Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732715

RESUMEN

In the practical application of hydraulic rotating machinery, it is essential to thoroughly explore drag reduction and rheological characteristics of drag-reducing additives to optimize machinery efficiency and reduce equipment consumption. This paper combines simulation and experimental approaches to investigate the drag-reduction performance and rheological properties of drag-reducing additives. Numerical simulations are initially conducted to investigate the shear-thinning properties of drag-reducing fluid and explore variations in drag-reduction rate. Turbulent phenomena characteristics are described by analyzing turbulent statistical quantities. Subsequently, the rheological behaviors of polyethylene oxide (PEO), cetyltrimethyl ammonium chloride (CTAC), and their mixed solutions under different conditions are scrutinized using a rotational rheometer. The findings indicate that the drag reduction effect amplifies as the rheological index n and characteristic time λ decrease. The numerical simulations show a maximum drag reduction rate of 20.18%. In rheological experiments, a three-stage viscosity variation is observed in single drag-reducing additives: shear thickening, shear thinning, and eventual stabilization. Composite drag-reducing additives significantly reduce the apparent viscosity at low shear rates, thereby strengthening the shear resistance of the system.

2.
Micromachines (Basel) ; 13(12)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36557368

RESUMEN

The phenomenon of near-wall particle settling in a stratified fluid is an emerging topic in the field of multiphase flow, and it is also widely found in nature and engineering applications. In stratified fluids, particle settling characteristics are affected by the physical and chemical properties of the upper and lower fluids, the particle size, the particle density, and the initial sedimentation conditions. In this study, the main objective is to determine the effect of liquid viscosity and particle density on the detaching process, and the trajectory and velocity of near-wall settling particles in stratified fluids. The inertia and velocity of the particle had a greater impact on the tail pinch-off model in low-viscosity lower fluids; that is, the lower the inertia and velocity, the more apparent the order between deep and shallow seal pinch-off. In comparison, in high-viscosity lower fluids, the tail pinch-off models of different inertia and velocity particles were similar. In terms of particle trajectory, the transverse motion of the particle in the low-viscosity lower fluid exhibited abrupt changes; that is, the particles moved away from the wall suddenly, whereas in the high-viscosity lower fluid, the transverse movement was gradual. Due to the existence of the wall, the transverse motion direction of the free settling particles in the stratified fluid, which is determined by the rotation direction of the particles, changed to a direction away from the wall regardless of the particle rotation direction. This transverse movement also caused the particle settling velocity to drop suddenly or its rising rate to decrease, this is because part of the energy was used for transverse motion and to increase the transverse velocity. In our study, the near-wall settling of particles in a stratified fluid mainly affected the particle trajectory; that is, forced movement away from the wall, thus changing the particle velocity. This characteristic provides a new approach to manipulate particles away from the wall.

3.
Polymers (Basel) ; 14(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36236195

RESUMEN

Processing of the available experimental data on particles settling in shear-thinning polymer solutions is performed. Conclusions imply that sedimentation should be recursive, since settling also occurs within the sediment. To capture such an effect, a mathematical model of two continua has been developed, which corresponds to experimental data. The model is consistent with basic thermodynamics laws. The rheological component of this model is a correlation formula for gravitational mobility. This closure is justified by comparison with known experimental data available for particles settling in vertical vessels. In addition, the closure is validated by comparison with analytical solutions to the Kynch one-dimensional equation, which governs dynamics of particle concentration. An explanation is given for the Boycott effect and it is proven that sedimentation is enhanced in a 2D inclined vessel. In tilted vessels, the flow is essentially two-dimensional and the one-dimensional Kynch theory is not applicable; vortices play an important role in sedimentation.

4.
J Hazard Mater ; 430: 128452, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35168099

RESUMEN

The degradation of dense non-aqueous phase liquid trichloroethene in low permeability zone is a challenging issue due to limited mass transfer between water-soluble oxidants (i.e., MnO4-) and residual phase trichloroethene and the bypassing of amendments in low permeability zone. This work accomplished trichloroethene oxidation enhancement through coupling viscosity modification by using xanthan with phase transfer of MnO4- by using phase transfer catalyst (PTC). Experiments were conducted by sand columns and 2D-tanks, and results revealed that after ~11.7 g of trichloroethene was injected in each tank, the mass of trichloroethene degradation was 1.3, 5.9, 6.9 and 8.5 g in MnO4-, MnO4- + xanthan, MnO4- + PTC and MnO4- + PTC + xanthan reaction systems, respectively. Combining PTC and xanthan with MnO4- increased the rate of continuous formation of Cl-, reflected in the acceleration of heterogeneous reactions and MnO4- transport enhancement in low permeability zone by PTC and xanthan. Moreover, PTC promoted dissolved Mn (Ⅱ) and Mn (Ⅲ) formation in the process of MnO4- reduction, and thus effectively inhibited MnO2 generation. In conclusion, the results revealed that PTC and xanthan could perform their respective contributions to mass transfer and amendment transport for jointly enhanced the remediation of trichloroethene polluted heterogeneous aquifer.


Asunto(s)
Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Catálisis , Compuestos de Manganeso , Óxidos , Viscosidad , Contaminantes Químicos del Agua/análisis
5.
J Hazard Mater ; 424(Pt A): 127371, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34879565

RESUMEN

Heterogeneity in sediment and aquifer is universal, resulting in preferential flows of injected materials in the high permeability regions and forming flow by-passed zones in the low permeability regions during in-situ subsurface remediation. This adverse effect can considerably delay the completion of remedial operations and significantly increase the cost. Column experiments were designed and conducted to study the transport of starch- and starch-xanthan gum modified Fe-Mn binary oxide particles (SFM and SXFM) in saturated heterogeneous porous media and to reveal the particles' arsenic (As) stabilization performance. Fine-in-Coarse (FIC) and Coarse-in-Fine (CIF) patterns of heterogeneous packings were set up in the columns. Testing results demonstrated that starch-xanthan gum dual treatment on Fe-Mn binary oxides successfully improved the particles' migration capability in heterogeneous porous media and their distribution uniformity attributed to the profound shear thinning behavior of xanthan gum solution. The addition of xanthan gum to the system increased the viscosity and shear thinning property of the SXFM suspension, making it a better candidate for delivery. Both SFM and SXFM stabilized As in heterogeneously packed sediment collected from a contaminated site, with SXFM showing better stabilization performance than SFM. The stabilization effects of SXFM were 90.7-97.0%, compared to 82.0-95.2% of SFM.


Asunto(s)
Arsénico , Agua Subterránea , Óxidos , Porosidad , Viscosidad
6.
Comb Chem High Throughput Screen ; 25(7): 1115-1126, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34554900

RESUMEN

BACKGROUND: Non-newtonian fluids, especially shear thinning fluids, have several applications in the polymer industry, food industry, and even everyday life. The viscosity of shear thinning fluids is decreased by two or three orders of magnitude due to the alignment of the molecules in order when the shear rate is increased, and it cannot be ignored in the case of polymer processing and lubrication problems. OBJECTIVE: So, the effects of viscosities at the low and high shear rates on the heat and mass boundary layer flow of shear thinning fluid over moving belts are investigated in this study. For this purpose the generalized Carreau model of viscosity relate to shear rate is used in the momentum equation. The Carreau model contains the five parameters: low shear rate viscosity, high shear rate viscosity, viscosity curvature, consistency index, and flow behavior index. For the heat flow, the expression of the thermal conductivity model similar to the viscosity equation due to the non-Newtonian nature of the fluid is used in the energy equation. METHODS: On the mathematical model of the problem, boundary layer approximations are applied and then simplified by applying the similarity transformations to get the solution. The solution of the simplified equations is obtained by numerical technique RK-shooting method. The results are compared with existing results for limited cases and found good agreement. RESULTS: The results in the form of velocity and temperature profiles under the impact of all the viscosity's parameters are obtained and displayed in graphical form. Moreover, the boundary layer parameters such as the thickness of the regions, momentum thickness, and displacement thickness are calculated to understand the structure of the boundary layer flow of fluid. CONCLUSION: The velocity and temperature of the fluid are decreased and increased respectively by all viscosity's parameters of the model. So, the results of the boundary layer fluid flow under rheological parameters will not only help engineers to design superior chemical equipment but also help improve the economy and efficiency of the overall process.


Asunto(s)
Calor , Modelos Teóricos , Polímeros , Reología/métodos , Viscosidad
7.
Micromachines (Basel) ; 12(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809906

RESUMEN

Immiscible liquid-liquid flows in microchannels are used extensively in various chemical and biological lab-on-a-chip systems when it is very important to predict the expected flow pattern for a variety of fluids and channel geometries. Commonly, biological and other complex liquids express non-Newtonian properties in a dispersed phase. Features and behavior of such systems are not clear to date. In this paper, immiscible liquid-liquid flow in a T-shaped microchannel was studied by means of high-speed visualization, with an aim to reveal the shear-thinning effect on the flow patterns and slug-flow features. Three shear-thinning and three Newtonian fluids were used as dispersed phases, while Newtonian castor oil was a continuous phase. For the first time, the influence of the non-Newtonian dispersed phase on the transition from segmented to continuous flow is shown and quantitatively described. Flow-pattern maps were constructed using nondimensional complex We0.4·Oh0.6 depicting similarity in the continuous-to-segmented flow transition line. Using available experimental data, the proposed nondimensional complex is shown to be effectively applied for flow-pattern map construction when the continuous phase exhibits non-Newtonian properties as well. The models to evaluate an effective dynamic viscosity of a shear-thinning fluid are discussed. The most appropriate model of average-shear-rate estimation based on bulk velocity was chosen and applied to evaluate an effective dynamic viscosity of a shear-thinning fluid. For a slug flow, it was found that in the case of shear-thinning dispersed phase at low flow rates of both phases, a jetting regime of slug formation was established, leading to a dramatic increase in slug length.

8.
Micromachines (Basel) ; 12(2)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546484

RESUMEN

Droplets composed of two different materials, or Janus droplets, have diverse applications, including microfluidic digital laboratory systems, DNA chips, and self-assembly systems. A three-dimensional computational study of Janus droplet formation in a double Y-type microfluidic device filled with a shear-thinning fluid is performed by using the multiphaseInterDyMFoam solver of the OpenFOAM, based on a finite-volume method. The bi-phase volume-of-fluid method is adopted to track the interface with an adaptive dynamic mesh refinement for moving interfaces. The formation of Janus droplets in the shear-thinning fluid is characterized in five different states of tubbing, jetting, intermediate, dripping and unstable dripping in a multiphase microsystem under various flow conditions. The formation mechanism of Janus droplets is understood by analyzing the influencing factors, including the flow rates of the continuous phase and of the dispersed phase, surface tension, and non-Newtonian rheological parameters. Studies have found that the formation of the Janus droplets and their sizes are related to the flow rate at the inlet under low capillary numbers. The rheological parameters of shear-thinning fluid have a significant impact on the size of Janus droplets and their formation mechanism. As the apparent viscosity increases, the frequency of Janus droplet formation increases, while the droplet volume decreases. Compared with Newtonian fluid, the Janus droplet is more readily generated in shear-thinning fluid due to the interlay of diminishing viscous force, surface tension, and pressure drop.

9.
J Comput Appl Math ; 3762020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34703076

RESUMEN

In this paper, we numerically simulate the flow of blood in two benchmark problems: the flow in a sudden expansion channel and the flow through an idealized curved coronary artery with pulsatile inlet velocity. Blood is modeled as a suspension (a non-linear complex fluid) and the movement of the red blood cell (RBCs) is modeled by using a concentration flux equation. The viscosity of blood is obtained from experimental data. In the sudden expansion flow, the predicted velocity profiles for two different Reynolds numbers (based on the inlet velocity) agree well with the available experiments; furthermore, the numerical results also show that after the sudden expansion there exists a RBCs depletion region. For the second problem, the idealized curved coronary artery, it is found that the RBCs move towards and concentrate near the inner surface where the viscosity is higher and the shear stress lower; this phenomenon may be related to the atherosclerotic plaque formation which usually occurs on the inside surface of the arteries.

10.
Int J Non Linear Mech ; 109: 32-39, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31447489

RESUMEN

Motivated by the complex rheological behaviors observed in small/micro scale blood vessels, such as the Fahraeus effect, plasma-skimming, shear-thinning, etc., we develop a non-linear suspension model for blood. The viscosity is assumed to depend on the volume fraction (hematocrit) and the shear rate. The migration of the red blood cells (RBCs) is studied using a concentration flux equation. A parametric study with two representative problems, namely simple shear flow and a pressure driven flow demonstrate the ability of this reduced-order model to reproduce several key features of the two-fluid model (mixture theory approach), with much lower computational cost.

11.
J Contam Hydrol ; 175-176: 17-25, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25720668

RESUMEN

In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising type of substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and maintain good longevity. Because they are non-aqueous phase liquids, distribution of vegetable oils in the subsurface has typically been approached by creating emulsified oil solutions for injection into the aquifer. In this study, inexpensive waste vegetable oils were suspended in a shear-thinning xanthan gum solution as an alternative approach for delivery of vegetable oil to the subsurface. The stability, oil droplet size distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and the oil distribution in a porous medium were evaluated in column tests. Numerical modeling of oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil with xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into a porous medium. This study provides evidence that vegetable oil suspensions in xanthan gum solutions have favorable injection properties and are a potential substrate for in situ anaerobic bioremediation.


Asunto(s)
Biodegradación Ambiental , Restauración y Remediación Ambiental/métodos , Aceites de Plantas/química , Agua Subterránea , Polisacáridos Bacterianos/química , Reología , Soluciones , Suspensiones
12.
J Biomech ; 47(6): 1262-9, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24612986

RESUMEN

The aim of this work is to develop a unique in vitro set-up in order to analyse the influence of the shear thinning fluid-properties on the flow dynamics within the bulge of an abdominal aortic aneurysm (AAA). From an experimental point of view, the goals are to elaborate an analogue shear thinning fluid mimicking the macroscopic blood behaviour, to characterise its rheology at low shear rates and to propose an experimental device able to manage such an analogue fluid without altering its feature while reproducing physiological flow rate and pressure, through compliant AAA. Once these experimental prerequisites achieved, the results obtained in the present work show that the flow dynamics is highly dependent on the fluid rheology. The main results point out that the propagation of the vortex ring, generated in the AAA bulge, is slower for shear thinning fluids inducing a smaller travelled distance by the vortex ring so that it never impacts the anterior wall in the distal region, in opposition to Newtonian fluids. Moreover, scalar shear rate values are globally lower for shear thinning fluids inducing higher maximum stress values than those for the Newtonian fluids. Consequently, this work highlights that a Newtonian fluid model is finally inadequate to obtain a reliable prediction of the flow dynamics within AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal/fisiopatología , Velocidad del Flujo Sanguíneo , Modelos Cardiovasculares , Reología/métodos , Fenómenos Biomecánicos , Diseño de Equipo , Humanos , Rayos Láser , Presión , Resistencia al Corte , Estrés Mecánico , Temperatura , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA