Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Phys Med Biol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137803

RESUMEN

OBJECTIVE: Multi-energy CT conducted by photon-counting detector has a wide range of applications, especially in multiple contrast agents imaging. However, static multi-energy (SME) CT imaging suffers from higher statistical noise because of increased energy bins with static energy thresholds. Our team has proposed a dynamic dual-energy (DDE) CT detector model and the corresponding iterative reconstruction algorithm to solve this problem. However, rigorous and detailed analysis of the statistical noise characterization in this DDE CT was lacked. APPROACH: Starting from the properties of the Poisson random variable, this paper analyzes the noise characterization of the DDE CT and compares it with the SME CT. It is proved that the multi-energy CT projections and reconstruction images calculated from the proposed DDE CT algorithm have less statistical noise than that of the SME CT. MAIN RESULTS: Simulations and experiments verify that the expectations of the multi-energy CT projections calculated from DDE CT are the same as those of the SME projections. Still, the variance of the former is smaller. We further analyze the convergence of the iterative DDE CT algorithm through simulations and prove that the derived noise characterization can be realized under different CT imaging configurations. SIGNIFICANCE: The low statistical noise characteristics demonstrate the value of DDE CT imaging technology.

2.
Sci Rep ; 14(1): 18898, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143146

RESUMEN

This study aimed to evaluate the impact of contrast media application on CT attenuation of the bone using a novel calcium-only imaging technique (VCa) from dual-layer spectral detector CT (DLCT), which enables CT-based bone mineral density measurement unimpeded by soft tissue components. For this, true non-contrast (TNC) and venous phase images (VP) of n = 97 patients were acquired. CT attenuation of the first lumbar vertebra (L1) was measured in TNC-VCa, VP-VCa, and in virtual non-contrast images (VNC). CT attenuation was significantly higher in VP-VCa than in TNC-VCa (p < 0.001), although regression analyses revealed a strong linear association between these measures (R2 = 0.84). A statistical model for the prediction of TNC-VCa CT attenuation was established (TNC-VCa[HU] = - 6.81 + 0.87 × VP-VCa[HU]-0.55 × body weight[kg]) and yielded good agreement between observed and predicted values. Furthermore, a L1 CT attenuation threshold of 293 HU in VP-VCa showed a sensitivity of 90% and a specificity of 96% for detecting osteoporosis. The application of contrast media leads to an overestimation of L1 CT attenuation in VCa. However, CT attenuation values from VP-VCa can be used within CT-based opportunistic osteoporosis screening eighter by applying a separate threshold of 293 HU or by converting measured data to TNC-VCa CT attenuation with the given regression equation.


Asunto(s)
Densidad Ósea , Calcio , Medios de Contraste , Tomografía Computarizada por Rayos X , Humanos , Medios de Contraste/química , Femenino , Masculino , Tomografía Computarizada por Rayos X/métodos , Anciano , Persona de Mediana Edad , Calcio/metabolismo , Densidad Ósea/efectos de los fármacos , Vértebras Lumbares/diagnóstico por imagen , Anciano de 80 o más Años , Columna Vertebral/diagnóstico por imagen , Adulto , Osteoporosis/diagnóstico por imagen
3.
Quant Imaging Med Surg ; 14(8): 5983-6001, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39144026

RESUMEN

Background: Programmed death ligand-1 (PD-L1) expression serves a predictive biomarker for the efficacy of immune checkpoint inhibitors (ICIs) in the treatment of patients with early-stage lung adenocarcinoma (LA). However, only a limited number of studies have explored the relationship between PD-L1 expression and spectral dual-layer detector-based computed tomography (SDCT) quantification, qualitative parameters, and clinical biomarkers. Therefore, this study was conducted to clarify this relationship in stage I LA and to develop a nomogram to assist in preoperative individualized identification of PD-L1-positive expression. Methods: We analyzed SDCT parameters and PD-L1 expression in patients diagnosed with invasive nonmucinous LA through postoperative pathology. Patients were categorized into PD-L1-positive and PD-L1-negative expression groups based on a threshold of 1%. A retrospective set (N=356) was used to develop and internally validate the radiological and biomarker features collected from predictive models. Univariate analysis was employed to reduce dimensionality, and logistic regression was used to establish a nomogram for predicting PD-L1 expression. The predictive performance of the model was evaluated using receiver operating characteristic (ROC) curves, and external validation was performed in an independent set (N=80). Results: The proportions of solid components and pleural indentations were higher in the PD-L1-positive group, as indicated by the computed tomography (CT) value, CT at 40 keV (CT40keV; a/v), electron density (ED; a/v), and thymidine kinase 1 (TK1) exhibiting a positive correlation with PD-L1 expression. In contrast, the effective atomic number (Zeff; a/v) showed a negative correlation with PD-L1 expression [r=-0.4266 (Zeff.a), -0.1131 (Zeff.v); P<0.05]. After univariate analysis, 18 parameters were found to be associated with PD-L1 expression. Multiple regression analysis was performed on significant parameters with an area under the curve (AUC) >0.6, and CT value [AUC =0.627; odds ratio (OR) =0.993; P=0.033], CT40keV.a (AUC =0.642; OR =1.006; P=0.025), arterial Zeff (Zeff.a) (AUC =0.756; OR =0.102; P<0.001), arterial ED (ED.a) (AUC =0.641; OR =1.158, P<0.001), venous ED (ED.v) (AUC =0.607; OR =0.864; P<0.001), TK1 (AUC =0.601; OR =1.245; P=0.026), and diameter of solid components (Dsolid) (AUC =0.632; OR =1.058; P=0.04) were found to be independent risk factors for PD-L1 expression in stage I LA. These seven predictive factors were integrated into the development of an SDCT parameter-clinical nomogram, which demonstrated satisfactory discrimination ability in the training set [AUC =0.853; 95% confidence interval (CI): 0.76-0.947], internal validation set (AUC =0.824; 95% CI: 0.775-0.874), and external validation set (AUC =0.825; 95% CI: 0.733-0.918). Decision curve analyses also revealed the highest net benefit for the nomogram across a broad threshold probability range (20-80%), with a clinical impact curve (CIC) indicating its clinical validity. Comparisons with other models demonstrated the superior discriminatory accuracy of the nomogram over any individual variable (all P values <0.05). Conclusions: Quantitative parameters derived from SDCT demonstrated the ability to predict for PD-L1 expression in early-stage LA, with Zeff.a being notably effective. The nomogram established in combination with TK1 showed excellent predictive performance and good calibration. This approach may facilitate the improved noninvasive prediction of PD-L1 expression.

4.
Cancers (Basel) ; 16(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39123416

RESUMEN

PURPOSE: To evaluate the prediction of vertebral fractures in plasma cell dyscrasias using dual-layer CT (DLCT) with quantitative assessment of conventional CT image data (CI), calcium suppressed image data (CaSupp), and calculation of virtual calcium-only (VCa) image data. MATERIAL AND METHODS: Patients (n = 81) with the diagnosis of a plasma cell dyscrasia and whole-body DLCT at the time of diagnosis and follow-up were retrospectively enrolled. CI, CaSupp25, and CaSupp100 were quantitatively analyzed using regions of interest in the lumbar vertebral bodies and fractured vertebral bodies on baseline or follow-up imaging. VCa were calculated by subtraction (CaSupp100-CaSupp25), delineating bone only. Logistic regression analyses were performed to assess the possibility of imminent spine fractures. RESULTS: In 24 patients, new vertebral fractures were observed in the follow-up imaging. The possibility of new vertebral fractures was significant for baseline assessment of CT numbers in CI, CaSupp25, and VCa (p = 0.01, respectively), with a higher risk for new fractures in the case of lower CT numbers in CI (Odds ratio = [0.969; 0.994]) and VCa (Odds ratio = [0.978; 0.995]) and in the case of higher CT numbers in CaSupp 25 (Odds ratio 1.015 [1.006; 1.026]). Direct model comparisons implied that CT numbers in CaSupp 25 and VCa might show better fracture prediction than those in CI (R2 = 0.18 both vs. 0.15; AICc = 91.95, 91.79 vs. 93.62), suggesting cut-off values for CI at 103 HU (sensitivity: 54.2%; specificity: 82.5; AUC: 0.69), for VCa at 129 HU (sensitivity: 41.7%; specificity: 94.7; AUC: 0.72). CONCLUSIONS: Quantitative assessment with CaSupp and calculation of VCa is feasible to predict the vertebral fracture risk in MM patients. DLCT may prove useful in detecting imminent fractures.

5.
Pol J Radiol ; 89: e358-e367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139258

RESUMEN

Purpose: To compare the diagnostic performance of virtual monoenergetic imaging (VMI), computed tomography (CT), and magnetic resonance imaging (MRI) in patients with endometrial cancer (EC). Material and methods: This retrospective study analysed 45 EC patients (mean age: 62 years, range: 44-84 years) undergoing contrast-enhanced CT with dual-energy CT (DECT) and MRI between September 2021 and October 2022. Dual-energy CT generated conventional CT (C-CT) and 40 keV VMI. Quantitative analysis compared contrast-to-noise ratio (CNR) of tumour to myometrium between C-CT and VMI. Qualitative assessment by 5 radiologists compared C-CT, VMI, and MRI for myometrial invasion (MI), cervical invasion, and lymph node metastasis. Sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC) were calculated and compared for each diagnostic parameter. Results: Virtual monoenergetic imaging showed significantly higher CNR than C-CT (p < 0.001) and a higher sensitivity for MI than C-CT (p = 0.027) and MRI (p = 0.011) but lower specificity than MRI (p = 0.018). C-CT had a higher sensitivity and AUC for cervical invasion than MRI (p = 0.018 and 0.004, respectively). Conclusions: The study found no significant superiority of MRI over CT across all diagnostic parameters. VMI demonstrated heightened sensitivity for MI, and C-CT showed greater sensitivity and AUC for cervical invasion than MRI. This suggests that combining VMI with C-CT holds promise as a comprehensive preoperative staging tool for EC when MRI cannot be performed.

6.
Int J Cancer ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023303

RESUMEN

The purpose of this study was to determine if dual-energy CT (DECT) vital iodine tumor burden (ViTB), a direct assessment of tumor vascularity, allows reliable response assessment in patients with GIST compared to established CT criteria such as RECIST1.1 and modified Choi (mChoi). From 03/2014 to 12/2019, 138 patients (64 years [32-94 years]) with biopsy proven GIST were entered in this prospective, multi-center trial. All patients were treated with tyrosine kinase inhibitors (TKI) and underwent pre-treatment and follow-up DECT examinations for a minimum of 24 months. Response assessment was performed according to RECIST1.1, mChoi, vascular tumor burden (VTB) and DECT ViTB. A change in therapy management could be because of imaging (RECIST1.1 or mChoi) and/or clinical progression. The DECT ViTB criteria had the highest discrimination ability for progression-free survival (PFS) of all criteria in both first line and second line and thereafter treatment, and was significantly superior to RECIST1.1 and mChoi (p < .034). Both, the mChoi and DECT ViTB criteria demonstrated a significantly early median time-to-progression (both delta 2.5 months; both p < .036). Multivariable analysis revealed 6 variables associated with shorter overall survival: secondary mutation (HR = 4.62), polymetastatic disease (HR = 3.02), metastatic second line and thereafter treatment (HR = 2.33), shorter PFS determined by the DECT ViTB criteria (HR = 1.72), multiple organ metastases (HR = 1.51) and lower age (HR = 1.04). DECT ViTB is a reliable response criteria and provides additional value for assessing TKI treatment in GIST patients. A significant superior response discrimination ability for median PFS was observed, including non-responders at first follow-up and patients developing resistance while on therapy.

7.
Front Surg ; 11: 1395276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39072269

RESUMEN

A 24-year-old male patient complained of mild knee pain after jogging. The subsequent knee MRI demonstrated bilateral lateral thickened tibiofemoral cartilages, evidenced by deformities of the bilateral subchondral bone beneath the lateral femoral condyle cartilage. The corresponding dislocations of almost all the left lateral meniscus and part of the right lateral meniscus to the center of the joint were detected. After excluding diagnoses of congenital ring-shaped meniscus, bucket handle tear of the C-shaped lateral meniscus, and central tear of the discoid meniscus, the displacement of all or part of the lateral meniscus into the intercondylar notch was considered a consequence of congenital thickening of the lateral superior and inferior cartilage. This case may report a new variant of knee joint pathology.

8.
Phys Med Biol ; 69(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38955333

RESUMEN

Objective.Sparse-view dual-energy spectral computed tomography (DECT) imaging is a challenging inverse problem. Due to the incompleteness of the collected data, the presence of streak artifacts can result in the degradation of reconstructed spectral images. The subsequent material decomposition task in DECT can further lead to the amplification of artifacts and noise.Approach.To address this problem, we propose a novel one-step inverse generation network (OIGN) for sparse-view dual-energy CT imaging, which can achieve simultaneous imaging of spectral images and materials. The entire OIGN consists of five sub-networks that form four modules, including the pre-reconstruction module, the pre-decomposition module, and the following residual filtering module and residual decomposition module. The residual feedback mechanism is introduced to synchronize the optimization of spectral CT images and materials.Main results.Numerical simulation experiments show that the OIGN has better performance on both reconstruction and material decomposition than other state-of-the-art spectral CT imaging algorithms. OIGN also demonstrates high imaging efficiency by completing two high-quality imaging tasks in just 50 seconds. Additionally, anti-noise testing is conducted to evaluate the robustness of OIGN.Significance.These findings have great potential in high-quality multi-task spectral CT imaging in clinical diagnosis.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Algoritmos , Relación Señal-Ruido , Humanos
9.
Radiat Oncol ; 19(1): 93, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049106

RESUMEN

BACKGROUND: Conventional single-energy CT can only provide a raw estimation of electron density (ED) for dose calculation by developing a calibration curve that simply maps the HU values to ED values through their correlations. Spectral CT, also known as dual-energy CT (DECT) or multi-energy CT, can generate a series of quantitative maps, such as ED maps. Using spectral CT for radiotherapy simulations can directly acquire ED information without developing specific calibration curves. The purpose of this study is to assess the feasibility of utilizing electron density (ED) maps generated by a novel dual-layer detector spectral CT simulator for dose calculation in radiotherapy treatment plans. METHODS: 30 patients from head&neck, chest, and pelvic treatment sites were selected retrospectively, and all of them underwent spectral CT simulation. Treatment plans based on conventional CT images were transplanted to ED maps with the same structure set, including planning target volume (PTV) and organs at risk (OARs), and the dose distributions were then recalculated. The differences in dose and volume histogram (DVH) parameters of the PTV and OARs between the two types of plans were analyzed and compared. Besides, gamma analysis between these plans was performed by using MEPHYSTO Navigator software. RESULTS: In terms of PTV, the homogeneity index (HI), gradient index (GI), D2%, D98%, and Dmean showed no significant difference between conventional plans and ED plans. For OARs, statistically significant differences were observed in parotids D50%, brainstem in head&neck plans, spinal cord in chest plans and rectum D50% in pelvic plans, whereas the variance remained minor. For the rest, the DVH parameters exhibited no significant difference between conventional plans and ED plans. All of the mean gamma passing rates (GPRs) of gamma analysis were higher than 90%. CONCLUSION: Compared to conventional treatment plans relying on CT images, plans utilizing ED maps demonstrated similar dosimetric quality. However, the latter approach enables direct utilization in dose calculation without the requirements of establishing and selecting a specific Hounsfield unit (HU) to ED calibration curve, providing an advantage in clinical applications.


Asunto(s)
Electrones , Estudios de Factibilidad , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Estudios Retrospectivos , Electrones/uso terapéutico , Órganos en Riesgo/efectos de la radiación , Radioterapia de Intensidad Modulada/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagen , Masculino , Femenino
10.
Artículo en Inglés | MEDLINE | ID: mdl-38836184

RESUMEN

Dual-source photon-counting CT combines the high temporal resolution and high pitch of dual-source CT with the material quantification capabilities of photon-counting CT. It, however, results in cross-scatter that increases in severity with increased patient size and collimation. This cross-scatter must be corrected to ensure the removal of scatter artifacts and improve quantitative accuracy. To evaluate residual cross-scatter of a first-generation dual-source photon-counting CT and the effect of phantom size, collimation, and radiation dose, a phantom was scanned in single- and dual-source modes with and without its extension ring at three collimations and three radiation doses. Virtual monoenergetic images (VMI) at 50 keV, VMI 150 keV, and iodine density maps were reconstructed to determine variation between acquisition parameters in single- and dual-source modes. Additionally, differences relative to single-source acquisitions and to single-source and small collimation acquisitions were calculated to reflect residual cross-scatter with and without matched collimation. At VMI 50 keV, inserts exhibited accuracy and similar variation between single- and dual-source modes, averaging 5.4 ± 2.6 and 6.2 ± 2.5 HU, respectively, across phantom size, collimation, and radiation dose. Differences relative to single-source measured 5.1 ± 8.5 and 0.4 ± 4.2 HU while differences relative to single-source and small collimation acquisitions were 6.4 ± 10.8 HU and -0.5 ± 3.9 HU for VMI 50 and 150 keV, respectively. This minimal residual cross-scatter increases confidence in the quantitative accuracy of spectral results necessary for clinical applications of dual-source photon-counting CT with motion, such as cardiac imaging.

11.
Eur J Radiol Open ; 12: 100575, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38882633

RESUMEN

Purpose: To demonstrate advantages of spectral dual-layer computed tomography (CT) in diagnosing pulmonary embolism (PE). To compare D-dimer values in patients with PE and concomitant COVID-19 pneumonia to those in patients without PE and COVID-19 pneumonia. To compare D-dimer values in cases of minor versus extensive PE. Methods: A monocentric retrospective study of 1500 CT pulmonary angiographies (CTPAs). Three groups of 500 consecutive examinations: 1) using conventional multidetector CT (CTC), 2) using spectral dual-layer CT (CTS), and 3) of COVID-19 pneumonia patients using spectral dual-layer CT (COV). Only patients with known D-dimer levels were enrolled in the study. Results: Prevalence of inconclusive PE findings differed significantly between CTS and CTC (0.8 % vs. 5.4 %, p < 0.001). In all groups, D-dimer levels were significantly higher in PE positive patients than in patients without PE (CTC, 8.04 vs. 3.05 mg/L; CTS, 6.92 vs. 2.57 mg/L; COV, 10.26 vs. 2.72 mg/L, p < 0.001). There were also statistically significant differences in D-dimer values between minor and extensive PE in the groups negative for COVID-19 (CTC, 5.16 vs. 8.98 mg/L; CTS 3.52 vs. 9.27 mg/L, p < 0.001). The lowest recorded D-dimer value for proven PE in patients with COVID-19 pneumonia was 1.19 mg/L. Conclusion: CTPAs using spectral dual-layer CT reduce the number of inconclusive PE findings. Plasma D-dimer concentration increases with extent of PE. Cut-off value of D-dimer with 100 % sensitivity for patients with COVID-19 pneumonia could be doubled to 1.0 mg/L. This threshold would have saved 110 (22 %) examinations in our cohort.

12.
Quant Imaging Med Surg ; 14(6): 3803-3815, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38846313

RESUMEN

Background: Virtual non-calcium (VNCa) imaging based on dual-energy computed tomography (CT) plays an increasingly important role in diagnosing spinal diseases. However, the utility of VNCa technology in the measurement of vertebral bone mineral density (BMD) is limited, especially the VNCa CT value at multiple calcium suppression levels and the slope of VNCa curve. This retrospective cross-sectional study aimed to explore the correlation between vertebral BMD and new VNCa parameters from dual-layer spectral detector CT. Methods: The dual-layer spectral detector CT and quantitative CT (QCT) data of 4 hydroxyapatite (HAP) inserts and 667 vertebrae of 234 patients (132 male and 102 female) who visited a university teaching hospital between April and May 2023 were retrospectively analyzed. The BMD values of 3 vertebrae (T12, L1, and L2) and inserts were measured using QCT, defined as QCT-BMD. The VNCa CT values and the slope λ of the VNCa attenuation curve of vertebrae and inserts were recorded. The correlations between VNCa parameters (VNCa CT value, slope λ) and QCT-BMD were analyzed. Results: For the vertebrae, the correlation coefficient ranged from -0.904 to 0.712 (all P<0.05). As the calcium suppression index (CaSI) increased, the correlation degree exhibited a decrease first and then increased, with the best correlation (r=-0.904, P<0.001) observed at the index of 25%. In contrast, the correlation coefficient for the inserts remained relatively stable (r=-0.899 to -1, all P<0.05). For the vertebrae, the values of 3 slopes λ (λ1, λ2, and λ3) derived from the VNCa attenuation curve were 6.50±1.99, 3.75±1.15, and 2.04±0.62, respectively. Regarding the inserts, the λ1, λ2, and λ3 values were 11.56 [interquartile range (IQR): 2.40-22.62], 6.68 (IQR: 1.39-13.49), and 3.63 (IQR: 0.75-7.8), respectively. For the vertebrae, all 3 correlation coefficients between 3 slopes λ and QCT-BMD were 0.956 (all P<0.05). For the inserts, the 3 correlation coefficients were 0.996, 0.998, and 1 (all P<0.05), respectively. Conclusions: A promising correlation was detected between VNCa CT parameters and QCT-BMD in vertebrae, warranting further investigation to explore the possibility of VNCa imaging to assess BMD.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38848171

RESUMEN

OBJECTIVE: This study aimed to investigate the feasibility of using dual-layer spectral CT multi-parameter feature to predict microvascular invasion of hepatocellular carcinoma. METHODS: This retrospective study enrolled 50 HCC patients who underwent multiphase contrast-enhanced spectral CT studies preoperatively. Combined clinical data, radiological features with spectral CT quantitative parameter were constructed to predict MVI. ROC was applied to identify potential predictors of MVI. The CT values obtained by simulating the conventional CT scans with 70 keV images were compared with those obtained with 40 keV images. RESULTS: 50 hepatocellular carcinomas were detected with 30 lesions (Group A) with microvascular invasion and 20 (Group B) without. There were significant differences in AFP,tumer size, IC, NIC,slope and effective atomic number in AP and ICrr in VP between Group A ((1000(10.875,1000),4.360±0.3105, 1.7750 (1.5350,1.8825) mg/ml, 0.1785 (0.1621,0.2124), 2.0362±0.2108,8.0960±0.1043,0.2830±0.0777) and Group B (4.750(3.325,20.425),3.190±0.2979,1.4700 (1.4500,1.5775) mg/ml, 0.1441 (0.1373,0.1490),1.8601±0.1595, 7.8105±0.7830 and 0.2228±0.0612) (all p < 0.05). Using 0.1586 as the threshold for NIC, one could obtain an area-under-curve (AUC) of 0.875 in ROC to differentiate between tumours with and without microvascular invasion. AUC was 0.625 with CT value at 70 keV and improved to 0.843 at 40 keV. CONCLUSION: Dual-layer spectral CT provides additional quantitative parameters than conventional CT to enhance the differentiation between hepatocellular carcinoma with and without microvascular invasion. Especially, the normalized iodine concentration (NIC) in arterial phase has the greatest potential application value in determining whether microvascular invasion exists, and can offer an important reference for clinical treatment plan and prognosis assessment.

14.
BMC Med Imaging ; 24(1): 151, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890572

RESUMEN

BACKGROUND: Abdominal CT scans are vital for diagnosing abdominal diseases but have limitations in tissue analysis and soft tissue detection. Dual-energy CT (DECT) can improve these issues by offering low keV virtual monoenergetic images (VMI), enhancing lesion detection and tissue characterization. However, its cost limits widespread use. PURPOSE: To develop a model that converts conventional images (CI) into generative virtual monoenergetic images at 40 keV (Gen-VMI40keV) of the upper abdomen CT scan. METHODS: Totally 444 patients who underwent upper abdominal spectral contrast-enhanced CT were enrolled and assigned to the training and validation datasets (7:3). Then, 40-keV portal-vein virtual monoenergetic (VMI40keV) and CI, generated from spectral CT scans, served as target and source images. These images were employed to build and train a CI-VMI40keV model. Indexes such as Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity (SSIM) were utilized to determine the best generator mode. An additional 198 cases were divided into three test groups, including Group 1 (58 cases with visible abnormalities), Group 2 (40 cases with hepatocellular carcinoma [HCC]) and Group 3 (100 cases from a publicly available HCC dataset). Both subjective and objective evaluations were performed. Comparisons, correlation analyses and Bland-Altman plot analyses were performed. RESULTS: The 192nd iteration produced the best generator mode (lower MAE and highest PSNR and SSIM). In the Test groups (1 and 2), both VMI40keV and Gen-VMI40keV significantly improved CT values, as well as SNR and CNR, for all organs compared to CI. Significant positive correlations for objective indexes were found between Gen-VMI40keV and VMI40keV in various organs and lesions. Bland-Altman analysis showed that the differences between both imaging types mostly fell within the 95% confidence interval. Pearson's and Spearman's correlation coefficients for objective scores between Gen-VMI40keV and VMI40keV in Groups 1 and 2 ranged from 0.645 to 0.980. In Group 3, Gen-VMI40keV yielded significantly higher CT values for HCC (220.5HU vs. 109.1HU) and liver (220.0HU vs. 112.8HU) compared to CI (p < 0.01). The CNR for HCC/liver was also significantly higher in Gen-VMI40keV (2.0 vs. 1.2) than in CI (p < 0.01). Additionally, Gen-VMI40keV was subjectively evaluated to have a higher image quality compared to CI. CONCLUSION: CI-VMI40keV model can generate Gen-VMI40keV from conventional CT scan, closely resembling VMI40keV.


Asunto(s)
Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Femenino , Masculino , Persona de Mediana Edad , Radiografía Abdominal/métodos , Anciano , Adulto , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Relación Señal-Ruido , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Carcinoma Hepatocelular/diagnóstico por imagen , Anciano de 80 o más Años , Medios de Contraste
15.
Phys Med Biol ; 69(14)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38942009

RESUMEN

Objective.With the introduction of spectral CT techniques into the clinic, the imaging capacities of CT were expanded to multiple energy levels. Due to a variety of factors, the acquired signal in spectral CT datasets is shared between these images. Conventional image quality metrics assume independence between images which is not preserved within spectral CT datasets, limiting their utility for characterizing energy selective images. The purpose of this work was to develop a metrology to characterize energy selective images by incorporating the shared information between images within a spectral CT dataset.Approach.The signal-to-noise ratio (SNR) was extended into a multivariate space where each image within a spectral CT dataset was treated as a separate information channel. The general definition was applied to the specific case of contrast to define a multivariate contrast-to-noise ratio (CNR). The matrix contained two types of terms: a conventional CNR term which characterized image quality within each image in the spectral CT dataset and covariance weighted CNR (Covar-CNR) which characterized the contrast in each image relative to the covariance between images. Experimental data from an investigational photon-counting CT scanner was used to demonstrate the insight of this metrology. A cylindrical water phantom containing vials of iodine and gadolinium (2, 4, and 8 mg ml-1) was imaged under conditions of variable tube current, tube voltage, and energy threshold. Two image series (threshold and bin images) containing two images each were defined based upon the contribution of photons to reconstructed images. Analysis of variance (ANOVA) was calculated between CNR terms and image acquisition variables. A multivariate regression was then fitted to experimental data.Main Results.Image type had a major difference on how Covar-CNR values were distributed. Bin images had a slightly higher mean and wider standard deviation (Covar-CNRlo: 3.38 ±17.25, Covar-CNRhi: 5.77 ± 30.64) compared to threshold images (Covar-CNRlo: 2.08 ±1.89, Covar-CNRhi: 3.45 ± 2.49) across all conditions. ANOVA found that each acquisition variable had a significant relationship with both Covar-CNR terms. The multivariate regression model suggested that material concentration had the largest impact on all CNR terms.Signficance.In this work, we described a theoretical framework to extend the SNR to a multivariate form that is able to characterize images independently and also provide insight regarding the relationship between images. Experimental data was used to demonstrate the insight that this metrology provides about image formation factors in spectral CT.


Asunto(s)
Relación Señal-Ruido , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Análisis Multivariante , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
16.
Eur J Radiol ; 177: 111553, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878500

RESUMEN

PURPOSE: To evaluate the diagnostic value of spectral CT for the preoperative diagnosis of N2 station lymph nodes metastasis in solid T1 non-small cell lung cancer (NSCLC). METHOD: For this retrospective study, dual-phase contrast agent-enhanced CT was performed in patients with NSCLC from September 2019 to June 2023. Quantitative spectral CT parameters measurements were performed by 2 radiologists independently. Logistic regression analysis and Delong test were performed. RESULTS: 60 NSCLC patients (mean age, 62.85 years ± 8.49, 44men) were evaluated. A total of 121 lymph nodes (38 with metastasis) were enrolled. There was no significant difference in the slope of the spectral Hounsfield unit curve (λHu) on arterial phase (AP) or venous phase (VP) between primary lesions and metastatic lymph nodes (P > 0.05), but significant difference in VP λHu between primary lesions and non-metastatic lymph nodes (P < 0.001). The CT40KeV, λHu, normalized iodine concentration (nIC), normalized effective atomic number (nZeff) measured during both AP and VP were lower in metastatic lymph nodes than in non-metastatic lymph nodes (all P < 0.05). Short-axis diameter (S) of metastatic lymph nodes was higher than non-metastatic lymph nodes (P < 0.001). Area under the curve (AUC) for S performed the highest (0.788) in diagnosing metastatic lymph nodes. When combined with VP λHu, VP nZeff, AUC increased to 0.871. CONCLUSION: Spectral CT is a complementary means for the preoperative diagnosis of N2 station lymph nodes metastasis in solid T1 NSCLC. The combined parameters have higher diagnostic efficiency.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Medios de Contraste , Neoplasias Pulmonares , Metástasis Linfática , Tomografía Computarizada por Rayos X , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Femenino , Metástasis Linfática/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/secundario , Tomografía Computarizada por Rayos X/métodos , Estudios Retrospectivos , Anciano , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Cuidados Preoperatorios/métodos , Estadificación de Neoplasias
17.
Diagnostics (Basel) ; 14(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928677

RESUMEN

Photon-counting CT systems generally allow for acquiring multiple spectral datasets and thus for decomposing CT images into multiple materials. We introduce a prior knowledge-free deterministic material decomposition approach for quantifying three material concentrations on a commercial photon-counting CT system based on a single CT scan. We acquired two phantom measurement series: one to calibrate and one to test the algorithm. For evaluation, we used an anthropomorphic abdominal phantom with inserts of either aqueous iodine solution, aqueous tungsten solution, or water. Material CT numbers were predicted based on a polynomial in the following parameters: Water-equivalent object diameter, object center-to-isocenter distance, voxel-to-isocenter distance, voxel-to-object center distance, and X-ray tube current. The material decomposition was performed as a generalized least-squares estimation. The algorithm provided material maps of iodine, tungsten, and water with average estimation errors of 4% in the contrast agent maps and 1% in the water map with respect to the material concentrations in the inserts. The contrast-to-noise ratio in the iodine and tungsten map was 36% and 16% compared to the noise-minimal threshold image. We were able to decompose four spectral images into iodine, tungsten, and water.

18.
Radiol Case Rep ; 19(8): 3517-3521, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38881625

RESUMEN

Dual-energy or spectral computed tomography (CT) information may be obtained by either sending X-ray beams of different energy spectra through the patient or by discriminating the energy of the X-rays that reach the detector. The spectral signal is then used to generate multiple results: conventional, virtual monoenergetic (MonoE), effective atomic number, electron density, and other material specific (e.g., iodine, calcium, or uric acid). This report demonstrates the potential benefits of spectral CT imaging during percutaneous tumor ablation procedures, specifically regarding visualization of inconspicuous tumors, accurate probe placement, and assessment of treatment efficacy.

19.
J Appl Clin Med Phys ; 25(7): e14383, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801204

RESUMEN

OBJECTIVE: To assess the impact of scatter radiation on quantitative performance of first and second-generation dual-layer spectral computed tomography (DLCT) systems. METHOD: A phantom with two iodine inserts (1 and 2 mg/mL) configured to intentionally introduce high scattering conditions was scanned with a first- and second-generation DLCT. Collimation widths (maximum of 4 cm for first generation and 8 cm for second generation) and radiation dose levels were varied. To evaluate the performance of both systems, the mean CT numbers of virtual monoenergetic images (MonoEs) at different energies were calculated and compared to expected values. MonoEs at 50  versus 150 keV were plotted to assess material characterization of both DLCTs. Additionally, iodine concentrations were determined, plotted, and compared against expected values. For each experimental scenario, absolute errors were reported. RESULTS: An experimental setup, including a phantom design, was successfully implemented to simulate high scatter radiation imaging conditions. Both CT scanners illustrated high spectral accuracy for small collimation widths (1 and 2 cm). With increased collimation (4 cm), the second-generation DLCT outperformed the earlier DLCT system. Further, the spectral performance of the second-generation DLCT at an 8 cm collimation width was comparable to a 4 cm collimation on the first-generation DLCT. A comparison of the absolute errors between both systems at lower energy MonoEs illustrates that, for the same acquisition parameters, the second-generation DLCT generated results with decreased errors. Similarly, the maximum error in iodine quantification was less with second-generation DLCT (0.45  and 0.33 mg/mL for the first and second-generation DLCT, respectively). CONCLUSION: The implementation of a two-dimensional anti-scatter grid in the second-generation DLCT improves the spectral quantification performance. In the clinical routine, this improvement may enable additional clinical benefits, for example, in lung imaging.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Dispersión de Radiación , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Dosis de Radiación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
20.
Abdom Radiol (NY) ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744700

RESUMEN

PURPOSE: This study aimed to determine the diagnostic efficacy of various indicators and models for the prediction of gastric cancer with liver metastasis. METHODS: Clinical and spectral computed tomography (CT) data from 80 patients with gastric adenocarcinoma who underwent surgical resection were retrospectively analyzed. Patients were divided into metastatic and non-metastatic groups based on whether or not to occur liver metastasis, and the region of interest (ROI) was measured manually on each phase iodine map at the largest level of the tumor. Iodine concentration (IC), normalized iodine concentration (nIC), and clinical data of the primary gastric lesions were analyzed. Logistic regression analysis was used to construct the clinical indicator (CI) and clinical indicator-spectral CT iodine concentration (CI-Spectral CT-IC) Models, which contained all of the parameters with statistically significant differences between the groups. Receiver operating characteristic (ROC) curves were constructed to evaluate the accuracy of the models. RESULTS: The metastatic group showed significantly higher levels of Cancer antigen125 (CA125), carcinoembryonic antigen (CEA), IC, and nIC in the arterial phase, venous phase, and delayed phase than the non-metastatic group (all p < 0.05). Normalized iodine concentration Venous Phase (nICVP) exhibited a favorable performance among all IC and nIC parameters for forecasting gastric cancer with liver metastasis (area under the curve (AUC), 0.846). The combination model of clinical data with significant differences and nICVP showed the best diagnostic accuracy for predicting liver metastasis from gastric cancer, with an AUC of 0.897. CONCLUSION: nICVP showed the best diagnostic efficacy for predicting gastric cancer with liver metastasis. Clinical Indicators-normalized ICVP model can improve the prediction accuracy for this condition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA