Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.173
Filtrar
1.
Anal Chim Acta ; 1316: 342795, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969398

RESUMEN

The paper represents the first review of solvent extraction techniques utilizing the low-temperature partitioning/purification (LTP) approach. Initially conceived in the 1960s to purify extracts from fatty matrices, it wasn't until the 2000s that this approach received increasing attention for its efficacy in extracting organic compounds from diverse samples, often without additional cleanup steps. This review covers a brief history and proposes a mechanism for LTP-based solvent extraction. Furthermore, the principal practical issues of the technique are spotlighted, elucidating the factors influencing extraction efficiency. The advantages, limitations, and potential combinations with other extraction techniques of the LTP-based solvent extractions are analyzed. The versatility of the LTP approach is demonstrated by its applications in extracting various compounds from food, environmental, and biological samples, emphasizing its potential for rapid sample preparation with minimal steps, few chemicals, and minimal analyst intervention.

2.
Environ Geochem Health ; 46(8): 266, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954124

RESUMEN

Recently, the hazardous effects of antibiotic micropollutants on the environment and human health have become a major concern. To address this challenge, semiconductor-based photocatalysis has emerged as a promising solution for environmental remediation. Our study has developed Bi2WO6/g-C3N4 (BWCN) photocatalyst with unique characteristics such as reactive surface sites, enhanced charge transfer efficiency, and accelerated separation of photogenerated electron-hole pairs. BWCN was utilized for the oxidation of tetracycline antibiotic (TCA) in different water sources. It displayed remarkable TCA removal efficiencies in the following order: surface water (99.8%) > sewage water (88.2%) > hospital water (80.7%). Further, reusability tests demonstrated sustained performance of BWCN after three cycles with removal efficiencies of 87.3, 71.2 and 65.9% in surface water, sewage, and hospital water, respectively. A proposed photocatalytic mechanism was delineated, focusing on the interaction between reactive radicals and TCA molecules. Besides, the transformation products generated during the photodegradation of TCA were determined, along with the discussion on the potential risk assessment of antibiotic pollutants. This study introduces an approach for utilizing BWCN photocatalyst, with promising applications in the treatment of TCA from various wastewater sources.


Asunto(s)
Antibacterianos , Oxidación-Reducción , Tetraciclina , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Antibacterianos/química , Tetraciclina/química , Catálisis , Aguas Residuales/química , Bismuto/química , Grafito/química , Compuestos de Nitrógeno/química , Compuestos de Tungsteno/química , Fotólisis , Purificación del Agua/métodos , Aguas del Alcantarillado/química
3.
Environ Technol ; : 1-13, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955513

RESUMEN

Pyrolysis is an effective process for disposing of municipal sewage sludge (SS). Plastics can affect the SS pyrolysis behaviour and pyrolysis products due to their low ash and high hydrocarbon ratio. The secondary pollutants from the pyrolysis process may also be affected. Therefore, polyethylene terephthalate (PET), a typical plastic, was chosen to investigate the release characteristics of pollutants containing nitrogen, sulphur, and chlorine via SS pyrolysis, and the changes of biochar to adsorb two typical heavy metals, Pb and Cu. The pyrolysis of PET plastics facilitates the migration of N toward solid and liquid-phase products, S and Cl to the gas-phase products via pyrolysis. Oxygenated compounds of pyrolytic volatiles decreased from 38.18% to 28.43%, concurrently promoting the formation of phenolic compounds. The co-pyrolysis improved the quality of biochar and the ability to adsorb Pb and Cu. This systematic study can provide some support for the further improvement of SS pyrolysis technology, and will also be beneficial for subsequent applications.

4.
Contact Dermatitis ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956835

RESUMEN

BACKGROUND: Isocyanates are used as starting materials of polyurethane (PU) products. They are relatively important occupational skin sensitizers. OBJECTIVES: To analyse results of a large isocyanate patch test series of 19 isocyanate test substances and 4,4'-diaminodiphenylmethane (MDA), a marker of 4,4'-diphenylmethane diisocyanate (MDI) hypersensitivity. METHODS: Test files were screened for positive reactions in the isocyanate series. Patients with positive reactions were analysed for occupation, exposure and diagnosis. RESULTS: In 2010-2019, 53 patients had positive reactions in the series (16% of 338 patients tested). MDA, the well-established screening substance for MDI allergy, was positive in 30 patients, an in-house monomeric MDI test substance in 23 patients and 3 different polymeric MDI test substances in 19-21 patients. We diagnosed 16 cases of occupational allergic contact dermatitis (OACD) from MDI including 3 pipe reliners. Hexamethylene-1,6-diisocyanate (HDI) oligomers in paint hardeners caused 5 cases of OACD, more cases than 2,4-toluene diisocyanate (TDI; n = 3) and isophorone diisocyanate (IPDI; n = 1) put together. CONCLUSIONS: In contrast to previous studies, polymeric MDI test substances were not superior to a monomeric MDI. Pipe reliners may get sensitised not only by epoxy products and acrylates but also by MDI in hardeners of PU pipe coatings. HDI oligomers were the second most important causes of OACD after MDI.

5.
Water Res ; 261: 122028, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991248

RESUMEN

Emerging evidence indicates that micro- and macro-plastics present in water can support a diverse microbial community, including potential human pathogens (e.g., bacteria, viruses). This interaction raises important concerns surrounding the role and suitability of current bathing water regulations and associated pathogen exposure risk within beach environments. In response to this, we critically evaluated the available evidence on plastic-pathogen interactions and identified major gaps in knowledge. This review highlighted the need for a conceptual shift in risk management at public beaches recognising: (i) interconnected environmental risks, e.g., associations between microbial compliance parameters, potential pathogens and both contemporary and legacy plastic pollution; and (ii) an appreciation of risk of exposure to plastic co-pollutants for both water and waterside users. We present a decision-making framework to identify options to manage plastic-associated pathogen risks alongside short- and longer-term research priorities. This advance will help deliver improvements in managing plastic-associated pathogen risk, acknowledging that human exposure potential is not limited to only those who engage in water-based activity. We argue that adopting these recommendations will help create an integrated approach to managing and reducing human exposure to pathogens at bathing, recreational water and beach environments.

6.
Environ Pollut ; : 124516, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986764

RESUMEN

The escalating volume of sewage sludge (SS) generated poses challenges in disposal, given its potential harm to the environment and human health. This study explored sustainable solutions for SS management with a focus on energy recovery. Employing CO2-assisted pyrolysis, we converted SS into flammable gases (H2 and CO; syngas). Single-stage pyrolysis of SS in a CO2 conditions demonstrated that CO2 enhances flammable gas production (especially CO) through gas phase reactions (GPRs) with volatile matter (VM) at temperatures ≥ 520 ˚C. Specifically, the CO2 partially oxidized the VM released from SS and concurrently underwent reduction into CO. To enhance the syngas production at temperatures ≤ 520 ˚C, multi-stage pyrolysis setup with additional heat energy and a Ni/Al2O3 catalyst were utilized. These configurations significantly increased flammable gas production, particularly CO, at temperatures ≤ 520 ˚C. Indeed, the flammable gas yield in the catalytic pyrolysis of SS increased from 200.3 mmol under N2 conditions to 219.2 mmol under CO2 conditions, representing a 4.4-fold increase compared to single-stage pyrolysis under CO2 conditions (50.0 mmol). By integrating a water-gas-shift reaction, the flammable gases produced from CO2-assisted catalytic pyrolysis were expected to have the potential to generate revenue of US$4.04 billion. These findings highlight the effectiveness of employing CO2 in SS pyrolysis as a sustainable and effective approach for treating and valorising SS into valuable energy resources.

7.
Bioresour Technol ; : 131093, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986888

RESUMEN

Hydrothermal liquefaction (HTL) is a promising method for municipal sludge valorization through waste minimization and biofuel production. The process wastewater, HTL aqueous, presents a significant challenge for scale-up due to recalcitrant compounds. In this study, granular activated carbon (GAC) was used to remove potential inhibitors from HTL aqueous through adsorption to enhance aerobic and anaerobic biological treatment. GAC removed up to 61 % chemical oxygen demand (COD), 50 % biochemical oxygen demand (BOD) and potential inhibitors, such as total phenolic compounds (87 %) and N-heterocycles (90 % of pyridines) at 100 g/L. Conversely, most volatile fatty acids remained in HTL aqueous. Subsequently, mesophilic and thermophilic specific methane potential increased by up to 97 % and 83 %, respectively. BOD increased by up to 50 %, which enhanced BOD/COD ratio from 81 % to 93 % before and after adsorption. This study established the groundwork for HTL aqueous adsorption, described mechanism for pollutant removal, and provided insights for biological treatment.

8.
J Environ Manage ; 365: 121637, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968886

RESUMEN

The pH of sewage sludge is a crucial factor during the hydrothermal carbonization process that influences the characteristics of the resulting products and migration of certain compounds from the solid to liquid phase. Accordingly, this work is focused on examining the pH impact during the HTC process, in particular, pH equals 2, 3, 4, 5 and 6 on the individual hydrothermally carbonized products generated at 200 °C and 2 h residence time. For this reason, the chemical and physical indicators describing the post-processing liquid and hydrochar were determined. For instance, it was observed that the phosphorus content detected in the liquid, derived at pH2, rose significantly by 80%. Furthermore, decreasing the pH of sewage sludge had a significant impact on the ash content and the calorific value of the hydrochar. Additionally, changes in the specific surface area of hydrochar were noticed: pH = 5 and pH = 6 showed an increase of 20-30%, while for lower pH values a decrease of c.a. 26% was achieved. The distribution of heavy metals between the obtained fractions in the HTC process (solid and liquid) indicated that 92 to almost 100% of the tested heavy metals were transferred to the hydrochar. A significant effect of pH on the distribution between these fractions was observed only for Zn and Ni. For instance, for pH = 2, Zn and Ni in post-processing liquid were 34% and 29%, respectively. In addition, the sequential extraction of heavy metals from hydrochar was also performed in order to identify mobile and non-mobile phases. It was noticed that the acidic environment favours a higher amount of mobile heavy metals in hydrochar. The largest effect was observed for Cd, Pb, Cr and Cu, for which, at pH = 2, their respective amounts in the mobile fraction were 2.7; 3.6; 1.8; 6.2 times higher, compared to the hydrochar without pH correction.


Asunto(s)
Metales Pesados , Fósforo , Aguas del Alcantarillado , Metales Pesados/análisis , Metales Pesados/química , Aguas del Alcantarillado/química , Fósforo/química , Fósforo/análisis , Concentración de Iones de Hidrógeno
9.
J Environ Manage ; 365: 121643, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968894

RESUMEN

Phosphotungstic acid (HPW) and silicotungstic acid (HSiW) were tested as homogeneous and as heterogeneous catalysts (after immobilized on different supports as high surface area graphite -HSAG500-, montmorillonite -MMT- and alumina -Al2O3-) for the in situ transesterification of sewage sludge lipids. Both catalysts exhibited similar performance in homogeneous phase, with slightly higher biodiesel yield for HPW. When the different supports were tested with HPW, the maximum yield obtained follow the trend: MMT > HSAG500 > Al2O3, but a greater leaching of the heteropolyacid (HPA) was observed with MMT. Therefore, HSAG500 showed the best results with a good FAMEs profile. The percentage of active phase was optimized from 1 to 40%, reaching the optimum at 10%. A more heterogeneous surface is obtained with larger quantities, also favouring the HPA leaching. The reaction temperature and the use of sonication as pre-treatment were also optimized. The best results were obtained after sonication with HPW-HSAG500 (10%) as catalyst, catalyst/sludge ratio 1:2, MeOH/sludge ratio 33:1, 120 °C and 21 h of reaction time with a maximum biodiesel yield of 31.1 % (FAMEs/lipids). In view of the results obtained HPW supports on HSAG500 offers a novel alternative as heterogeneous acid catalyst for in situ transesterification using sewage sludge as raw material.


Asunto(s)
Biocombustibles , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Catálisis , Esterificación , Ácido Fosfotúngstico/química , Óxido de Aluminio/química , Grafito/química
10.
Water Res ; 261: 122050, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38996731

RESUMEN

Considering the high organic matter contents and pollutants in sewage sludge (SS) and food waste (FW), seeking green and effective technology for energy recovery and pollutant control is a big challenge. In this study, we proposed a integrated technology combing SS mass separation by hydrothermal pretreatment, methane production from co-digestion of hydrothermally treated sewage sludge (HSS) centrate and FW, and biochar production from co-pyrolysis of HSS cake and digestate with heavy metal immobilization for synergistic utilization of SS and FW. The results showed that the co-digestion of HSS centrate with FW reduced the NH4+-N concentration and promoted volatile fatty acids conversion, leading to a more robust anaerobic system for better methane generation. Among the co-pyrolysis of HSS cake and digestate, digestate addition improved biochar quality with heavy metals immobilization and toxicity reduction. Following the lab-scale investigation, the pilot-scale verification was successfully performed (except the co-digestion process). The mass and energy balance revealed that the produced methane could supply the whole energy consumption of the integrated system with 26.2 t biochar generation for treating 300 t SS and 120 t FW. This study presents a new strategy and technology validation for synergistic treatment of SS and FW with resource recovery and pollutants control.

11.
Chemosphere ; : 142824, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996980

RESUMEN

The disposal and resource utilization of sewage sludge (SS) have always been significant challenges for environmental protection. This study employed straightforward pyrolysis to prepare iron-containing sludge biochar (SBC) used as a catalyst and to recover bio-oil used as fuel energy. The results indicated that SBC-700 could effectively activate persulfate (PS) to remove 97.2% of 2,4-dichlorophenol (2,4-DCP) within 60 min. Benefiting from the appropriate iron content, oxygen-containing functional groups and defective structures provide abundant active sites. Meanwhile, SBC-700 exhibits good stability and reusability in cyclic tests and can be easily recovered by magnetic separation. The role of non-radicals is emphasized in the SBC-700/PS system, and in particular, single linear oxygen (1O2) is proposed to be the dominant reactive oxygen. The bio-oil, a byproduct of pyrolysis, exhibits a higher heating value (HHV) of about 30 MJ/kg, with H/C and O/C ratios comparable to those of biodiesel. The energy recovery rate of the SS pyrolysis system was calculated at 80.5% with a lower input cost. In conclusion, this investigation offers a low-energy consumption and sustainable strategy for the resource utilization of SS while simultaneously degrading contaminants.

12.
Sci Total Environ ; 947: 174460, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971255

RESUMEN

This study explores sustainable methods to mitigate nitrogen (N) loss in agriculture amid rising food demands and limited arable land. It examines sewage sludge (SS) as an alternative to synthetic N fertilizers. SS is rich in nitrogen (4.21 ± 0.42 %) and phosphorus (3.60 ± 0.72 %), making it suitable for nutrient recovery and soil enhancement. Unfavorable sludge management methods result in the loss of 950,000 tons of nitrogen, meeting almost 10 % of the EU's nitrogen fertilization demand. This research evaluates SS treatment methods, including chemical conversion, thermal treatment, and biological composting, focusing on nitrogen conservation efficiency. Results show nitrogen loss during hydrolysis is minimized at pH 4 to 8 but increases significantly as ammonia (NH3) at pH 9 to 11, ranging from 4.2 % to 9 %. Neutralizing the hydrolysate is crucial; using solid KOH resulted in 13.5 % nitrogen loss, 11 times more than using slightly alkaline ash (1.22 %). Adding ash during drying reduced nitrogen emissions by 30 % compared to traditional drying at 105 °C. Improving the C/N ratio with food residues reduced nitrogen losses by 46.3 % during composting. These findings highlight the importance of pH control in chemical processes and temperature regulation in thermal treatments. Adding residues from other processes, such as biomass combustion waste, enhances SS processing conditions. Understanding nitrogen retention mechanisms is crucial for the environmental sustainability of SS usage. Efficient nitrogen retention strategies improve the fertilization value of SS and reduce its environmental footprint by lowering greenhouse gas emissions, particularly ammonia. Reducing nitrogen loss during SS treatment significantly lowers ammonia emissions, a major contributor to greenhouse gas emissions. These results help determine optimal methods for managing and processing SS to minimize emissions and increase agricultural usability.

13.
Heliyon ; 10(11): e31831, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38947485

RESUMEN

Conventional solutions for wastewater collection focus on reducing overflow events in the sewage network, which can be achieved by adapting sewer infrastructure or, a more cost-effective alternative, by implementing a non-engineering management solution. The state-of-the-art solution is centered on Real-Time Control (RTC), which is already resulting in a positive impact on the environment by decreasing the volume of wastewater being discharged into receiving waters. Researchers have been continuing efforts towards upgrading RTC solutions for sewage systems and a new approach, although rudimentary, was introduced in 1997, known as Pollution-based RTC (P-RTC), which added water quality (concentration or load) information explicitly within the RTC algorithm. Formally, P-RTC is encompassed of several control methodologies using a measurement or estimation of the concentration (i.e. COD or ammonia) of the sewage throughout the network. The use of P-RTC can result in a better control performance with a reduction in concentration of overflowing wastewater observed associated with an increase of concentration of sewage arriving at the Wastewater Treatment Plant (WWTP). The literature revealed that P-RTC can be differentiated by: (1) implementation method; (2) how water quality is incorporated, and (3) overall control objectives. Additionally, this paper evaluates the hydrological models used for P-RTC. The objective of this paper is to compile relevant research in pollution-based modelling and real-time control of sewage systems, explaining the general concepts within each P-RTC category and their differences.

14.
Biol Futur ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970754

RESUMEN

Epilithic biofilms are ubiquitous in large river environments and are crucial for biogeochemical processes, but their community structures and functions remain poorly understood. In this paper, the seasonal succession in the morphological structure and the taxonomic composition of an epilithic bacterial biofilm community at a polluted site of the Danube River were followed using electron microscopy, high-throughput 16S rRNA gene amplicon sequencing and multiplex/taxon-specific PCRs. The biofilm samples were collected from the same submerged stone and carried out bimonthly in the littoral zone of the Danube River, downstream of a large urban area. Scanning electron microscopy showed that the biofilm was composed of diatoms and a variety of bacteria with different morphologies. Based on amplicon sequencing, the bacterial communities were dominated by the phyla Pseudomonadota and Bacteroidota, while the most abundant archaea belonged to the phyla Nitrososphaerota and Nanoarchaeota. The changing environmental factors had an effect on the composition of the epilithic microbial community. Critical levels of faecal pollution in the water were associated with increased relative abundance of Sphaerotilus, a typical indicator of "sewage fungus", but the composition and diversity of the epilithic biofilms were also influenced by several other environmental factors such as temperature, water discharge and total suspended solids (TSS). The specific PCRs showed opportunistic pathogenic bacteria (e.g. Pseudomonas spp., Legionella spp., P. aeruginosa, L. pneumophila, Stenotrophomonas maltophilia) in some biofilm samples, but extended spectrum ß-lactamase (ESBL) genes and macrolide resistance genes could not be detected.

15.
Bioresour Technol ; : 131112, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39009050

RESUMEN

Because of the naturally limited anaerobic degradability and limited biogas yield of raw sludge (RS), this study aims to increase the biogas production of primary sludge (PS) and waste activated sludge (WAS) by the integration of thermal alkaline process (TAP). PH 11 is confirmed to be the most suitable pH value for the TAP of both sludges. Moreover, with the pretreatment at pH 11 and 160 °C (6 bar) for 30 min, the investigated PSs and WASs achieved an increased biogas production of up to 81 % and 72 %, respectively. The improved net electricity production of WASs after TAP varied between 15-43 % compared to conventional WAS digestion. However, the TAP of PS at pH 11 enhanced the biogas production by 1-81 %, which did not constantly contribute to an improved net electricity production.

16.
Water Sci Technol ; 90(1): 190-212, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007314

RESUMEN

Numerous countries and regions have embraced implementing a separate sewer system, segregating sanitary and storm sewers into distinct systems. However, the functionality of these systems often needs to improve due to irregular interconnections, resulting in a mixed and malfunctioning system. Sewage collection is crucial for residential sanitation, but untreated collection significantly contributes to environmental degradation. Analyzing the simultaneous operation of both systems becomes vital for effective management. Using mathematical tools for precise and unified diagnosis and prognosis becomes imperative. However, municipal professionals and companies need more tools specifically designed to evaluate these systems in a unified way, mapping all the hydraulic connections observed in practice. This study proposes a unified simulation method for stormwater and sanitary sewer urban systems, addressing real-world scenarios and potential interferences. The primary goal is to develop a simulation method for both systems, considering system interconnections and urban layouts, involving hydrodynamic and water quality simulations. The practical application of this method, the Multilayer Hydrodynamic Simulation Method (MODCEL-MHUS), successfully identifies issues in urban water networks and suggests solutions, making it a valuable tool for urban water management and environmental engineering professionals.


Asunto(s)
Hidrodinámica , Lluvia , Aguas del Alcantarillado , Drenaje de Agua , Ciudades , Modelos Teóricos , Eliminación de Residuos Líquidos/métodos , Simulación por Computador , Movimientos del Agua
17.
Environ Res ; : 119591, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002633

RESUMEN

Reducing N2O emissions is key to controlling greenhouse gases (GHG) in wastewater treatment plants (WWTPs). Although studies have examined the effects of dissolved oxygen (DO) on N2O emissions during nitrogen removal, the precise effects of aeration rate remain unclear. This study aimed to fill this research gap by investigating the influence of dynamic aeration rates on N2O emissions in an alternating anoxic-oxic sequencing batch reactor system. The emergence of DO breakthrough points indicated that the conversion of ammonia nitrogen to nitrite and the release of N2O were nearly complete. Approximately 91.73±3.35% of N2O was released between the start of aeration and the DO breakthrough point. Compared to a fixed aeration rate, dynamically adjusting the aeration rates could reduce N2O production by up to 48.6%. Structural equation modelling revealed that aeration rate and total nitrogen directly or indirectly had significant effects on the N2O production. A novel regression model was developed to estimate N2O production based on energy consumption (aeration flux), water quality (total nitrogen), and GHG emissions (N2O). This study emphasizes the potential of optimizing aeration strategies in WWTPs to significantly reduce GHG and improve environmental sustainability.

18.
Water Sci Technol ; 89(10): 2812-2822, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38822616

RESUMEN

The sequential extraction routes of biogenic materials from sewage sludge (SS) were investigated. Physical methods (ultrasound, heating) and chemical methods (sodium hydroxide, sodium carbonate) were used to extract extracellular polymeric substances (EPS) and alginate-like extracellular polymers (ALEs) from SS. The residues after extraction were further subjected to physical methods (heating) and chemical methods (sulfuric acid, sodium hydroxide) for protein extraction. A comparison was made between sequential extraction routes and direct extraction of biomaterials from sludge in terms of extraction quantity, material properties, and applicability. The results showed that sequential extraction of biomaterials is feasible. The highest extraction quantities were obtained when using sodium carbonate for EPS and ALE extraction and sodium hydroxide for protein, reaching 449.80 mg/gVSS, 109.78 mg/gVSS, and 5447.08 mg/L, respectively. Sequential extraction procedures facilitate the extraction of biomaterials. Finally, suitable extraction methods for different application scenarios were analyzed.


Asunto(s)
Aguas del Alcantarillado , Aguas del Alcantarillado/química , Hidróxido de Sodio/química , Fraccionamiento Químico/métodos , Carbonatos/química , Estudios de Factibilidad
19.
Bioresour Technol ; 406: 131003, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925406

RESUMEN

Integrating algae into constructed wetlands (CWs) enhances wastewater treatment, although the results vary. This review evaluates the role of algae in CWs and the performance of different algae-CW (A-CW) configurations based on literature and meta-analysis. Algae considerably improve N removal, although their impact on other parameters varies. Statistical analysis revealed that 70 % of studies report improved treatment efficiencies with A-CWs, achieving average removal rates of 75 % for chemical oxygen demand (COD), 74 % for total nitrogen and ammonium nitrogen, and 79 % for total phosphorus (TP). This review identifies hydraulic retention times, which average 3.1 days, and their varied impact on treatment efficacy. Mixed-effects models showed a slight increase in COD and TP removal efficiencies of 0.6 % every ten days in the A-CWs. Future research should focus on robust experimental designs, adequate algal storage and separation techniques, and advanced modeling to optimize the treatment potential of algae in CWs.

20.
Water Res ; 260: 121858, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38936269

RESUMEN

Wastewater treatment plants (WWTPs) provide vital services to the public by removing contaminants from wastewater prior to environmental discharge or reuse for beneficial purposes. WWTP workers occupationally exposed to wastewater can be at risk of respiratory or gastrointestinal diseases. The study objectives were to: (1) quantify pathogens and pathogen indicators in wastewater aerosols near different WWTP processes/unit operations, (2) develop a QMRA model for multi-pathogen and multi-exposure pathway risks, and (3) create a web-based application to perform and communicate risk calculations for wastewater workers. Case studies for seven different WWTP job tasks were performed investigating infection risk across nine different enteric and respiratory pathogens. It was observed that the ingestion risk among job tasks was highest for "walking the WWTP," which involved exposure from splashing, bioaerosols, and hand-to-mouth contact from touching contaminated surfaces. There was also a notable difference in exposure risk during peak (5:00am-9:00am) and non-peak hours (9:00am- 5:00am), with risks during the peak flow hours of the early morning assumed to be 5 times greater than non-peak hours. N95 respirator usage reduced median respiratory risks by 77 %. The developed tool performs multiple QMRA calculations to estimate WWTP workers' infection risks from accidental ingestion or inhalation of wastewater from multiple pathogens and exposure scenarios, which can inform risk management strategies to protect occupational health. However, more data are needed to reduce uncertainty in model estimates, including comparative data for pathogen concentrations in wastewater during peak and non-peak hours. QMRA tools will increase accessibility of risk models for utilization in decision-making.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...