Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Endocrine ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143422

RESUMEN

PURPOSE: Treatment with recombinant human growth hormone (rhGH) increases insulin growth factor-1 (IGF1) levels, therefore, monitoring both IGF1 and growth constitutes an acceptable parameter of therapeutic safety and efficacy. We aimed to investigate the relationship between IGF1 level and body composition in children and adolescents undergoing rhGH therapy for growth hormone deficiency (GHD) and idiopathic short stature (ISS). METHODS: This observational retrospective study included the bioimpedance analysis (BIA) reports (n = 305) of 135 pediatric patients (age 5-18 years), 64 with GHD and 71 with ISS, conducted as part of routine clinic visits. Sociodemographic and clinical data were extracted from medical records. Generalized estimating equations linear models were used to explore the contributing factors for body composition components of fat percentage (FATP), appendicular skeletal muscle mass (ASMM) z-score, and muscle-to-fat ratio (MFR) z-score while adjusting for cumulative doses of rhGH. RESULTS: Subjects with GHD exhibited higher body mass index z-scores (p < 0.001), higher FATP and truncal FATP scores, lower MFR z-score, and higher diastolic blood pressure percentiles than the ISS group (p = 0.010, p = 0.027, p = 0.050, and p = 0.050, respectively). Female sex (p < 0.001) and a GHD diagnosis (p < 0.001), were major contributors to higher FATP scores; female sex (p = 0.049) and ISS diagnosis (p = 0.005) were major contributors to higher MFR z-scores; and female sex (p < 0.001), older age (p < 0.001) and higher insulin-like growth factor 1 z-scores (p = 0.021) were major contributors to higher ASMM z-scores. Socioeconomic position and cumulative rhGH dose were not significant contributors to body composition parameters. CONCLUSION: Children with GHD, including those undergoing rhGH treatment, may be at risk for increased adiposity and associated metabolic implications. Sex- and age-adjusted IGF1 levels were related to muscle mass but not to adiposity. Hence, rhGH treatment aimed at increasing IGF1 levels may alleviate these effects by promoting muscle growth.

2.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125723

RESUMEN

Sexually dimorphic traits such as growth and body size are often found in various crustaceans. Methyl farnesoate (MF), the main active form of sesquiterpenoid hormone in crustaceans, plays vital roles in the regulation of their molting and reproduction. However, understanding on the sex differences in their hormonal regulation is limited. Here, we carried out a comprehensive investigation on sexual dimorphic responses to MF in the hepatopancreas of the most dominant aquacultural crustacean-the white-leg shrimp (Litopenaeus vannamei). Through comparative transcriptomic analysis of the main MF target tissue (hepatopancreas) from both female and male L. vannamei, two sets of sex-specific and four sets of sex-dose-specific differentially expressed transcripts (DETs) were identified after different doses of MF injection. Functional analysis of DETs showed that the male-specific DETs were mainly related to sugar and lipid metabolism, of which multiple chitinases were significantly up-regulated. In contrast, the female-specific DETs were mainly related to miRNA processing and immune responses. Further co-expression network analysis revealed 8 sex-specific response modules and 55 key regulatory transcripts, of which several key transcripts of genes related to energy metabolism and immune responses were identified, such as arginine kinase, tropomyosin, elongation of very long chain fatty acids protein 6, thioredoxin reductase, cysteine dioxygenase, lysosomal acid lipase, estradiol 17-beta-dehydrogenase 8, and sodium/potassium-transporting ATPase subunit alpha. Altogether, our study demonstrates the sex differences in the hormonal regulatory networks of L. vannamei, providing new insights into the molecular basis of MF regulatory mechanisms and sex dimorphism in prawn aquaculture.


Asunto(s)
Perfilación de la Expresión Génica , Hepatopáncreas , Penaeidae , Caracteres Sexuales , Transcriptoma , Animales , Hepatopáncreas/metabolismo , Hepatopáncreas/efectos de los fármacos , Femenino , Masculino , Penaeidae/genética , Penaeidae/metabolismo , Penaeidae/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Ácidos Grasos Insaturados/farmacología , Ácidos Grasos Insaturados/metabolismo
3.
G3 (Bethesda) ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001868

RESUMEN

Drosophila prolongata is a member of the melanogaster species group and rhopaloa subgroup native to the subtropical highlands of southeast Asia. This species exhibits an array of recently evolved male-specific morphological, physiological, and behavioral traits that distinguish it from its closest relatives, making it an attractive model for studying the evolution of sexual dimorphism and testing theories of sexual selection. The lack of genomic resources has impeded the dissection of the molecular basis of sex-specific development and behavior in this species. To address this, we assembled the genome of D. prolongata using long-read sequencing and Hi-C scaffolding, resulting in a highly complete and contiguous (scaffold N50 2.2Mb) genome assembly of 220Mb. The repetitive content of the genome is 24.6%, the plurality of which are LTR retrotransposons (33.2%). Annotations based on RNA-seq data and homology to related species revealed a total of 19,330 genes, of which 16,170 are protein-coding. The assembly includes 98.5% of Diptera BUSCO genes, including 93.8% present as a single copy. Despite some likely regional duplications, the completeness of this genome suggests that it can be readily used for gene expression, GWAS, and other genomic analyses.

4.
BMC Musculoskelet Disord ; 25(1): 490, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914997

RESUMEN

BACKGROUND: Ankylosing spondylitis (AS) with radiographic damage is more prevalent in men than in women. IL-17, which is mainly secreted from peripheral blood mononuclear cells (PBMCs), plays an important role in the development of AS. Its expression is different between male and female. However, it is still unclear whether sex dimorphism of IL-17 contribute to sex differences in AS. METHODS: GSE221786, GSE73754, GSE25101, GSE181364 and GSE205812 datasets were collected from the Gene Expression Omnibus (GEO) database. Differential expressed genes (DEGs) were analyzed with the Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) methods. CIBERSORTx and EcoTyper algorithms were used for immune infiltration analyses. Machine learning based on the XGBoost algorithm model was used to identify the impact of DEGs. The Connectivity Map (CMAP) database was used as a drug discovery tool for exploring potential drugs based on the DEGs. RESULTS: According to immune infiltration analyses, T cells accounted for the largest proportion of IL-17-secreting PBMCs, and KEGG analyses suggested an enhanced activation of mast cells among male AS patients, whereas the expression of TNF was higher in female AS patients. Other signaling pathways, including those involving metastasis-associated 1 family member 3 (MAT3) or proteasome, were found to be more activated in male AS patients. Regarding metabolic patterns, oxidative phosphorylation pathways and lipid oxidation were significantly upregulated in male AS patients. In XGBoost algorithm model, DEGs including METRN and TMC4 played important roles in the disease process. we integrated the CMAP database for systematic analyses of polypharmacology and drug repurposing, which indicated that atorvastatin, famciclocir, ATN-161 and taselisib may be applicable to the treatment of AS. CONCLUSIONS: We analyzed the sex dimorphism of IL-17-secreting PBMCs in AS. The results showed that mast cell activation was stronger in males, while the expression of TNF was higher in females. In addition, through machine learning and the CMAP database, we found that genes such as METRN and TMC4 may promote the development of AS, and drugs such as atorvastatin potentially could be used for AS treatment.


Asunto(s)
Biología Computacional , Interleucina-17 , Leucocitos Mononucleares , Aprendizaje Automático , Caracteres Sexuales , Espondilitis Anquilosante , Femenino , Humanos , Masculino , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Interleucina-17/metabolismo , Interleucina-17/genética , Leucocitos Mononucleares/metabolismo , Espondilitis Anquilosante/genética , Espondilitis Anquilosante/inmunología , Espondilitis Anquilosante/metabolismo
5.
Fish Shellfish Immunol ; 151: 109735, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945414

RESUMEN

Antimicrobial peptide (AMP) is an important component of crustaceans' innate immune system. In this study, a short neuropeptide F (sNPF) gene (Pc-sNPF) and a Forkhead box O (FOXO) gene (PcFOXO) from Procambarus clarkii were identified. Analysis findings showed that the expression level of AMP genes differed between male and female P. clarkii. Furthermore, Pc-sNPF and PcFOXO were related to the sex dimorphism of AMP. Knockdown of Pc-sNPF in the eyestalk significantly upregulated the expression of PcFOXO and two anti-lipopolysaccharide factors (PcALF4 and PcALFL) in the intestine of P. clarkii. The expression of PcFOXO in the intestine of female P. clarkii was higher than in that of males. Results from RNA interference revealed that PcFOXO positively regulated the expression of PcALF4 and PcALFL in the intestine of male and female P. clarkii. In summary, our study showed that differences in Pc-sNPF expression in eyestalk of male and female P. clarkii leading to sex dimorphism of AMP expression in the intestine are mediated by the sNPF-FOXO-AMP signal pathway called the eyestalk-intestine axis.


Asunto(s)
Proteínas de Artrópodos , Regulación de la Expresión Génica , Neuropéptidos , Caracteres Sexuales , Animales , Masculino , Femenino , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/metabolismo , Regulación de la Expresión Génica/inmunología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Astacoidea/genética , Astacoidea/inmunología , Intestinos , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Inmunidad Innata/genética , Filogenia , Perfilación de la Expresión Génica , Secuencia de Aminoácidos , Alineación de Secuencia
6.
Zoological Lett ; 10(1): 11, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902818

RESUMEN

BACKGROUND: In gonochoristic animals, the sex determination pathway induces different morphological and behavioral features that can be observed between sexes, a condition known as sexual dimorphism. While many components of this sex differentiation cascade show high levels of diversity, factors such as the Doublesex-Mab-3-Related Transcription factor (DMRT) are widely conserved across animal taxa. Species of the phylum Tardigrada exhibit remarkable diversity in morphology and behavior between sexes, suggesting a pathway regulating this dimorphism. Despite the wealth of genomic and zoological knowledge accumulated in recent studies, the sexual differences in tardigrades genomes have not been identified. In the present study, we focused on the gonochoristic species Paramacrobiotus metropolitanus and employed omics analyses to unravel the molecular basis of sexual dimorphism. RESULTS: Transcriptome analysis between sex-identified specimens revealed numerous differentially expressed genes, of which approximately 2,000 male-biased genes were focused on 29 non-male-specific genomic loci. From these regions, we identified two Macrobiotidae family specific DMRT paralogs, which were significantly upregulated in males and lacked sex specific splicing variants. Furthermore, phylogenetic analysis indicated all tardigrade genomes lack the doublesex ortholog, suggesting doublesex emerged after the divergence of Tardigrada. In contrast to sex-specific expression, no evidence of genomic differences between the sexes was found. We also identified several anhydrobiosis genes that exhibit sex-biased expression, suggesting a possible mechanism for protection of sex-specific tissues against extreme stress. CONCLUSIONS: This study provides a comprehensive analysis for analyzing the genetic differences between sexes in tardigrades. The existence of male-biased, but not male-specific, genomic loci and identification of the family specific male-biased DMRT subfamily provides the foundation for understanding the sex determination cascade. In addition, sex-biased expression of several tardigrade-specific genes which are involved their stress tolerance suggests a potential role in protecting sex-specific tissue and gametes.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38864769

RESUMEN

Sex differences are recognized in pulmonary hypertension, however the progression of disease with regards to vascular lesion formation and circulating cytokines/chemokines is unknown. To determine whether vascular lesion formation, changes in hemodynamics and alterations in circulating chemokines/cytokines differ between male and female. We used a progressive model of PAH, SU/Hx and analyzed cohorts of male and female rats at timepoints suggested to indicate worsening disease. Our analysis included echocardiograpy for hemodynamics, morphometry, immunofluoresecence and chemokine/cytokine analysis of plasma at each time point in both sexes. We found that male rats had significantly increased Fulton index compared to females at each time point as well as increased medial artery thickening at 8-weeks PAH. Further, females exhibit fewer obliterative vascular lesions than males at our latest time point. Our data also show increased IL-4, GM-CSF, IL-10, and MIP-1 that are not observed in females, while females have increased RANTES and CXCL-10 not found in males. Males also have increased infiltrating macrophages in vascular lesions as compared to females. We found that development of progressive PAH in hemodynamics, morphology and chemokine/cytokine circulation differ significantly between males and females. These data suggest a macrophage driven pathology in males, while there may be T-cell protection from vascular damage in female PAH.

8.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798460

RESUMEN

T cells have emerged as sex-dependent orchestrators of pain chronification but the sexually dimorphic mechanisms by which T cells control pain sensitivity is not resolved. Here, we demonstrate an influence of regulatory T cells (Tregs) on pain processing that is distinct from their canonical functions of immune regulation and tissue repair. Specifically, meningeal Tregs (mTregs) express the endogenous opioid, enkephalin, and mTreg-derived enkephalin exerts an antinociceptive action through a presynaptic opioid receptor signaling mechanism that is dispensable for immunosuppression. mTregs are both necessary and sufficient for suppressing mechanical pain sensitivity in female but not male mice. Notably, the mTreg modulation of pain thresholds depends on sex-hormones and expansion of enkephalinergic mTregs during gestation imparts a remarkable pregnancy-induced analgesia in a pre-existing, chronic, unremitting neuropathic pain model. These results uncover a fundamental sex-specific, pregnancy-pronounced, and immunologically-derived endogenous opioid circuit for nociceptive regulation with critical implications for pain biology and maternal health.

9.
Proc Natl Acad Sci U S A ; 121(21): e2313207121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753512

RESUMEN

Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.


Asunto(s)
Compuestos de Bencidrilo , Neuronas , Fenoles , Diferenciación Sexual , Animales , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Femenino , Masculino , Ratones , Diferenciación Sexual/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Embarazo , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Arginina Vasopresina/metabolismo , Vasopresinas/metabolismo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Ratones Endogámicos C57BL , Estrógenos/metabolismo , Estrógenos/farmacología
10.
Biol Sex Differ ; 15(1): 41, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750588

RESUMEN

BACKGROUND: Differences in immune responses between women and men are leading to a strong sex bias in the incidence of autoimmune diseases that predominantly affect women, such as multiple sclerosis (MS). MS manifests in more than twice as many women, making sex one of the most important risk factor. However, it is incompletely understood which genes contribute to sex differences in autoimmune incidence. To address that, we conducted a gene expression analysis in female and male human spleen and identified the transmembrane protein CD99 as one of the most significantly differentially expressed genes with marked increase in men. CD99 has been reported to participate in immune cell transmigration and T cell regulation, but sex-specific implications have not been comprehensively investigated. METHODS: In this study, we conducted a gene expression analysis in female and male human spleen using the Genotype-Tissue Expression (GTEx) project dataset to identify differentially expressed genes between women and men. After successful validation on protein level of human immune cell subsets, we assessed hormonal regulation of CD99 as well as its implication on T cell regulation in primary human T cells and Jurkat T cells. In addition, we performed in vivo assays in wildtype mice and in Cd99-deficient mice to further analyze functional consequences of differential CD99 expression. RESULTS: Here, we found higher CD99 gene expression in male human spleens compared to females and confirmed this expression difference on protein level on the surface of T cells and pDCs. Androgens are likely dispensable as the cause shown by in vitro assays and ex vivo analysis of trans men samples. In cerebrospinal fluid, CD99 was higher on T cells compared to blood. Of note, male MS patients had lower CD99 levels on CD4+ T cells in the CSF, unlike controls. By contrast, both sexes had similar CD99 expression in mice and Cd99-deficient mice showed equal susceptibility to experimental autoimmune encephalomyelitis compared to wildtypes. Functionally, CD99 increased upon human T cell activation and inhibited T cell proliferation after blockade. Accordingly, CD99-deficient Jurkat T cells showed decreased cell proliferation and cluster formation, rescued by CD99 reintroduction. CONCLUSIONS: Our results demonstrate that CD99 is sex-specifically regulated in healthy individuals and MS patients and that it is involved in T cell costimulation in humans but not in mice. CD99 could potentially contribute to MS incidence and susceptibility in a sex-specific manner.


The immune system protects us from bacterial and viral infections and impacts the outcome of many diseases. Thus, understanding immunological processes is crucial to unravel pathogenic mechanisms and to develop new therapeutic treatment options. Sex is a biological variable affecting immunity and it is known that females and males differ in their immunological responses. Women mount stronger immune responses leading to more rapid control of infections and greater vaccine efficacy compared to men. However, this enhanced immune responsiveness is accompanied by female preponderance and susceptibility to autoimmune diseases like systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis (MS). MS sex ratio varies around 2:1 to 3:1 with a steadily increasing incidence in female MS patients making sex one of the top risk factors for developing MS. However, the underlying biological mechanisms including sex hormones as well as genetic and epigenetic factors and their complex interplay remain largely unknown. Here, we discovered the gene and its encoded protein CD99 to be differentially expressed between women and men with men showing increased expression on many immune cell subsets including T cells. Since T cells are key contributors to MS pathogenesis, we examined the role of CD99 on T cells of healthy individuals and MS patients. We were able to identify CD99-mediated T cell regulation, which might contribute to sex differences in MS susceptibility and incidence indicating the importance to include sex as a biological variable. Of note, these differences were not reproduced in mice showing the necessity of functional research in humans.


Asunto(s)
Antígeno 12E7 , Esclerosis Múltiple , Caracteres Sexuales , Linfocitos T , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Antígeno 12E7/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Células Jurkat , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/genética , Especificidad de la Especie , Bazo/metabolismo , Bazo/inmunología , Linfocitos T/metabolismo , Linfocitos T/inmunología
11.
Appl Physiol Nutr Metab ; 49(8): 1083-1092, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648669

RESUMEN

Sex differences in metabolic dysfunction-associated steatotic liver disease (MASLD) have been reported. Oxidative stress and inflammation are involved in the progression of MASLD. Thus, we aimed to evaluate liver redox homeostasis and inflammation in male and female rats fed a high-fat diet (HFD). Male and female Wistar rats were divided into the following groups: standard chow diet (SCD) or HFD during 12 weeks. HFD groups of both sexes had higher hepatocyte injury, with no differences between the sexes. Portal space liver inflammation was higher in females-HFD compared to females-SCD, whereas no differences were observed in males. Lobular inflammation and overall liver inflammation were higher in HFD groups, regardless of sex. TNF-α, IL-6, and IL-1ß levels were higher in males-HFD compared to males-SCD, but no differences were observed in females. Catalase activity was higher in males compared to females, with no differences between the SCD and HFD groups of both sexes. Glutathione peroxidase activity was higher in females compared to males, with no differences between the SCD and HFD groups in both sexes. Lipid peroxidation was higher in female-SCD when compared to male-SCD, and in both male- and female-HFD compared to SCD groups. Furthermore, both cytoplasmic and nuclear NRF2 staining were lower in the HFD group compared to the SCD group in males. However, female-HFD exhibited reduced nuclear NRF2 staining compared to the female-SCD group. In conclusion, our study demonstrated that while both male and female rats developed metabolic dysfunction-associated steatohepatitis after 12 weeks of HFD, the alterations in inflammatory cytokines and redox balance were sexually dimorphic.


Asunto(s)
Citocinas , Dieta Alta en Grasa , Homeostasis , Hígado , Oxidación-Reducción , Estrés Oxidativo , Ratas Wistar , Animales , Masculino , Femenino , Dieta Alta en Grasa/efectos adversos , Citocinas/metabolismo , Hígado/metabolismo , Peroxidación de Lípido , Ratas , Factores Sexuales , Factor 2 Relacionado con NF-E2/metabolismo , Caracteres Sexuales
12.
J Neuroimmune Pharmacol ; 19(1): 16, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652402

RESUMEN

Our previous research demonstrated that allergic rhinitis could impact behavior and seizure threshold in male mice. However, due to the complex hormonal cycles and hormonal influences on behavior in female mice, male mice are more commonly used for behavioral tests. In this study, we aimed to determine whether these findings were replicable in female mice and to explore the potential involvement of sexual hormones in regulating neuroinflammation in an allergic model. Our results indicate that pain threshold was decreased in female mice with allergic rhinitis and the levels of IL-23/IL-17A/IL-17R were increased in their Dorsal root ganglia. However, unlike males, female mice with AR did not display neuropsychological symptoms such as learning and memory deficits, depression, and anxiety-like behavior. This was along with decreased levels of DNA methyl transferase 1 (DNMT1) and inflammatory cytokines in their hippocampus. Ovariectomized mice were used to mitigate hormonal effects, and the results showed that they had behavioral changes and neuroinflammation in their hippocampus similar to male mice, as well as increased levels of DNMT1. These findings demonstrate sex differences in how allergic rhinitis affects behavior, pain sensitivity, and seizure thresholds. Furthermore, our data suggest that DNMT1 may be influenced by sexual hormones, which could play a role in modulating inflammation in allergic conditions.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias , Umbral del Dolor , Rinitis Alérgica , Convulsiones , Caracteres Sexuales , Animales , Femenino , Ratones , Masculino , Rinitis Alérgica/metabolismo , Rinitis Alérgica/psicología , Umbral del Dolor/fisiología , Enfermedades Neuroinflamatorias/metabolismo , Convulsiones/metabolismo , Conducta Animal/fisiología , Ovariectomía , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo
13.
Redox Biol ; 72: 103147, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593632

RESUMEN

Adaptive response to physiological oxygen levels (physO2; 5% O2) enables embryonic survival in a low-oxygen developmental environment. However, the mechanism underlying the role of physO2 in supporting preimplantation development, remains elusive. Here, we systematically studied oxygen responses of hallmark events in preimplantation development. Focusing on impeded transcriptional upregulation under atmospheric oxygen levels (atmosO2; 20% O2) during the 2-cell stage, we functionally identified a novel role of HIF-1α in promoting major zygotic genome activation by serving as an oxygen-sensitive transcription factor. Moreover, during blastocyst formation, atmosO2 impeded H3K4me3 and H3K27me3 deposition by deregulating histone-lysine methyltransferases, thus impairing X-chromosome inactivation in blastocysts. In addition, we found atmosO2 impedes metabolic shift to glycolysis before blastocyst formation, thus resulting a low-level histone lactylation deposition. Notably, we also reported an increased sex-dimorphic oxygen response of embryos upon preimplantation development. Together, focusing on genetic and epigenetic events that are essential for embryonic survival and development, the present study advances current knowledge of embryonic adaptive responses to physO2, and provides novel insight into mechanism underlying irreversibly impaired developmental potential due to a short-term atmosO2 exposure.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia , Cigoto , Animales , Femenino , Masculino , Ratones , Blastocisto/metabolismo , Desarrollo Embrionario , Histonas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Oxígeno/metabolismo , Transcriptoma , Cigoto/metabolismo
14.
Head Face Med ; 20(1): 17, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459597

RESUMEN

INTRODUCTION: Esthetics plays a crucial role in orthodontics and many other dental and medical fields. To date, no study has assessed the combined effects of the 3 facial features 'facial height, gingival display (GD), and buccal corridor size (BC)' on facial/smile beauty. Therefore, this study was conducted for the first time. METHODS: In this psychometric diagnostic study, beauty of 27 randomized perceptometric images of a female model with variations in facial heights (short, normal, long), gingival displays (0, 2, 4, 6 mm), and buccal corridor sizes (2%, 10%, 15%, 20%, 25%) were evaluated by 108 judges (36 orthodontists, 36 dentists, 36 laypeople) using a 5-scale Likert scale (1 to 5). Combined effects of facial heights, GDs, BCs, judges' sexes, ages, and jobs, and their 2-way interactions were tested using a mixed-model multiple linear regression and a Bonferroni test. Zones of ideal features were determined for all judges and also for each group using repeated-measures ANOVAs and the Bonferroni test (α=0.05). RESULTS: Judges' sex but not their age or expertise might affect their perception of female beauty: men gave higher scores. The normal face was perceived as more beautiful than the long face (the short face being the least attractive). Zero GD was the most attractive followed by 4 mm; 6 mm was the least appealing. BCs of 15% followed by 10% were the most attractive ones, while 25% BC was the worst. The zone of ideal anatomy was: long face + 0mm GD + 15% BC; normal face + 2mm GD + 15% BC; long face + 2mm GD + 15% BC; normal face + 0mm GD + 15% BC. CONCLUSIONS: Normal faces, zero GDs, and 15% BCs may be the most appealing. Facial heights affect the perception of beauty towards GDs but not BCs.


Asunto(s)
Ortodoncia , Ortodoncistas , Masculino , Humanos , Femenino , Psicometría , Estética Dental , Encía
15.
Artículo en Inglés | MEDLINE | ID: mdl-38427976

RESUMEN

Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality, affecting people of all races, ages, and sexes. Substantial sex dimorphism exists in the prevalence, manifestation, and outcomes of CVDs. Understanding the role of sex hormones as well as sex-hormone-independent epigenetic mechanisms could play a crucial role in developing effective and sex-specific cardiovascular therapeutics. Existing research highlights significant disparities in sex hormones, epigenetic regulators, and gene expression related to cardiac health, emphasizing the need for a nuanced understanding of these variations between men and women. Despite these differences, current treatment approaches for CVDs often lack sex-specific considerations. A pivotal shift toward personalized medicine, informed by comprehensive insights into sex-specific DNA methylation, histone modifications, and non-coding RNA dynamics, holds the potential to revolutionize CVD management. By understanding sex-specific epigenetic complexities, independent of sex hormone influence, future cardiovascular research can be tailored to achieve effective diagnostic and therapeutic interventions for both men and women. This review summarizes the current knowledge and gaps in epigenetic mechanisms and sex dimorphism implicated in CVDs.

16.
Neurobiol Stress ; 30: 100621, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38516563

RESUMEN

Astrocytes have been implicated in stress responses and produce ciliary neurotrophic factor (CNTF), which we have shown in the mouse medial amygdala (MeA) to promote passive stress coping response only in females. Pharmacological inhibition of focal adhesion kinase (FAK) upregulates CNTF expression. Here, we found that inducible knockout of FAK in astrocytes or systemic treatment with an FAK inhibitor increased passive coping behavior, i.e., immobility, in an acute forced swim stress test in female, but not male, mice. Strikingly, four weeks of chronic unpredictable stress (CUS) did not further increase passive coping in female astrocytic FAK knockout mice, whereas it exacerbated it in female wildtype mice and male mice of both genotypes. These data suggest that astrocyte FAK inhibition is required for chronic stress-induced passive coping in females. Indeed, CUS reduced phospho-FAK and increased CNTF in the female MeA. Progesterone treatment after ovariectomy activated amygdala FAK and alleviated ovariectomy-induced passive coping in wildtype, but not astrocytic FAK knockout females. This suggests that progesterone-mediated activation of FAK in astrocytes reduces female stress responses. Finally, astrocytic FAK knockout or FAK inhibitor treatment increased CNTF expression in the MeA of both sexes, although not in the hippocampus. As mentioned, MeA CNTF promotes stress responses only in females, which may explain the female-specific role of astrocytic FAK inhibition. Together, this study reveals a novel female-specific progesterone-astrocytic FAK pathway that counteracts CNTF-mediated stress responses and points to opportunities for developing treatments for stress-related disorders in women.

17.
BMC Oral Health ; 24(1): 200, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326901

RESUMEN

INTRODUCTION: Morphological and morphometric features of the teeth are of interest to various clinical and academic dental and medical fields including prosthodontics, orthodontics, anatomy and anthropology, pathology, archeology, and forensic dentistry. These have been more or less researched in the case of the permanent dentition. However when it comes to the primary dentition, the literature is scarce and controversial. No study worldwide exists on the cutoff points (thresholds) for sex identification; no study exists on metric or nonmetric traits of deciduous teeth in Iranians. Hence, the aim of the study was to assess both the metric and nonmetric traits of primary molars, as well as their cut-off points for sex identification. METHODS: In this epidemiological cross-sectional study, pretreatment casts of 110 children (51 boys and 59 girls) aged 6 to 12 years were collected. Maxillary and mandibular first and second primary molars were evaluated regarding their metric traits (mesiodistal and buccolingual widths) and 9 nonmetric traits (Accessory cusp on the upper D, Accessory cusp on the lower D, Fifth cusp on the upper E, Carabelli's cusp on the upper E, Protostylid on the lower E, Fifth cusp on the lower E, Sixth cusp on the lower E, Tuberculum intermedium [metaconulid] on the lower E, and Deflecting wrinkle on the lower E). ROC curves were used to identify cut-off points for sex determination as well as the usefulness of metric measurements for this purpose. Data were analyzed using independent-samples and paired-samples t-tests, McNemar, Fisher, and chi-square tests, plus Pearson and Spearman correlation coefficients (α = 0.05). RESULTS: All the primary molars' coronal dimensions (both mesiodistal and buccolingual) were extremely useful for sex identification (ROC curves, all P values ≤ 0.0000099). Especially, the mandibular primary molars (areas under ROC curves [AUCs] between 85.6 and 90.4%, P values ≤ 0.0000006) were more useful than the maxillary ones (AUCs between 80.4 and 83.1%, P values ≤ 0. 0000099). In the mandible, the first primary molar (maximum AUC = 90.4%) was better than the second molar (maximum AUC = 86.0%). The optimum thresholds for sex determination were reported. Sex dimorphism was significant in buccolingual and mesiodistal crown widths of all the primary molars (all P values ≤ 0.000132), but it was seen only in the case of 2 nonmetric traits: Deflecting wrinkle (P = 0.001) and Tuberculum intermedium (metaconulid, P = 0.029) on the lower Es, taking into account the unilateral and bilateral cases. The occurrence of nonmetric traits was symmetrical between the right and left sides (all P values ≥ 0.250). All mesiodistal and two buccolingual molar measurements were as well symmetrical (P > 0.1); however, two buccolingual measurements were asymmetrical: in the case of the maxillary E (P = 0.0002) and mandibular D (P = 0.019). There were three weak-to-moderate correlations between the nonmetric traits of the mandibular second molars (Spearman correlations between 22.7 and 37.5%, P values ≤ 0.045). Up to 6 concurrent nonmetric traits were observed in the sample, with 53.6% of the sample showing at least 2 concurrent nonmetric traits at the same time, without any sex dimorphism (P = 0.658). CONCLUSION: Sex dimorphism exists considerably in primary molars' sizes, but it is not as prevalent in their nonmetric traits or abnormalities. Primary molars' crown sizes are useful for sex identification; we calculated optimum cut-off points for this purpose, for the first time.


Asunto(s)
Pueblos de Medio Oriente , Diente Molar , Diente , Humanos , Masculino , Niño , Femenino , Estudios Transversales , Irán/epidemiología , Diente Molar/anatomía & histología , Diente/anatomía & histología , Odontometría
18.
Biomolecules ; 14(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38397414

RESUMEN

Heterotopic ossification (HO) is most dramatically manifested in the rare and severely debilitating disease, fibrodysplasia ossificans progressiva (FOP), in which heterotopic bone progressively accumulates in skeletal muscles and associated soft tissues. The great majority of FOP cases are caused by a single amino acid substitution in the type 1 bone morphogenetic protein (BMP) receptor ACVR1, a mutation that imparts responsiveness to activin A. Although it is well-established that biological sex is a critical variable in a range of physiological and disease processes, the impact of sex on HO in animal models of FOP has not been explored. We show that female FOP mice exhibit both significantly greater and more variable HO responses after muscle injury. Additionally, the incidence of spontaneous HO was significantly greater in female mice. This sex dimorphism is not dependent on gonadally derived sex hormones, and reciprocal cell transplantations indicate that apparent differences in osteogenic activity are intrinsic to the sex of the transplanted cells. By circumventing the absolute requirement for activin A using an agonist of mutant ACVR1, we show that the female-specific response to muscle injury or BMP2 implantation is dependent on activin A. These data identify sex as a critical variable in basic and pre-clinical studies of FOP.


Asunto(s)
Miositis Osificante , Osificación Heterotópica , Femenino , Ratones , Animales , Masculino , Miositis Osificante/genética , Miositis Osificante/metabolismo , Osificación Heterotópica/genética , Osificación Heterotópica/metabolismo , Osteogénesis , Mutación , Huesos/metabolismo
19.
Cell Rep ; 43(2): 113715, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38306273

RESUMEN

The zona fasciculata (zF) in the adrenal cortex contributes to multiple physiological actions through glucocorticoid synthesis. The size, proliferation, and glucocorticoid synthesis characteristics are all female biased, and sexual dimorphism is established by androgen. In this study, transcriptomes were obtained to unveil the sex differentiation mechanism. Interestingly, both the amount of mRNA and the expressions of nearly all genes were higher in females. The expression of Nr5a1, which is essential for steroidogenic cell differentiation, was also female biased. Whole-genome studies demonstrated that NR5A1 regulates nearly all gene expression directly or indirectly. This suggests that androgen-induced global gene suppression is potentially mediated by NR5A1. Using Nr5a1 heterozygous mice, whose adrenal cortex is smaller than the wild type, we demonstrated that the size of skeletal muscles is possibly regulated by glucocorticoid synthesized by zF. Taken together, considering the ubiquitous presence of glucocorticoid receptors, our findings provide a pathway for sex differentiation through glucocorticoid synthesis.


Asunto(s)
Corteza Suprarrenal , Andrógenos , Femenino , Animales , Ratones , Andrógenos/farmacología , Glucocorticoides , Caracteres Sexuales , Corticoesteroides , Músculo Esquelético
20.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352395

RESUMEN

Drosophila prolongata is a member of the melanogaster species group and rhopaloa subgroup native to the subtropical highlands of southeast Asia. This species exhibits an array of recently evolved male-specific morphological, physiological, and behavioral traits that distinguish it from its closest relatives, making it an attractive model for studying the evolution of sexual dimorphism and testing theories of sexual selection. The lack of genomic resources has impeded the dissection of the molecular basis of sex-specific development and behavior in this species. To address this, we assembled the genome of D. prolongata using long-read sequencing and Hi-C scaffolding, resulting in a highly complete and contiguous (scaffold N50 2.2Mb) genome assembly of 220Mb. The repetitive content of the genome is 24.6%, the plurality of which are LTR retrotransposons (33.2%). Annotations based on RNA-seq data and homology to related species revealed a total of 19,330 genes, of which 16,170 are protein-coding. The assembly includes 98.5% of Diptera BUSCO genes, including 93.8% present as a single copy. Despite some likely regional duplications, the completeness of this genome suggests that it can be readily used for gene expression, GWAS, and other genomic analyses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA