groups, revealing significant variations that underscore the diagnostic value of Sestrin 2. Results: Elevated serum Sestrin 2 levels were observed in patients with endometrial polyps and uterine leiomyomas compared to the control group, suggesting its utility as a novel marker for early detection. Conclusions: The study indicates the promising role of serum Sestrin 2 levels as a valuable biomarker for early diagnosis of endometrial polyps and uterine leiomyomas, advocating for further research into its diagnostic and therapeutic potential.

10.
Tissue Cell ; 88: 102398, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38728949

RESUMEN

BACKGROUND: Allicin regulates macrophage autophagy and senescence, and inhibits hepatoma cell growth. This study investigated the mechanism by which allicin inhibits the growth of hepatoma cells. METHODS: Hepa1-6 mouse hepatoma cells were subcutaneously injected into C57BL/6 J mice to construct a tumor transplantation model. Macrophages were cultured with the supernatant of hepatoma cells to construct a cell model. The levels of mRNA and proteins and the level of Sestrin2 ubiquitination were measured by RTqPCR, immunofluorescence and Western blotting. The levels of autophagy-related factors and the activity of senescence-associated ß-galactosidase were determined by kits, and protein stability was detected by cycloheximide (CHX) tracking. RESULTS: Data analysis of clinical samples revealed that RBX1 was highly expressed in tumor tissues, while Sestrin2 was expressed at low levels in tumor tissues. Allicin can promote the expression of the autophagy-related proteins LC3 and Beclin-1 in tumor macrophages and inhibit the expression of the aging-related proteins p16 and p21, thus promoting autophagy in macrophages and inhibiting cell senescence. Moreover, allicin can inhibit the expression of RBX1, thereby reducing the ubiquitination of Sestrin2, enhancing the stability of Sestrin2, activating autophagy in tumor macrophages and inhibiting senescence. In addition, allicin treatment inhibited the proliferation and migration of hepatoma carcinoma cells cocultured with macrophages and significantly improved the development of liver cancer in mice. CONCLUSION: Allicin can affect the autophagy of macrophages and restrain the growth of hepatoma cells by regulating the ubiquitination of Sestrin2.


Asunto(s)
Autofagia , Carcinoma Hepatocelular , Senescencia Celular , Disulfuros , Neoplasias Hepáticas , Macrófagos , Ácidos Sulfínicos , Ubiquitinación , Animales , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Disulfuros/farmacología , Senescencia Celular/efectos de los fármacos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Ácidos Sulfínicos/farmacología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Línea Celular Tumoral , Ubiquitinación/efectos de los fármacos , Humanos , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Masculino , Peroxidasas/metabolismo , Sestrinas
11.
Curr Eye Res ; 49(9): 949-960, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38780907

RESUMEN

PURPOSE: To explore the correlation of endoplasmic reticulum stress (ERS) and oxidative stress (OS), and the protective effect of Sestrin2 (SESN2) on human lens epithelial cells (HLECs). METHODS: Tunicamycin (TM) was used to induce ERS in HLECs. 4-Phenylbutyric acid (4-PBA) was used to inhibit ERS. Eupatilin applied to HLECs as SESN2 agonist. SESN2 expression was knocked down via si-RNA in HLECs. The morphological changes of HLECs were observed by microscope. ER-tracker to evaluate ERS, ROS production assay to measure ROS, flow cytometry to calculate cell apoptosis rate. Immunofluorescence to observe Nrf2 translocation, and effects of TM or EUP on SESN2. Western blot and qPCR were used to evaluate the expression of GRP78, PERK, ATF4, CHOP, Nrf2, and SESN2 expression in HLECs with different treatment groups. RESULTS: ERS can elevate the expression of ROS and Nrf2 to induce OS. Upregulation of SESN2 was observed in ERS-mediate OS. Overexpression of SESN2 can reduce the overexpression of ERS-related protein GRP78, PERK, ATF4, proapoptotic protein CHOP, OS-related protein Nrf2, as well as ROS, and alleviate ERS injury at the same time. Whereas knockdown of SESN2 can upregulate the expression of GRP78, PERK, ATF4, CHOP, Nrf2, ROS, and deteriorate ERS damage. CONCLUSIONS: ERS can induce OS, they form a vicious cycle to induce apoptosis in HLECs, which may contribute to cataract formation. SESN2 could protect HLECs against the apoptosis by regulating the vicious cycle between ERS and OS.


Asunto(s)
Apoptosis , Western Blotting , Catarata , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Células Epiteliales , Cristalino , Proteínas Nucleares , Estrés Oxidativo , Humanos , Estrés del Retículo Endoplásmico/fisiología , Cristalino/metabolismo , Cristalino/patología , Células Epiteliales/metabolismo , Catarata/metabolismo , Catarata/patología , Catarata/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células Cultivadas , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Citometría de Flujo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Regulación de la Expresión Génica , Sestrinas
12.
Front Psychiatry ; 15: 1360305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803679

RESUMEN

Objectives: To examine serum concentrations of neurotensin, pannexin-1 and sestrin-2, and their correlations with subjective and objective sleep quality and cognitive function in the patients with chronic insomnia disorder (CID). Methods: Sixty-five CID patients were enrolled continuously and fifty-six good sleepers in the same period were served as healthy controls (HCs). Serum levels of neurotensin, pannexin-1 and sestrin-2 were measured by enzyme-linked immunosorbent assays. Sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI) and polysomnography, and mood was evaluated by 17-item Hamilton Depression Rating Scale. General cognitive function was assessed with the Chinese-Beijing Version of Montreal Cognitive Assessment and spatial memory was evaluated by Blue Velvet Arena Test (BVAT). Results: Relative to the HCs, the CID sufferers had higher levels of neurotensin (t=5.210, p<0.001) and pannexin-1 (Z=-4.169, p<0.001), and lower level of sestrin-2 (Z=-2.438, p=0.015). In terms of objective sleep measures, pannexin-1 was positively associated with total sleep time (r=0.562, p=0.002) and sleep efficiency (r=0.588, p=0.001), and negatively with wake time after sleep onset (r=-0.590, p=0.001) and wake time (r=-0.590, p=0.001); sestrin-2 was positively associated with percentage of rapid eye movement sleep (r=0.442, p=0.016) and negatively with non-rapid eye movement sleep stage 2 in the percentage (r=-0.394, p=0.034). Adjusted for sex, age and HAMD, pannexin-1 was still associated with the above objective sleep measures, but sestrin-2 was only negatively with wake time (r=-0.446, p=0.022). However, these biomarkers showed no significant correlations with subjective sleep quality (PSQI score). Serum concentrations of neurotensin and pannexin-1 were positively associated with the mean erroneous distance in the BVAT. Adjusted for sex, age and depression, neurotensin was negatively associated with MoCA score (r=-0.257, p=0.044), pannexin-1 was positively associated with the mean erroneous distance in the BVAT (r=0.270, p=0.033). Conclusions: The CID patients had increased neurotensin and pannexin-1 and decreased sestrin-2 in the serum levels, indicating neuron dysfunction, which could be related to poor sleep quality and cognitive dysfunction measured objectively.

13.
Gene ; 926: 148606, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38788813

RESUMEN

Obesity and overweight are multifactorial diseases affecting more than one-third of the world's population. Physical inactivity contributes to a positive energy balance and the onset of obesity. Exercise combined with a balanced diet is an effective non-pharmacological strategy to improve obesity-related disorders. Gallic acid (GA), is a natural endogenous polyphenol found in a variety of fruits, vegetables, and wines, with beneficial effects on energetic homeostasis. The present study aims to investigate the effects of exercise training on obese mice supplemented with GA. Animal experimentation was performed with male Swiss mice divided into five groups: ST (standard control), HFD (obese control), HFD + GA (GA supplement), HFD + Trained (training), and HFD + GA + Trained (GA and training). The groups are treated for eight weeks with 200 mg/kg/body weight of the feed compound and, if applicable, physical training. The main findings of the present study show that GA supplementation improves liver fat, body weight, adiposity, and plasma insulin levels. In addition, animals treated with the GA and a physical training program demonstrate reduced levels of anxiety. Gene expression analyses show that Sesn2 is activated via PGC-1α independent of the GATOR2 protein, which is activated by GA in the context of physical activity. These data are corroborated by molecular docking analysis, demonstrating the interaction of GA with GATOR2. The present study contributes to understanding the metabolic effects of GA and physical training and demonstrates a new hepatic mechanism of action via Sestrin 2 and PGC-1α.


Asunto(s)
Ácido Gálico , Hígado , Ratones Obesos , Obesidad , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Condicionamiento Físico Animal , Animales , Ratones , Ácido Gálico/farmacología , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Obesidad/metabolismo , Obesidad/genética , Obesidad/tratamiento farmacológico , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ansiedad/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Sestrinas
14.
J Neurochem ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38761015

RESUMEN

Most central nervous diseases are accompanied by astrocyte activation. Autophagy, an important pathway for cells to protect themselves and maintain homeostasis, is widely involved in regulation of astrocyte activation. Reactive astrocytes may play a protective or harmful role in different diseases due to different phenotypes of astrocytes. It is an urgent task to clarify the formation mechanisms of inflammatory astrocyte phenotype, A1 astrocytes. Sestrin2 is a highly conserved protein that can be induced under a variety of stress conditions as a potential protective role in oxidative damage process. However, whether Sestrin2 can affect autophagy and involve in A1 astrocyte conversion is still uncovered. In this study, we reported that Sestrin2 and autophagy were significantly induced in mouse hippocampus after multiple intraperitoneal injections of lipopolysaccharide, with the elevation of A1 astrocyte conversion and inflammatory mediators. Knockdown Sestrin2 in C8-D1A astrocytes promoted the levels of A1 astrocyte marker C3 mRNA and inflammatory factors, which was rescued by autophagy inducer rapamycin. Overexpression of Sestrin2 in C8-D1A astrocytes attenuated A1 astrocyte conversion and reduced inflammatory factor levels via abundant autophagy. Moreover, Sestrin2 overexpression improved mitochondrial structure and morphology. These results suggest that Sestrin2 can suppress neuroinflammation by inhibiting A1 astrocyte conversion via autophagy, which is a potential drug target for treating neuroinflammation.

15.
Nutrients ; 16(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732504

RESUMEN

Prostate cancer, accounting for 375,304 deaths in 2020, is the second most prevalent cancer in men worldwide. While many treatments exist for prostate cancer, novel therapeutic agents with higher efficacy are needed to target aggressive and hormone-resistant forms of prostate cancer, while sparing healthy cells. Plant-derived chemotherapy drugs such as docetaxel and paclitaxel have been established to treat cancers including prostate cancer. Carnosic acid (CA), a phenolic diterpene found in the herb rosemary (Rosmarinus officinalis) has been shown to have anticancer properties but its effects in prostate cancer and its mechanisms of action have not been examined. CA dose-dependently inhibited PC-3 and LNCaP prostate cancer cell survival and proliferation (IC50: 64, 21 µM, respectively). Furthermore, CA decreased phosphorylation/activation of Akt, mTOR, and p70 S6K. A notable increase in phosphorylation/activation of AMP-activated kinase (AMPK), acetyl-CoA carboxylase (ACC) and its upstream regulator sestrin-2 was seen with CA treatment. Our data indicate that CA inhibits AKT-mTORC1-p70S6K and activates Sestrin-2-AMPK signaling leading to a decrease in survival and proliferation. The use of inhibitors and small RNA interference (siRNA) approaches should be employed, in future studies, to elucidate the mechanisms involved in carnosic acid's inhibitory effects of prostate cancer.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Abietanos , Proliferación Celular , Supervivencia Celular , Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Abietanos/farmacología , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proliferación Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral , Fosforilación/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Células PC-3
16.
Cell Biochem Funct ; 42(4): e4024, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38666564

RESUMEN

Diabetic retinopathy (DR) is a significant complication of diabetes that often leads to blindness, impacting Müller cells, the primary retinal macroglia involved in DR pathogenesis. Reactive oxygen species (ROS) play a crucial role in the development of DR. The objective of this study was to investigate the involvement of sestrin2 in DR using a high-glucose (HG)-induced Müller cell model and assessing cell proliferation with 5-ethynyl-2-deoxyuridine (EdU) labeling. Following this, sestrin2 was upregulated in Müller cells to investigate its effects on ROS, tube formation, and inflammation both in vitro and in vivo, as well as its interaction with the nuclear factor erythroid2-related factor 2 (Nrf2) signaling pathway. The findings demonstrated a gradual increase in the number of EdU-positive cells over time, with a subsequent decrease after 72 h of exposure to high glucose levels. Additionally, the expression of sestrin2 exhibited a progressive increase over time, followed by a decrease at 72 h. The rh-sestrin2 treatment suppressed the injury of Müller cells, decreased ROS level, and inhibited the tube formation. Rh-sestrin2 treatment enhanced the expression of sestrin2, Nrf2, heme oxygenase-1 (HO-1), and glutamine synthetase (GS); however, the ML385 treatment reversed the protective effect of rh-sestrin2. Finally, we evaluated the effect of sestrin2 in a DR rat model. Sestrin2 overexpression treatment improved the pathological injury of retina and attenuated the oxidative damage and inflammatory reaction. Our results highlighted the inhibitory effect of sestrin2 in the damage of retina, thus presenting a novel therapeutic sight for DR.


Asunto(s)
Retinopatía Diabética , Especies Reactivas de Oxígeno , Sestrinas , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratas , Masculino , Ratas Sprague-Dawley , Factor 2 Relacionado con NF-E2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Glucosa/metabolismo , Proliferación Celular/efectos de los fármacos , Células Ependimogliales/metabolismo , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/patología , Transducción de Señal/efectos de los fármacos , Peroxidasas/metabolismo , Células Cultivadas
17.
J Biomol Struct Dyn ; : 1-13, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686915

RESUMEN

Leucine is the native known ligand of Sestrin2 (Sesn2) and its interaction with Sesn2 is particularly important, as it influences the activity of mTOR in aging and its associated pathologies. It is important to find out how leucine interacts with Sesn2 and how mutations in the binding pocket of leucine affect the binding of leucine. Therefore, this study was committed to investigating the impact of non-synonymous mutations by incorporating a broad spectrum of simulation techniques, from molecular dynamics to free energy calculations. Our study was designed to model the atomic-scale interactions between leucine and mutant forms of Sesn2. Our results demonstrated that the interaction paradigm for the mutants has been altered thus showing a significant decline in the hydrogen bonding network. Moreover, these mutations compromised the dynamic stability by altering the conformational flexibility, sampling time, and leucine-induced structural constraints that consequently caused variation in the binding and structural stability. Molecular dynamics-based flexibility analysis revealed that the regions 217-339 and 371-380 demonstrated a higher fluctuation. Noteworthy, these regions correspond to a linker (217-339) and a loop (371-380) that cover the leucine binding cavity that is critical for the 'latch' mechanism in the N-terminal, which is essential for leucine binding. Further validation of reduced binding and modified internal motions caused by the mutants was obtained through binding free energy calculations, principal components analysis (PCA), and free energy landscape (FEL) analysis. By unraveling the molecular intricacies of Sesn2-leucine interactions and their mutations, we hope to pave the way for innovative strategies to combat the inevitable tide of aging and its associated diseases.Communicated by Ramaswamy H. Sarma.

18.
Phytomedicine ; 129: 155620, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38669964

RESUMEN

BACKGROUND: Activation of myofibroblasts, linked to oxidative stress, emerges as a pivotal role in the progression of pulmonary fibrosis (PF). Our prior research has underscored the therapeutic promise of tanshinone IIA (Tan-IIA) in mitigating PF by enhancing nuclear factor-erythroid 2-related factor 2 (Nrf2) activity. Nevertheless, the molecular basis through which Tan-IIA influences Nrf2 activity has yet to be fully elucidated. METHODS: The influence of Tan-IIA on PF was assessed in vivo and in vitro models. Inhibitors, overexpression plasmids, and small interfering RNA (siRNA) were utilized to probe its underlying mechanism of action in vitro. RESULTS: We demonstrate that Tan-IIA effectively activates the kelch-like ECH-associated protein 1 (Keap1)-Nrf2 antioxidant pathway, which in turn inhibits myofibroblast activation and ameliorates PF. Notably, the stability and nucleo-cytoplasmic shuttling of Nrf2 is shown to be dependent on augmented autophagic flux, which is in alignment with the observation that Tan-IIA induces autophagy. Inhibition of autophagy, conversely, fosters the activation of extracellular matrix (ECM)-producing myofibroblasts. Further, Tan-IIA initiates an autophagy program through the sestrin 2 (Sesn2)-sequestosome 1 (Sqstm1) signaling axis, crucial for protecting Nrf2 from Keap1-mediated degradation. Meanwhile, these findings were corroborated in a murine model of PF. CONCLUSION: Collectively, we observed for the first time that the Sqstm1-Sesn2 axis-mediated autophagic degradation of Keap1 effectively prevents myofibroblast activation and reduces the synthesis of ECM. This autophagy-dependent degradation of Keap1 can be initiated by the Tan-IIA treatment, which solidifies its potential as an Nrf2-modulating agent for PF treatment.


Asunto(s)
Abietanos , Autofagia , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Fibrosis Pulmonar , Proteína Sequestosoma-1 , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Abietanos/farmacología , Autofagia/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones Endogámicos C57BL , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Proteína Sequestosoma-1/metabolismo , Sestrinas , Transducción de Señal/efectos de los fármacos
19.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396629

RESUMEN

Non-small cell lung cancer (NSCLC) represents 80% of all lung cancer cases and is characterized by low survival rates due to chemotherapy and radiation resistance. Novel treatment strategies for NSCLC are urgently needed. Liver kinase B1 (LKB1), a tumor suppressor prevalently mutated in NSCLC, activates AMP-activated protein kinase (AMPK) which in turn inhibits mammalian target of rapamycin complex 1 (mTORC1) and activates unc-51 like autophagy activating kinase 1 (ULK1) to promote autophagy. Sestrin-2 is a stress-induced protein that enhances LKB1-dependent activation of AMPK, functioning as a tumor suppressor in NSCLC. In previous studies, rosemary (Rosmarinus officinalis) extract (RE) activated the AMPK pathway while inhibiting mTORC1 to suppress proliferation, survival, and migration, leading to the apoptosis of NSCLC cells. In the present study, we investigated the anticancer potential of carnosic acid (CA), a bioactive polyphenolic diterpene compound found in RE. The treatment of H1299 and H460 NSCLC cells with CA resulted in concentration and time-dependent inhibition of cell proliferation assessed with crystal violet staining and 3H-thymidine incorporation, and concentration-dependent inhibition of survival, assessed using a colony formation assay. Additionally, CA induced apoptosis of H1299 cells as indicated by decreased B-cell lymphoma 2 (Bcl-2) levels, increased cleaved caspase-3, -7, poly (ADP-ribose) polymerase (PARP), Bcl-2-associated X protein (BAX) levels, and increased nuclear condensation. These antiproliferative and proapoptotic effects coincided with the upregulation of sestrin-2 and the phosphorylation/activation of LKB1 and AMPK. Downstream of AMPK signaling, CA increased levels of autophagy marker light chain 3 (LC3), an established marker of autophagy; inhibiting autophagy with 3-methyladenine (3MA) blocked the antiproliferative effect of CA. Overall, these data indicate that CA can inhibit NSCLC cell viability and that the underlying mechanism of action of CA involves the induction of autophagy through a Sestrin-2/LKB1/AMPK signaling cascade. Future experiments will use siRNA and small molecule inhibitors to better elucidate the role of these signaling molecules in the mechanism of action of CA as well as tumor xenograft models to assess the anticancer properties of CA in vivo.


Asunto(s)
Abietanos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Abietanos/farmacología , Abietanos/uso terapéutico , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Autofagia/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Serina-Treonina Quinasas/metabolismo , Sestrinas/efectos de los fármacos , Sestrinas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP/efectos de los fármacos , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo
20.
Free Radic Biol Med ; 214: 115-128, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331008

RESUMEN

Sestrins are metabolic regulators that respond to stress by reducing the levels of reactive oxygen species (ROS) and inhibiting the activity of target of rapamycin complex 1 (mTORC1). Previous research has demonstrated that Sestrin2 mitigates ischemia-reperfusion (IR) injury in the heart, liver, and kidneys. However, its specific role in intestinal ischemia-reperfusion (IIR) injury remains unclear. To elucidate the role of Sestrin2 in IIR injury, we conducted an experimental study using a C57BL/6J mouse model of IIR. We noticed an increase in the levels of Sestrin2 expression and indicators associated with ferroptosis. Our study revealed that manipulating Sestrin2 expression in Caco-2 cells through overexpression or knockdown resulted in a corresponding decrease or increase, respectively, in ferroptosis levels. Furthermore, our investigation revealed that Sestrin2 alleviated ferroptosis caused by IIR injury through the activation of the Keap1/Nrf2 signal pathway. This finding highlights the potential of Sestrin2 as a therapeutic target for alleviating IIR injury. These findings indicated that the modulation of Sestrin2 could be a promising strategy for managing prolonged IIR injury.


Asunto(s)
Ferroptosis , Isquemia Mesentérica , Daño por Reperfusión , Animales , Humanos , Ratones , Células CACO-2 , Ferroptosis/genética , Isquemia , Proteína 1 Asociada A ECH Tipo Kelch/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Reperfusión , Daño por Reperfusión/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA