RESUMEN
The hepatocyte growth factor (HGF)/c-met pathway, which mainly consists of HGF activator (HGFA) and its substrate HGF, protects various types of cells via anti-apoptotic and anti-inflammatory signals. Thrombin is the main physiological activator of such plasmatic pathway, and increased plasma concentrations of HGF have been considered as a molecular marker for some pathological conditions, such as disseminated intravascular coagulation. Since thrombin generation is often linked to tissue injury, and these events are common during snake venom-induced consumption coagulopathies (VICC), our goals were to examine whether Bothrops jararaca venom (Bjv), which induces VICC in vivo: (i) activates the HGF/c-met pathway in vivo and (ii) cleaves zymogen forms of HGFA and HGF (proHGFA and proHGF, respectively) in vitro. Two experimental groups (n = 6, each) of male adult Wistar rats were subcutaneously injected with 500?µL of 0.9% NaCl solution (control) or sub-lethal doses (1.6 mg/kg) of Bjv. Three hours after envenomation, whole blood samples were collected from the carotid arteries to evaluate relevant coagulation parameters using rotational thromboelastometry and fibrinogen level (colorimetric assay). Additionally, the plasma concentration of HGF was assayed (ELISA). Thromboelastometric assays showed that blood clotting and fibrin polymerization were severely impaired 3 h after Bjv injection. Total plasma HGF concentrations were almost 6-fold higher in the Bjv-injected group (410.0 ± 91) compared with control values (68 ± 18 pg/mL, p < 0.05). Western blotting assay showed that Bjv processed proHGFA and proHGF, generating bands resembling those generated by thrombin and kallikrein, respectively. In contrast to the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF), the metalloprotease inhibitor ethylenediaminetetraacetic acid disodium salt (Na2-EDTA) strongly reduced the ability of Bjv to process proHGFA and generated one active band similar to that of thrombin. Since Bjv contains prothrombin and factor X activators, increased intravascular thrombin formation might partly explain the increased HGF levels after bothropic envenomation. In conclusion, these findings suggest that snake venom metalloproteases may be determinant for elevation of plasma levels of HGF in rats experimentally envenomated with Bjv.
RESUMEN
Ontogenetic changes in venom composition have important ecological implications due the relevance of venom in prey acquisition and defense. Additionally, intraspecific venom variation has direct medical consequences for the treatment of snakebite. However, ontogenetic changes are not well documented in most species. The Mexican Black-tailed Rattlesnake (Crotalus molossus nigrescens) is large-bodied and broadly distributed in Mexico. To document venom variation and test for ontogenetic changes in venom composition, we obtained venom samples from twenty-seven C. m. nigrescens with different total body lengths (TBL) from eight states in Mexico. The primary components in the venom were detected by reverse-phase HPLC, western blot, and mass spectrometry. In addition, we evaluated the biochemical (proteolytic, coagulant and fibrinogenolytic activities) and biological (LD50 and hemorrhagic activity) activities of the venoms. Finally, we tested for recognition and neutralization of Mexican antivenoms against venoms of juvenile and adult snakes. We detected clear ontogenetic venom variation in C. m. nigrescens. Venoms from younger snakes contained more crotamine-like myotoxins and snake venom serine proteinases than venoms from older snakes; however, an increase of snake venom metalloproteinases was detected in venoms of larger snakes. Venoms from juvenile snakes were, in general, more toxic and procoagulant than venoms from adults; however, adult venoms were more proteolytic. Most of the venoms analyzed were hemorrhagic. Importantly, Mexican antivenoms had difficulties recognizing low molecular mass proteins (<12 kDa) of venoms from both juvenile and adult snakes. The antivenoms did not neutralize the crotamine effect caused by the venom of juveniles. Thus, we suggest that Mexican antivenoms would have difficulty neutralizing some human envenomations and, therefore, it may be necessary improve the immunization mixture in Mexican antivenoms to account for low molecular mass proteins, like myotoxins.
Asunto(s)
Venenos de Serpiente/química , Animales , Antivenenos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Caseínas/química , Crotalus , Femenino , Gelatina/química , Humanos , Dosificación Letal Mediana , Masculino , México , Ratones Endogámicos ICR , Neurotoxinas/análisis , Neurotoxinas/farmacología , Proteínas de Reptiles/análisis , Proteínas de Reptiles/farmacología , Venenos de Serpiente/farmacologíaRESUMEN
Envenomation by Bothrops species results, among other symptoms, in hemostatic disturbances. These changes can be ascribed to the presence of enzymes, primarily serine proteinases some of which are structurally similar to thrombin and specifically cleave fibrinogen releasing fibrinopeptides. A rapid, three-step, chromatographic procedure was developed to routinely purify serine proteinases from the venoms of Bothrops alternatus and Bothrops moojeni. The serine proteinase from B. alternatus displays an apparent molecular mass of ~32 kDa whereas the two closely related serine proteinases from B. moojeni display apparent molecular masses of ~32 kDa and ~35 kDa in SDS-PAGE gels. The partial sequences indicated that these enzymes share high identity with serine proteinases from the venoms of other Bothrops species. These proteins coagulate plasma and possess fibrinogenolytic activity but lack fibrinolytic activity.