Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746390

RESUMEN

The gut microbiome has been proposed to influence many aspects of animal development and physiology. However, both the specific bacterial species and the molecular mechanisms by which bacteria exert these effects are unknown in most cases. Here, we established a high throughput screening platform using the model animal Caenorhabditis elegans for identifying bacterial species and mechanisms that influence animal development and physiology. From our initial screens we found that many Bacillus species can restore normal animal development to insulin signaling mutant animals that otherwise do not develop to adulthood. To determine how Bacilli influence animal development we screened a complete non-essential gene knockout library of Bacillus subtilis for mutants that no longer restored development to adulthood. We found the Bacillus gene speB is required for animal development. In the absence of speB, B. subtilis produces excess N1-aminopropylagmatine. This polyamine is taken up by animal intestinal cells via the polyamine transporter CATP-5. When this molecule is taken up in sufficient quantities it inhibits animal mitochondrial function and causes diverse species of animals to arrest their development. To our knowledge, these are the first observations that B. subtilis can produce N1-aminopropylagmatine and that polyamines produced by intestinal microbiome species can antagonize animal development and mitochondrial function. Given that Bacilli species are regularly isolated from animal intestinal microbiomes, including from humans, we propose that altered polyamine production from intestinal Bacilli is likely to also influence animal development and metabolism in other species and potentially even contribute developmental and metabolic pathologies in humans. In addition, our findings demonstrate that C. elegans can be used as a model animal to conduct high throughput screens for bacterial species and bioactive molecules that alter animal physiology.

2.
Sci Total Environ ; 928: 172447, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621526

RESUMEN

Streptococcus pyogenes, Group A Streptococcus (GAS), is a human pathogen that causes a spectrum of diseases from mild to severe, including GAS pharyngitis, a common acute respiratory disease in developed countries. Although wastewater-based epidemiology (WBE) has been extensively used to monitor viral pathogens such as severe acute respiratory syndrome coronavirus 2, its applicability to S. pyogenes remains unexplored. This study was conducted to investigate the feasibility of detecting and quantifying S. pyogenes in wastewater by quantitative polymerase chain reaction (qPCR) and evaluate the applicability of WBE for monitoring the prevalence of GAS pharyngitis. A total of 52 grab influent samples were collected from a wastewater treatment plant in Japan once a week between March 2023 and February 2024. The samples were centrifuged, followed by nucleic acid extraction and qPCR for the S. pyogenes-specific genes speB and spy1258. Of the 52 samples, 90 % and 81 % were positive for speB and spy1258 genes, respectively, indicating the feasibility of S. pyogenes for wastewater surveillance. However, the percentage of quantifiable samples for speB gene was significantly higher in winter than in spring and summer. Similarly, the concentrations of both genes in wastewater samples were significantly higher in winter (speB, 4.1 ± 0.27 log10 copies/L; spy1258, 4.1 ± 0.28 log10 copies/L; One-way ANOVA, p < 0.01) than in spring and summer. Higher concentrations and detection ratios of S. pyogenes genes were observed during increased GAS pharyngitis cases in the catchment. Significant moderate correlations were observed between target gene concentrations and reported GAS pharyngitis cases. This study enhances the understanding role of WBE in monitoring and managing infectious diseases within communities.


Asunto(s)
COVID-19 , Faringitis , Streptococcus pyogenes , Aguas Residuales , Streptococcus pyogenes/aislamiento & purificación , Aguas Residuales/microbiología , Aguas Residuales/virología , COVID-19/epidemiología , Faringitis/epidemiología , Faringitis/microbiología , Humanos , Japón/epidemiología , Infecciones Estreptocócicas/epidemiología , SARS-CoV-2 , Monitoreo Epidemiológico Basado en Aguas Residuales , Prevalencia
3.
Vaccines (Basel) ; 11(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37766180

RESUMEN

Group A streptococcus (GAS) is a global pathogen associated with significant morbidity and mortality for which there is currently no licensed vaccine. Vaccine development has been slow, mostly due to safety concerns regarding streptococcal antigens associated with autoimmunity and related complications. For a GAS vaccine to be safe, it must be ensured that the antigens used in the vaccine do not elicit an antibody response that can cross-react with host tissues. In this study, we evaluated the safety of our GAS vaccine candidate called VaxiStrep in New Zealand White rabbits. VaxiStrep is a recombinant fusion protein comprised of streptococcal pyrogenic exotoxin A (SpeA) and exotoxin B (SpeB), also known as erythrogenic toxins, adsorbed to an aluminum adjuvant. The vaccine elicited a robust immune response against the two toxins in the rabbits without any adverse events or toxicity. No signs of autoimmune pathology were detected in the rabbits' brains, hearts, and kidneys via immunohistochemistry, and serum antibodies did not cross-react with cardiac or neuronal tissue proteins associated with rheumatic heart disease or Sydenham chorea (SC). This study further confirms that VaxiStrep does not elicit autoantibodies and is safe to be tested in a first-in-human trial.

4.
Virulence ; 14(1): 2249784, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37621107

RESUMEN

Extracellular vesicles (EVs) can be released from gram-positive bacteria and would participate in the delivery of bacterial toxins. Streptococcus pyogenes (group A Streptococcus, GAS) is one of the most common pathogens of monomicrobial necrotizing fasciitis. Spontaneous inactivating mutation in the CovR/CovS two-component regulatory system is related to the increase of EVs production via an unknown mechanism. This study aimed to investigate whether the CovR/CovS-regulated RopB, the transcriptional regulator of GAS exoproteins, would participate in regulating EVs production. Results showed that the size, morphology, and number of EVs released from the wild-type strain and the ropB mutant were similar, suggesting RopB is not involved in controlling EVs production. Nonetheless, RopB-regulated SpeB protease degrades streptolysin O and bacterial proteins in EVs. Although SpeB has crucial roles in modulating protein composition in EVs, the SpeB-positive EVs failed to trigger HaCaT keratinocytes pyroptosis, suggesting that EVs did not deliver SpeB into keratinocytes or the amount of SpeB in EVs was not sufficient to trigger cell pyroptosis. Finally, we identified that EV-associated enolase was resistant to SpeB degradation, and therefore could be utilized as the internal control protein for verifying SLO degradation. This study revealed that RopB would participate in modulating protein composition in EVs via SpeB-dependent protein degradation and suggested that enolase is a potential internal marker for studying GAS EVs.


Asunto(s)
Proteasas de Cisteína , Vesículas Extracelulares , Streptococcus pyogenes/genética , Proteínas Bacterianas/genética , Fosfopiruvato Hidratasa
5.
J Biomed Sci ; 30(1): 52, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430325

RESUMEN

BACKGROUND: Streptococcus pyogenes (group A streptococci; GAS) is the main causative pathogen of monomicrobial necrotizing soft tissue infections (NSTIs). To resist immuno-clearance, GAS adapt their genetic information and/or phenotype to the surrounding environment. Hyper-virulent streptococcal pyrogenic exotoxin B (SpeB) negative variants caused by covRS mutations are enriched during infection. A key driving force for this process is the bacterial Sda1 DNase. METHODS: Bacterial infiltration, immune cell influx, tissue necrosis and inflammation in patient´s biopsies were determined using immunohistochemistry. SpeB secretion and activity by GAS post infections or challenges with reactive agents were determined via Western blot or casein agar and proteolytic activity assays, respectively. Proteome of GAS single colonies and neutrophil secretome were profiled, using mass spectrometry. RESULTS: Here, we identify another strategy resulting in SpeB-negative variants, namely reversible abrogation of SpeB secretion triggered by neutrophil effector molecules. Analysis of NSTI patient tissue biopsies revealed that tissue inflammation, neutrophil influx, and degranulation positively correlate with increasing frequency of SpeB-negative GAS clones. Using single colony proteomics, we show that GAS isolated directly from tissue express but do not secrete SpeB. Once the tissue pressure is lifted, GAS regain SpeB secreting function. Neutrophils were identified as the main immune cells responsible for the observed phenotype. Subsequent analyses identified hydrogen peroxide and hypochlorous acid as reactive agents driving this phenotypic GAS adaptation to the tissue environment. SpeB-negative GAS show improved survival within neutrophils and induce increased degranulation. CONCLUSIONS: Our findings provide new information about GAS fitness and heterogeneity in the soft tissue milieu and provide new potential targets for therapeutic intervention in NSTIs.


Asunto(s)
Neutrófilos , Streptococcus pyogenes , Streptococcus pyogenes/genética , Proteínas Bacterianas , Exotoxinas/genética
6.
Microbiol Spectr ; 10(5): e0203322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36200903

RESUMEN

Necrotizing fasciitis is a severe infectious disease that results in significant mortality. Streptococcus pyogenes (group A Streptococcus, GAS) is one of the most common bacterial pathogens of monomicrobial necrotizing fasciitis. The early diagnosis of necrotizing fasciitis is crucial; however, the typical cutaneous manifestations are not always presented in patients with GAS necrotizing fasciitis, which would lead to miss- or delayed diagnosis. GAS with spontaneous inactivating mutations in the CovR/CovS two-component regulatory system is significantly associated with destructive diseases such as necrotizing fasciitis and toxic shock syndrome; however, no specific marker has been used to identify these invasive clinical isolates. This study evaluated the sensitivity and specificity of using CovR/CovS-controlled phenotypes to identify CovR/CovS-inactivated isolates. Results showed that the increase of hyaluronic acid capsule production and streptolysin O expression were not consistently presented in CovS-inactivated clinical isolates. The repression of SpeB is the phenotype with 100% sensitivity of identifying in CovS-inactivated isolates among 61 clinical isolates. Nonetheless, this phenotype failed to distinguish RopB-inactivated isolates from CovS-inactivated isolates and cannot be utilized to identify CovR-inactivated mutant and RocA (Regulator of Cov)-inactivated isolates. In this study, we identified and verified that PepO, the endopeptidase which regulates SpeB expression through degrading SpeB-inducing quorum-sensing peptide, was a bacterial marker to identify isolates with defects in the CovR/CovS pathway. These results also inform the potential strategy of developing rapid detection methods to identify invasive GAS variants during infection. IMPORTANCE Necrotizing fasciitis is rapidly progressive and life-threatening; if the initial diagnosis is delayed, deep soft tissue infection can progress to massive tissue destruction and toxic shock syndrome. Group A Streptococcus (GAS) with inactivated mutations in the CovR/CovS two-component regulatory system are related to necrotizing fasciitis and toxic shock syndrome; however, no bacterial marker is available to identify these invasive clinical isolates. Inactivation of CovR/CovS resulted in the increased expression of endopeptidase PepO. Our study showed that the upregulation of PepO mediates a decrease in SpeB-inducing peptide (SIP) in the covR mutant, indicating that CovR/CovS modulates SIP-dependent quorum-sensing activity through PepO. Importantly, the sensitivity and specificity of utilizing PepO to identify clinical isolates with defects in the CovR/CovS pathway, including its upstream RocA regulator, were 100%. Our results suggest that identification of invasive GAS by PepO may be a strategy for preventing severe manifestation or poor prognosis after GAS infection.


Asunto(s)
Fascitis Necrotizante , Choque Séptico , Infecciones Estreptocócicas , Humanos , Streptococcus pyogenes/genética , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Fascitis Necrotizante/diagnóstico , Ácido Hialurónico/metabolismo , Proteínas Represoras/metabolismo , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/microbiología , Proteínas Bacterianas/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo
7.
Biomedicines ; 10(4)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35453547

RESUMEN

Streptococcus pyogenes is one of the most important species among beta-haemolytic streptococci, causing human infections of different localization. It is isolated from clinical specimens relatively frequently. In this study, the frequency and co-occurrence of toxin genes (speA, speB, speC, speH, speJ, speK) among 147 S. pyogenes strains were evaluated, using real-time PCR. In addition, the relationship between the occurrence of these genes and the origin of S. pyogenes strains from selected clinical material was assessed. The speB gene was present with the highest incidence (98.6%), while the speK gene was the least frequent (8.2%) among the tested strains. Based on the presence of the detected genes, the distribution of 17 genotypes was determined. The most common (21.8%), was speA (-) speB (+) speC (-) speH (-) speJ (-) speK (-) genotype. Furthermore, significant variation in the presence of some genes and genotypes of toxins in S. pyogenes strains isolated from different types of clinical material was found. There is a considerable variety and disproportion between the frequency of individual genes and genotypes of toxins in S. pyogenes strains. The relationship between the origin of S. pyogenes isolates and the presence of toxins genes indicates their pathogenic potential in the development of infections of selected localization.

8.
Infect Immun ; 89(4)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33468578

RESUMEN

The second messenger cyclic di-AMP (c-di-AMP) controls biofilm formation, stress response, and virulence in Streptococcus pyogenes The deletion of the c-di-AMP synthase gene, dacA, results in pleiotropic effects including reduced expression of the secreted protease SpeB. Here, we report a role for K+ transport in c-di-AMP-mediated SpeB expression. The deletion of ktrB in the ΔdacA mutant restores SpeB expression. KtrB is a subunit of the K+ transport system KtrAB that forms a putative high-affinity K+ importer. KtrB forms a membrane K+ channel, and KtrA acts as a cytosolic gating protein that controls the transport capacity of the system by binding ligands including c-di-AMP. SpeB induction in the ΔdacA mutant by K+ specific ionophore treatment also supports the importance of cellular K+ balance in SpeB production. The ΔdacA ΔktrB double deletion mutant not only produces wild-type levels of SpeB but also partially or fully reverts the defective ΔdacA phenotypes of biofilm formation and stress responses, suggesting that many ΔdacA phenotypes are due to cellular K+ imbalance. However, the null pathogenicity of the ΔdacA mutant in a murine subcutaneous infection model is not restored by ktrB deletion, suggesting that c-di-AMP controls not only cellular K+ balance but also other metabolic and/or virulence pathways. The deletion of other putative K+ importer genes, kup and kimA, does not phenocopy the deletion of ktrB regarding SpeB induction in the ΔdacA mutant, suggesting that KtrAB is the primary K+ importer that is responsible for controlling cellular K+ levels under laboratory growth conditions.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas de Transporte de Catión/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Exotoxinas/genética , Regulación Bacteriana de la Expresión Génica , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/fisiología , Transporte Biológico , Proteínas de Transporte de Catión/genética , Interacciones Huésped-Patógeno/inmunología , Mutación , Sistemas de Lectura Abierta , Potasio , Estrés Fisiológico , Virulencia
9.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-978593

RESUMEN

@#Introduction: The internalization process of group A streptococci (GAS) into human cells is one of the crucial steps in the pathogenesis of GAS infections, which could also affect their susceptibility responses toward several antibiotics. Currently, data on the distribution of internalization-associated genes and susceptibility patterns are still lacking in Malaysia. This study investigated the distribution of fibronectin-binding protein F1 (prtF1) and streptococcal pyrogenic exotoxin B (speB) genes in GAS isolates with their susceptibility profiles and source of samples. Methods: We used 43 GAS isolates from our previous stock culture and performed antibiotic susceptibility testing by Kirby-Bauer disk diffusion method and interpreted the results according to the established guidelines. We detected virulence (prtF1 and speB) and resistance (ermA, ermB, mefA, tetM and lnuA) genes by PCR method using established primers and protocols. Results: High resistance rates were observed against doxycycline (58.1%) and clindamycin (16.3%). In comparison, 100.0% and 46.5% of GAS isolates carried speB and prtF1 genes, respectively. tetM and lnuA genes were detected in all respective resistant isolates (100% for each). No macrolide resistance genes were detected. Interestingly, prtF1 gene was highly distributed in doxycycline-resistant than doxycycline-sensitive isolates (60.0% versus 27.8%). Conclusions: High resistance rate of GAS toward doxycycline in our study may potentially reflect the uncontrol dissemination of tetM gene among our isolates. The presence of prtF1 gene among this strain would enhance its ability to evade the intracellular action of antibiotics, which may affect the management of GAS diseases. Thus, close monitoring of GAS by molecular methods is required in the future.

10.
J Bacteriol ; 202(11)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32205460

RESUMEN

Streptococcus pyogenes, or group A Streptococcus (GAS), is both a pathogen and an asymptomatic colonizer of human hosts and produces a large number of surface-expressed and secreted factors that contribute to a variety of infection outcomes. The GAS-secreted cysteine protease SpeB has been well studied for its effects on the human host; however, despite its broad proteolytic activity, studies on how this factor is utilized in polymicrobial environments are lacking. Here, we utilized various forms of SpeB protease to evaluate its antimicrobial and antibiofilm properties against the clinically important human colonizer Staphylococcus aureus, which occupies niches similar to those of GAS. For our investigation, we used a skin-tropic GAS strain, AP53CovS+, and its isogenic ΔspeB mutant to compare the production and activity of native SpeB protease. We also generated active and inactive forms of recombinant purified SpeB for functional studies. We demonstrate that SpeB exhibits potent biofilm disruption activity at multiple stages of S. aureus biofilm formation. We hypothesized that the surface-expressed adhesin SdrC in S. aureus was cleaved by SpeB, which contributed to the observed biofilm disruption. Indeed, we found that SpeB cleaved recombinant SdrC in vitro and in the context of the full S. aureus biofilm. Our results suggest an understudied role for the broadly proteolytic SpeB as an important factor for GAS colonization and competition with other microorganisms in its niche.IMPORTANCEStreptococcus pyogenes (GAS) causes a range of diseases in humans, ranging from mild to severe, and produces many virulence factors in order to be a successful pathogen. One factor produced by many GAS strains is the protease SpeB, which has been studied for its ability to cleave and degrade human proteins, an important factor in GAS pathogenesis. An understudied aspect of SpeB is the manner in which its broad proteolytic activity affects other microorganisms that co-occupy niches similar to that of GAS. The significance of the research reported herein is the demonstration that SpeB can degrade the biofilms of the human pathogen Staphylococcus aureus, which has important implications for how SpeB may be utilized by GAS to successfully compete in a polymicrobial environment.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas , Exotoxinas/metabolismo , Staphylococcus aureus/enzimología , Staphylococcus aureus/fisiología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/enzimología , Proteínas Bacterianas/genética , Exotoxinas/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Staphylococcus aureus/genética , Streptococcus pyogenes/genética
11.
Infect Immun ; 87(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30936159

RESUMEN

Cyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. The cellular level of c-di-AMP in Streptococcus pyogenes is predicted to be controlled by the synthase DacA and two putative phosphodiesterases, GdpP and Pde2. To investigate the role of c-di-AMP in S. pyogenes, we generated null mutants in each of these proteins by gene deletion. Unlike those in other Gram-positive pathogens such as Staphylococcus aureus and Listeria monocytogenes, DacA in S. pyogenes was not essential for growth in rich media. The DacA null mutant presented a growth defect that manifested through an increased lag time, produced no detectable biofilm, and displayed increased susceptibility toward environmental stressors such as high salt, low pH, reactive oxygen radicals, and cell wall-targeting antibiotics, suggesting that c-di-AMP plays significant roles in crucial cellular processes involved in stress management. The Pde2 null mutant exhibited a lower growth rate and increased biofilm formation, and interestingly, these phenotypes were distinct from those of the null mutant of GdpP, suggesting that Pde2 and GdpP play distinctive roles in c-di-AMP signaling. DacA and Pde2 were critical to the production of the virulence factor SpeB and to the overall virulence of S. pyogenes, as both DacA and Pde2 null mutants were highly attenuated in a mouse model of subcutaneous infection. Collectively, these results show that c-di-AMP is an important global regulator and is required for a proper response to stress and for virulence in S. pyogenes, suggesting that its signaling pathway could be an attractive antivirulence drug target against S. pyogenes infections.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas , Pared Celular/metabolismo , AMP Cíclico/metabolismo , Exotoxinas/genética , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/fisiología , Streptococcus pyogenes/patogenicidad , Animales , Proteínas Bacterianas/metabolismo , Pared Celular/genética , Exotoxinas/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica , Homeostasis , Humanos , Masculino , Ratones , Ratones Pelados , Sistemas de Mensajero Secundario , Streptococcus pyogenes/genética , Virulencia
12.
J Bacteriol ; 201(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30478086

RESUMEN

CovR/CovS is a two-component regulatory system in group A Streptococcus and primarily acts as a transcriptional repressor. The D53 residue of CovR (CovRD53) is phosphorylated by the sensor kinase CovS, and the phosphorylated CovRD53 protein binds to the intergenic region of rgg-speB to inhibit speB transcription. Nonetheless, the transcription of rgg and speB is suppressed in covS mutants. The T65 residue of CovR is phosphorylated in a CovS-independent manner, and phosphorylation at the D53 and T65 residues of CovR is mutually exclusive. Therefore, how phosphorylation at the D53 and T65 residues of CovR contributes to the regulation of rgg and speB expression was elucidated. The transcription of rgg and speB was suppressed in the strain that cannot phosphorylate the D53 residue of CovR (CovRD53A mutant) but restored to levels similar to those of the wild-type strain in the CovRT65A mutant. Nonetheless, inactivation of the T65 residue phosphorylation in the CovRD53A mutant cannot derepress the rgg and speB transcription, indicating that phosphorylation at the T65 residue of CovR is not required for repressing rgg and speB transcription. Furthermore, trans complementation of the CovRD53A protein in the strain that expresses the phosphorylated CovRD53 resulted in the repression of rgg and speB transcription. Unlike the direct binding of the phosphorylated CovRD53 protein and its inhibition of speB transcription demonstrated previously, the present study showed that inactivation of phosphorylation at the D53 residue of CovR contributes dominantly in suppressing rgg and speB transcription.IMPORTANCE CovR/CovS is a two-component regulatory system in group A Streptococcus (GAS). The D53 residue of CovR is phosphorylated by CovS, and the phosphorylated CovRD53 binds to the rgg-speB intergenic region and acts as the transcriptional repressor. Nonetheless, the transcription of rgg and Rgg-controlled speB is upregulated in the covR mutant but inhibited in the covS mutant. The present study showed that nonphosphorylated CovRD53 protein inhibits rgg and speB transcription in the presence of the phosphorylated CovRD53in vivo, indicating that nonphosphorylated CovRD53 has a dominant role in suppressing rgg transcription. These results reveal the roles of nonphosphorylated CovRD53 in regulating rgg transcription, which could contribute significantly to invasive phenotypes of covS mutants.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Exotoxinas/biosíntesis , Regulación Bacteriana de la Expresión Génica , Procesamiento Proteico-Postraduccional , Proteínas Represoras/metabolismo , Streptococcus pyogenes/metabolismo , Transactivadores/biosíntesis , Transcripción Genética , Proteínas Bacterianas/genética , Exotoxinas/genética , Genotipo , Fosforilación , Streptococcus pyogenes/clasificación , Streptococcus pyogenes/genética , Transactivadores/genética
13.
Jpn J Med (Lond) ; 1(6): 269-275, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30556051

RESUMEN

Group A Streptococcus (GAS) causes common pharyngitis and skin infections and occasional severe invasive infections. This review describes the recent progress on the pathogenesis of hypervirulent GAS. CovRS mutations are frequent among invasive GAS isolates and lead to hypervirulence. GAS CovRS mutants can be selected in vivo by neutrophils. The role of protease SpeB in source-sink dynamics of wild-type GAS and hypervirulent variants is discussed. Streptolysin S and PAF acetylhydrolase Sse critically and synergistically contribute to the inhibition of neutrophil recruitment by GAS CovS mutants. CovS mutations in emm3 GAS lead to the vascular invasion and enhance systemic GAS dissemination.

14.
RNA Biol ; 15(10): 1336-1347, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30290721

RESUMEN

Endoribonuclease Y (RNase Y) is a crucial regulator of virulence in Gram-positive bacteria. In the human pathogen Streptococcus pyogenes, RNase Y is required for the expression of the major secreted virulence factor streptococcal pyrogenic exotoxin B (SpeB), but the mechanism involved in this regulation remains elusive. Here, we demonstrate that the 5' untranslated region of speB mRNA is processed by several RNases including RNase Y. In particular, we identify two RNase Y cleavage sites located downstream of a guanosine (G) residue. To assess whether this nucleotide is required for RNase Y activity in vivo, we mutated it and demonstrate that the presence of this G residue is essential for the processing of the speB mRNA 5' UTR by RNase Y. Although RNase Y directly targets and processes speB, we show that RNase Y-mediated regulation of speB expression occurs primarily at the transcriptional level and independently of the processing in the speB mRNA 5' UTR. To conclude, we demonstrate for the first time that RNase Y processing of an mRNA target requires the presence of a G. We also provide new insights on the speB 5' UTR and on the role of RNase Y in speB regulation.


Asunto(s)
Proteínas Bacterianas/genética , Exotoxinas/genética , Ribonucleasas/genética , Infecciones Estreptocócicas/genética , Streptococcus pyogenes/genética , Regiones no Traducidas 5'/genética , Secuencia de Aminoácidos/genética , Regulación Bacteriana de la Expresión Génica/genética , Guanosina/metabolismo , Humanos , Infecciones Estreptocócicas/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/patogenicidad , Factores de Virulencia/genética
15.
Front Microbiol ; 9: 2372, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356787

RESUMEN

Although skin and soft tissue infections (SSTI) are the most common focal infections associated with invasive disease caused by Streptococcus pyogenes (Lancefield Group A streptococci - GAS), there is scarce information on the characteristics of isolates recovered from SSTI in temperate-climate regions. In this study, 320 GAS isolated from SSTI in Portugal were characterized by multiple typing methods and tested for antimicrobial susceptibility and SpeB activity. The covRS and ropB genes of isolates with no detectable SpeB activity were sequenced. The antimicrobial susceptibility profile was similar to that of previously characterized isolates from invasive infections (iGAS), presenting a decreasing trend in macrolide resistance. However, the clonal composition of SSTI between 2005 and 2009 was significantly different from that of contemporary iGAS. Overall, iGAS were associated with emm1 and emm3, while SSTI were associated with emm89, the dominant emm type among SSTI (19%). Within emm89, SSTI were only significantly associated with isolates lacking the hasABC locus, suggesting that the recently emerged emm89 clade 3 may have an increased potential to cause SSTI. Reflecting these associations between emm type and disease presentation, there were also differences in the distribution of emm clusters, sequence types, and superantigen gene profiles between SSTI and iGAS. According to the predicted ability of each emm cluster to interact with host proteins, iGAS were associated with the ability to bind fibrinogen and albumin, whereas SSTI isolates were associated with the ability to bind C4BP, IgA, and IgG. SpeB activity was absent in 79 isolates (25%), in line with the proportion previously observed among iGAS. Null covS and ropB alleles (predicted to eliminate protein function) were detected in 10 (3%) and 12 (4%) isolates, corresponding to an underrepresentation of mutations impairing CovRS function in SSTI relative to iGAS. Overall, these results indicate that the isolates responsible for SSTI are genetically distinct from those recovered from normally sterile sites, supporting a role for mutations impairing CovRS activity specifically in invasive infection and suggesting that this role relies on a differential regulation of other virulence factors besides SpeB.

16.
Mol Cell Probes ; 41: 32-38, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30170103

RESUMEN

Streptococcus pyogenes (Group A Streptococcus, GAS) and Streptococcus agalactiae (Group B Streptococcus, GBS) are common pathogens that threaten public health. In this study, a double recombinase polymerase (RPA) amplification assay was developed to rapidly detect these pathogens. Specificity tests revealed that the GAS and GBS strains were positive for speB and SIP genes, respectively. In clinical samples, the double assay performed similarly to the traditional biochemical method. The limits of detection were both ≤100 copies per reaction. In tests for simulant-contaminated samples, bacterial-culture media containing 103 CFU/mL original concentrations of S. pyogenes and S. agalactiae were positive in RPA assays after incubating for 4 h. Results can be obtained at 37 °C in 20 min. To determine whether propidium monoazide (PMA) can eliminate the influence of DNA extracted from dead cells, a bacterial suspension was treated with PMA before DNA extraction. Findings of RPA assay showed that DNA extracted from dead cells had no fluorescence signal. Therefore, the PMA-RPA assay is a promising technology for field tests and rapid point-of-care diagnosis.


Asunto(s)
Azidas/química , Propidio/análogos & derivados , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Recombinasas/metabolismo , Streptococcus agalactiae/aislamiento & purificación , Streptococcus pyogenes/aislamiento & purificación , Huevos/microbiología , Genes Bacterianos , Humanos , Carne/microbiología , Propidio/química , Sensibilidad y Especificidad , Streptococcus agalactiae/genética , Streptococcus pyogenes/genética
17.
J Med Microbiol ; 67(9): 1391-1401, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30052177

RESUMEN

PURPOSE: Streptococcus pyogenes, a notorious human pathogen thatis responsible for various invasive and non-invasive diseases, possesses multiple virulence armaments, including biofilm formation. The current study demonstrates the anti-biofilm and anti-virulence potential of fukugiside, a biflavonoid isolated from Garciniatravancorica, against S. pyogenes. METHODOLOGY: The anti-biofilm activity of fukugiside was assessed and established using microdilution and microscopic analysis. Biochemical assays were performed to assess the effects of fukugiside on important virulence factors, which were further validated using quantitative real-time PCR and in vivo analysis in Caenorhabditis elegans. RESULTS: Fukugiside exhibited concentration-dependent biofilm inhibition (79 to 96 %) against multiple M serotypes of S. pyogenes (M1, M56, M65, M74, M100 and st38) with a minimum biofilm inhibitory concentration of 80 µg ml-1. Electron microscopy and biochemical assay revealed a significant reduction in extracellular polymeric substance production. The results for the microbial adhesion to hydrocarbon assay, extracellular protease quantification and differential regulation of the dltA, speB, srv and ropB genes suggested that fukugiside probably inhibits biofilm formation by lowering cell surface hydrophobicity and destabilizing the biofilm matrix. The enhanced susceptibility to phagocytosis evidenced in the blood survival assay goes in unison with the downregulation of mga. The downregulation of important virulence factor-encoding genes such as hasA, slo and col370 suggested impaired virulence. In vivo analysis in C. elegans evinced the non-toxic nature of fukugiside and its anti-virulence potential against S. pyogenes. CONCLUSION: Fukugiside exhibits potent anti-biofilm and anti-virulence activity against different M serotypes of S. pyogenes. It is also non-toxic, which augurs well for its clinical application.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Biflavonoides/farmacología , Biopelículas/efectos de los fármacos , Garcinia/química , Extractos Vegetales/farmacología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/efectos de los fármacos , Factores de Virulencia/genética , Animales , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biflavonoides/química , Biflavonoides/aislamiento & purificación , Caenorhabditis elegans , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Streptococcus pyogenes/genética , Streptococcus pyogenes/fisiología , Factores de Virulencia/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-29416987

RESUMEN

Streptococcus pyogenes is responsible for a wide variety of cutaneous infections ranging from superficial impetigo to fulminant invasive necrotizing fasciitis. Dysfunction of desmosomes is associated with the pathogenesis of cutaneous diseases. We identified streptococcal pyrogenic exotoxin B (SpeB) as a proteolytic factor that cleaves the extracellular domains of desmoglein 1 and 3. In an epicutaneous infection model, lesional skin infected with an speB deletion mutant were significantly smaller as compared to those caused by the wild-type strain. Furthermore, immunohistological analysis indicated cleavage of desmogleins that developed around the invasion site of the wild-type strain. In contrast, the speB mutant was preferentially found on the epidermis surface layer. Taken together, our findings provide evidence that SpeB-mediated degradation of desmosomes has a pathogenic role in development of S. pyogenes cutaneous infection.


Asunto(s)
Proteasas de Cisteína/metabolismo , Desmogleínas/metabolismo , Enfermedades Cutáneas Bacterianas/metabolismo , Enfermedades Cutáneas Bacterianas/microbiología , Infecciones Estreptocócicas/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/enzimología , Animales , Proteasas de Cisteína/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Mutación , Proteolisis , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidad , Virulencia
19.
J Bacteriol ; 200(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29378883

RESUMEN

Streptococcus pyogenes (group A Streptococcus [GAS]) causes a wide range of human infections. The pathogenesis of GAS infections is dependent on the temporal expression of numerous secreted and surface-associated virulence factors that interact with host proteins. Streptococcal pyrogenic exotoxin B (SpeB) is one of the most extensively studied toxins produced by GAS, and the coordinate growth phase-dependent regulation of speB expression is linked to disease severity phenotypes. Here, we identified the endopeptidase PepO as a novel growth phase-dependent regulator of SpeB in the invasive GAS M1 serotype strain 5448. By using transcriptomics followed by quantitative reverse transcriptase PCR and Western blot analyses, we demonstrate through targeted mutagenesis that PepO influences growth phase-dependent induction of speB gene expression. Compared to wild-type and complemented mutant strains, we demonstrate that the 5448ΔpepO mutant strain is more susceptible to killing by human neutrophils and is attenuated in virulence in a murine model of invasive GAS infection. Our results expand the complex regulatory network that is operating in GAS to control SpeB production and suggest that PepO is a virulence requirement during GAS M1T1 strain 5448 infections.IMPORTANCE Despite the continuing susceptibility of S. pyogenes to penicillin, this bacterial pathogen remains a leading infectious cause of global morbidity and mortality. A particular subclone of the M1 serotype (M1T1) has persisted globally for decades as the most frequently isolated serotype from patients with invasive and noninvasive diseases in Western countries. One of the key GAS pathogenicity factors is the potent broad-spectrum cysteine protease SpeB. Although there has been extensive research interest on the regulatory mechanisms that control speB gene expression, its genetic regulation is not fully understood. Here, we identify the endopeptidase PepO as a new regulator of speB gene expression in the globally disseminated M1T1 clone and as being essential for virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Exotoxinas/metabolismo , Regulación Bacteriana de la Expresión Génica , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/patogenicidad , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/genética , Cisteína Endopeptidasas/genética , Modelos Animales de Enfermedad , Exotoxinas/genética , Perfilación de la Expresión Génica , Humanos , Ratones , Mutagénesis , Neutrófilos/microbiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
20.
Front Microbiol ; 8: 1841, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28983299

RESUMEN

Streptococcus pyogenes uses lactic acid fermentation for the generation of ATP. Here, we analyzed the impact of a deletion of the L-lactate dehydrogenase gene ldh on the virulence of S. pyogenes M49. While the ldh deletion does not cause a general growth deficiency in laboratory media, the growth in human blood and plasma is significantly hampered. The ldh deletion strain is furthermore less virulent in a Galleria mellonella infection model. We show that the ldh deletion leads to a decrease in the activity of the cysteine protease SpeB, an important secreted virulence factor of S. pyogenes. The reduced SpeB activity is caused by a hampered autocatalytic activation of the SpeB zymogen into the mature SpeB. The missing SpeB activity furthermore leads to increased plasmin activation and a reduced activation of the contact system on the surface of S. pyogenes. All these effects can be reversed when ldh is reintroduced into the mutant via a plasmid. The results demonstrate a previously unappreciated role for LDH in modulation of SpeB maturation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA