Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Intervalo de año de publicación
1.
Toxics ; 12(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38787112

RESUMEN

The addition of soil amendments and plants in heavy metal-contaminated soil can result in a significant impact on physicochemical properties, microbial communities and heavy metal distribution, but the specific mechanisms remain to be explored. In this study, Koelreuteria paniculata was used as a test plant, spent mushroom compost (SMC) and attapulgite (ATP) were used as amendments, and manganese slag was used as a substrate. CK (100% slag), M0 (90% slag + 5% SMC + 5% ATP) and M1 (90% slag + 5% SMC + 5% ATP, planting K. paniculata) groups were assessed in a pilot-scale experiment to explore their different impacts on phytoremediation. The results indicated that adding the amendments significantly improved the pH of the manganese slag, enhancing and maintaining its fertility and water retention. Adding the amendments and planting K. paniculata (M1) significantly reduced the bioavailability and migration of heavy metals (HMs). The loss of Mn, Pb and Zn via runoff decreased by 15.7%, 8.4% and 10.2%, respectively, compared to CK. K. paniculata recruited and enriched beneficial fungi, inhibited pathogenic fungi, and a more stable fungal community was built. This significantly improved the soil quality, promoted plant growth and mitigated heavy metal toxicity. In conclusion, this study demonstrated that the addition of SMC-ATP and planting K. paniculata showed a good phytostabilization effect in the manganese slag and further revealed the response process of the fungal community in phytoremediation.

2.
Environ Sci Pollut Res Int ; 31(10): 14959-14970, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38285254

RESUMEN

Due to the rapid development of animal husbandry, the associated environmental problems cannot be ignored, with the management of livestock and poultry manure emerging as the most prominent issue. Composting technology has been widely used in livestock and poultry manure management. A deeper understanding of the nitrogen conversion process during composting offers a theoretical foundation for selecting compost substrates. In this study, the effects of sawdust (CK) and spent mushroom compost (T1) as auxiliary materials on nitrogen as well as microbial structure in the composting process when composted with chicken manure were investigated. At the end of composting, the nitrogen loss of T1 was reduced by 17.18% relative to CK. When used as a compost substrate, spent mushroom compost accelerates the succession of microbial communities within the compost pile and alters the core microbial communities within the microbial community. Bacterial genera capable of cellulose degradation (Fibrobacter, Herbinix) are new core microorganisms that influence the assimilation of nitrate reduction during compost maturation. Using spent mushroom compost as a composting substrate increased the enzyme activity of nitrogen assimilation while decreasing the enzyme activity of the denitrification pathway.


Asunto(s)
Compostaje , Animales , Nitrógeno , Pollos , Estiércol/microbiología , Suelo/química , Aves de Corral
3.
Sci Total Environ ; 892: 164720, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37302607

RESUMEN

This study aimed to investigate the potential of three bioamendments (rice husk biochar, wheat straw biochar, and spent mushroom compost) to enhance microbial degradation of crude oil in saline soil. A soil microcosm experiment was conducted, comparing the response of soil microorganisms to crude oil under saline (1 % NaCl) and non-saline conditions. The soils were amended with different bioamendments at varying concentrations (2.5 % or 5 %), and degradation rates were monitored over a 120-day period at 20 °C. The results showed that the bioamendments significantly influenced the degradation of total petroleum hydrocarbons (TPH) in both non-saline and saline soils by 67 % and 18 % respectively. Non-saline soils exhibited approximately four times higher TPH biodegradation compared to saline soils. Among the bioamendments, rice husk biochar and spent mushroom compost had the greatest impact on biodegradation in saline soil, while wheat straw and rice husk biochar combined with spent mushroom compost showed the most significant effects in non-saline soil. The study also revealed that the bioamendments facilitated changes in the microbial community structure, particularly in the treatments with rice husk biochar and wheat straw biochar. Actinomycetes and fungi were found to be more tolerant to soil salinity, especially in the treatments with rice husk biochar and wheat straw biochar. Additionally, the production of CO2, indicating microbial activity, was highest (56 % and 60 %) in the treatments combining rice husk biochar or wheat straw biochar with spent mushroom compost in non-saline soil, while in saline soil rice husk biochar treatment (50 %) was the highest. Overall, this research demonstrates that the application of bioamendments, particularly rice husk biochar and wheat straw biochar combined with spent mushroom compost, can effectively enhance the biodegradation of crude oil in saline soil. These findings highlight the potential of such bioamendments as green and sustainable solutions for soil pollution, especially in the context of climate change-induced impacts on high-salinity soils, including coastal soils.


Asunto(s)
Agaricales , Oryza , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Salinidad , Suelo/química , Carbón Orgánico/química , Triticum , Contaminantes del Suelo/análisis
4.
Plants (Basel) ; 12(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36771516

RESUMEN

The most common approaches for the in-situ bioremediation of contaminated sites worldwide are bioaugmentation and biostimulation. Biostimulation has often proved more effective for chronically contaminated sites. This study examined the effectiveness of optimized water hyacinth compost in comparison with other organic and inorganic amendments for the remediation of crude oil-polluted soils. Water hyacinth was found to be rich in nutrients necessary to stimulate microbial growth and activity. An organic geochemical analysis revealed that all amendments in this study increased total petroleum hydrocarbon (TPH) biodegradation by ≥75% within 56 days, with the greatest biodegradation (93%) occurring in sterilized soil inoculated with optimized water hyacinth compost. This was followed by polluted soil amended with a combination of spent mushroom and water hyacinth composts (SMC + WH), which recorded a TPH biodegradation of 89%. Soil amendment using the inorganic fertilizer NPK (20:10:10) resulted in 86% TPH biodegradation. On the other hand, control samples (natural attenuation) recorded only 4% degradation. A molecular analysis of residual polycyclic aromatic hydrocarbons (PAHs) showed that the 16 PAHs designated by the US EPA as priority pollutants were either completely or highly degraded in the combined treatment (SMC + WH), indicating the potential of this amendment for the environmental remediation of soils contaminated with recalcitrant organic pollutants.

5.
Toxics ; 9(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34822667

RESUMEN

The public is already aware that nitrate pollution caused by nutrient runoff from farms is harmful to aquatic life and human health, and there is an urgent need for a product/technology to solve this problem. A biochar adsorbent was synthesized and used to remove nitrate ions from aqueous media based on spent mushroom compost (SMC), pre-treated with iron (III) chloride hexahydrate and pyrolyzed at 600 °C. The surface properties and morphology of SMCB/Fe were investigated using Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The effect of main parameters such as the adsorbent dosages, pH of the solutions, contact times, and ion concentrations on the efficiency of nitrate removal was investigated. The validity of the experimental method was examined by the isothermal adsorption and kinetic adsorption models. The nitrate sorption kinetics were found to follow the pseudo-second-order model, with a higher determination coefficient (0.99) than the pseudo-first-order (0.86). The results showed that the maximum percentage of nitrate adsorption was achieved at equilibrium pH 5-7, after 120 min of contact time, and with an adsorbent dose of 2 g L-1. The highest nitrate adsorption capacity of the modified adsorbent was 19.88 mg g-1.

6.
Ecotoxicol Environ Saf ; 196: 110538, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32244118

RESUMEN

The use of phytoremediation was an efficient strategy for the restoration of mine slag and the addition of modifier was favorable for improving the phytoremediation efficiency. Herein, spent mushroom compost (SMC) was added in manganese (Mn) slag to reveal the phytoremediation potential of Paulownia fortunei seedlings. The transportation, subcellular distribution and chemical forms of Mn in P. fortunei, the diurnal variation of photosynthesis and antioxidant enzyme activities in P. fortunei leaves were measured to reveal the effect of SMC (mass ratios of 10%, M+) on the phytoremediation of Mn slag. Results showed that the addition of SMC increased the accumulation content of Mn by 408.54% due to the increased biomass of P. fortunei seedlings. After SMC amendment, the maximum net photosynthetic rate (Pn) increased and the superoxide dismutase (SOD) activities decreased significantly (p < 0.05), which was beneficial to the tolerance of leaves to Mn stress. SMC amendment maintained the cell structural integrity of P. fortunei seedlings observed by transmission electron microscope (TEM). Additionally, SMC amendment decreased the damage level of Mn to the cell of P. fortunei seedlings by using function groups (-CH3 and -COOH) to bond Mn in the cell walls and vacuoles. SMC amendment reduced the Mn toxicity to P. fortunei seedlings and improved the phytoremediation capacity.


Asunto(s)
Agaricales/metabolismo , Compostaje , Lamiales/metabolismo , Manganeso/metabolismo , Contaminantes del Suelo/metabolismo , Antioxidantes/metabolismo , Biodegradación Ambiental , Biomasa , Fotosíntesis , Plantones/metabolismo
7.
Int J Biol Macromol ; 151: 1267-1276, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31751686

RESUMEN

Increasing evidences have demonstrated that the reactive oxygen species play important roles in the initiation and progress of LPS-induced kidney injury (KI). The present work investigated the antioxidant, anti-inflammatory and renoprotective effects of acidic spent mushroom compost polysaccharides (ASMCP) by Lentinula edodes against the LPS-induced KI in mice. The results demonstrated that ASMCP showed anti-inflammatory effects on reducing the serum levels of TNF-α, IL-6 and IL-1ß, inhibiting the elevation of lipid peroxidation, lowering the serum levels of BUN, CRE and UA, and improving the antioxidant status by enhancing renal enzyme activities (SOD, GSH-Px, CAT and T-AOC). Furthermore, the histological observations of renal cortex and renal medulla also indicated the potential renoprotective effects of ASMCP. These conclusions suggested that ASMCP might be suitable for functional foods and a potentially effective candidate medicine for the treatment of KI.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Polisacáridos Fúngicos/farmacología , Sustancias Protectoras/farmacología , Hongos Shiitake/química , Animales , Antiinflamatorios/química , Antioxidantes/química , Biomarcadores , Biopsia , Análisis Químico de la Sangre , Citocinas/sangre , Citocinas/metabolismo , Polisacáridos Fúngicos/química , Mediadores de Inflamación/sangre , Mediadores de Inflamación/metabolismo , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/etiología , Peroxidación de Lípido , Lipopolisacáridos/efectos adversos , Ratones , Peso Molecular , Monosacáridos/química , Sustancias Protectoras/química
8.
3 Biotech ; 9(11): 410, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31692701

RESUMEN

The aim of the present work was to evaluate the nematicidal potential of Flammulina velutipes and its spent mushroom compost. Additionally, the nematicidal activity of enzymes and metabolites was analyzed. Isolated F. velutipes and its SMC had significant nematicidal effect on Panagrellus sp. larvae. The percentages of reduction in relation to the control group were: 69, 57.5 and 70% for SMC and 56, 24.5 and 26.6% for the isolated fungus, for 24, 48 and 72 h, respectively. The active SMC crude extract showed nematicidal action with reduction percentages of 43 and 57% for 24 and 48 h of incubation, respectively. The boiled crude extract also showed nematicidal action, however, the reduction percentages were lower than those of the active extract. This demonstrated that the nematicidal action was due to enzyme activities and other metabolites. The results demonstrated that SMC, the isolated fungus, the crude extract and the boiled crude extract showed a significant percentage of reduction on Panagrellus sp. larvae. SMC evidenced a higher nematicidal activity than the isolated fungus. In addition, nematophagous activity of F. velutipes was observed for the first time.

9.
J Environ Manage ; 241: 612-618, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30962005

RESUMEN

Due to complex inherent structure of lignocellulosic biomass, inefficient hydrolysis and acidification limits fermentative volatile fatty acids (VFA) production of mushroom residues. Meanwhile, the mushroom residues present insufficient nutrient with a high C/N ratio. To solve this issue, anaerobic co-fermentation of cellulose-rich Oyster champost and sewage sludge was tested to enhance the VFA production, and the effect of proportion of mixed substrate was investigated in this study. The results indicated that the sewage sludge yielded higher VFAs than the Oyster champost in single-substrate fermentative system. The maximal VFA yield of 595 mgCOD/gVSadded was achieved when the proportion of sewage sludge increased to 50% in the mixed substrate. In the co-fermentation system, the optimal C/N ratio and features of mixed substrate contributed to the enhancement in hydrolysis and acidification in terms of organic solubilization and VFA production, respectively. But the co-fermentation could not increase VFA/SCOD ratio, probably due to the existence of refractory products such as humic-like and protein-like materials. Besides, this co-fermentation system had strong buffer capacity and it was not necessary to dose chemicals to control the system pH for stable VFA production. Acetate was the dominant VFA product in co-fermentation systems. A modified-Logistic model fitted co-fermentation of sludge and Oyster champost well, and presented a faster rate and higher efficiency of VFA production.


Asunto(s)
Agaricales , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Ácidos Grasos Volátiles , Fermentación , Concentración de Iones de Hidrógeno , Cinética
10.
Exp Parasitol ; 197: 16-19, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30615860

RESUMEN

Spent mushroom compost (SMC) is a residue generated in edible mushrooms production, such as Hypsizygus marmoreus. Its genome was recently sequenced, demonstrating cuticle-degrading protease genes. The present work aims to investigate the proteases from H. marmoreus spent mushroom compost (SMC) by verifying its action on nematode larvae. The extraction of the crude extract directly with water from H. marmoreus SMC proved to be efficient for proteases obtainment, with proteolytic activity of 195.36 ±â€¯18.38 U g-1 of compound. Moreover, the zymogram and SDS-PAGE indicated the presence of two proteases with estimated molecular weights of 30.2 and 33.7 kDa. Due to the protease activity present in H. marmoreus SMC extract, there was a significant reduction in the number of Panagrellus redivivus and L3 in treated group compared to control group (p < 0.01), with 52% and 26% of reduction, respectively. A0A151VWY3 mature protein is composed of 296 amino acid residues, exhibiting molecular weight and pI of 29.5 kDa and 6.72. A0A151WD28 mature protein is composed of 343 amino acid residues, exhibiting molecular weight and pI of 34.4 kDa and 8.04. In the present work it was demonstrated that SMC from H. marmoreus has easily extracted protease content, presenting two proteases, possibly with cuticle-degrading activity, which had significant nematicidal effect on P. redivivus and bovine infective larvae.


Asunto(s)
Agaricales/enzimología , Compostaje , Péptido Hidrolasas/metabolismo , Rabdítidos/efectos de los fármacos , Agaricales/genética , Animales , Bovinos , Mezclas Complejas/química , Mezclas Complejas/aislamiento & purificación , Mezclas Complejas/farmacología , Electroforesis en Gel de Poliacrilamida , Heces/parasitología , Larva/efectos de los fármacos , Peso Molecular , Péptido Hidrolasas/química , Rabdítidos/aislamiento & purificación , Strongyloidea/efectos de los fármacos , Strongyloidea/aislamiento & purificación , Trichostrongyloidea/efectos de los fármacos , Trichostrongyloidea/aislamiento & purificación
11.
Chemosphere ; 221: 403-411, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30648645

RESUMEN

Many fungi have been reported to enhance the plant responses and degradation of several persistent pollutants in soils. In this study, five dominant fungi strains were identified from a pesticides polluted soil in Nigeria and screened for the expression of phosphoesterase (opd and mpd) and catechol 1, 2-dioxygenase (afk2 and afk4) genes using Reverse Transcriptase-PCR technique. Their rhizosphere interaction with plant (Panicum maximum) was further studied for the degradation of 2, 2 Dichlorovinyl dimethyl phosphate (dichlorvos). Fungal strains were mixed with Spent Mushroom Compost (SMC) of Pleurotus ostreatus in 1:100 w/w and then applied to a sterilized pesticide polluted soil (5 kg) at increasing concentrations of 10, 20, 30 and 40% with two controls (plant only and fungi-SMC mixture only). Degradation efficiency (DE), degradation rate (K1) and half-life (t1/2) of dichlorvos was calculated in each treatment after 90-day of planting. All the strains were registered at NCBI gene-bank with accession numbers KY693969, KY488464, KY488465, KY693971 and KY693972: they all possess the tested genes although mpd and opd were over-expressed in all the strains while afk2 and afk4 were moderately expressed. The plant-fungi-SMC interaction synergistically sped-up dichlorvos degradation rate in less time period, appreciable loss of dichlorvos at 72.23 and 82.70% DE were observed in 30 and 40% treatments respectively as compared to controls 1 and 2 having 62.20 ±â€¯3.07 and 62.33 ±â€¯4.69% DE respectively. In the same way, the 40% treatment gave the best k1 and t1/2 of 1.755 and 0.40 ±â€¯0.02/day respectively.


Asunto(s)
Diclorvos/química , Hongos/metabolismo , Panicum/metabolismo , Rizosfera , Agaricales/metabolismo , Compostaje , Contaminación Ambiental/análisis , Cinética , Nigeria , Microbiología del Suelo
12.
Environ Technol ; 40(10): 1323-1336, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29281556

RESUMEN

The potential of selected materials in treating metal-rich acid mine drainage (AMD) has been investigated in a series of batch experiment. The efficiencies of both single and mixed substrates under two conditions i.e. low- and high-concentration solutions containing heavy metals were evaluated. Synthetic metal-containing AMD was used in the experiments treated using spent mushroom compost (SMC), ochre, steel slag (SS), and limestone. Different ratios of treatment materials were incorporated in the substrate mix and were tested in an anoxic condition. In the batch test, physicochemical parameters (pH, redox potential, total dissolved solids, conductivity, and Ca concentration) and heavy metals (Fe, Mn, Pb, Zn, and Al) were analysed. The mixed substrates have shown satisfactory performance in increasing pH with increasing Ca concentration and removing metals. It has been found that SS and ochre played an important role in the treatment of AMD. The results showed that the mixed substrates SM1 (i.e. 10% SMC mixed with 20% ochre, 30% steel slag, and 40% limestone) and SM2 (i.e. 20% SMC mixed with 30% ochre, 40% steel slag, and 10% limestone) were effective in increasing the pH from as low as 3.5-8.09, and removing heavy metals with more than 90% removal efficiencies.


Asunto(s)
Agaricales , Compostaje , Metales Pesados , Contaminantes Químicos del Agua , Carbonato de Calcio , Acero
13.
Trop Life Sci Res ; 29(1): 173-194, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29644023

RESUMEN

The objective of this study was to investigate the influence of spent mushroom compost of Pleurotus eous strain P-31 on the growth and yield performance of pepper and tomato seedlings under greenhouse conditions. Sandy loam soil was combined with different percentages of SMC to obtain the following combinations (0, 5, 10, 15, 20, 25 and 30) %. Lower concentrations SMC5, SMC10 and SMC15 promoted vegetative growth (plant height, leaf area, chlorophyll content, number of leaves and axillary branches) of the two test plants. Tomato seedlings grown in SMC10 recorded the highest plant height (50.3 ± 7.2cm); leaf area (378.8 ± 1.2cm2); number of floral buds (51) and flowers (28) whereas SMC5 recorded the highest chlorophyll content 34.1 ± 0.9CCI though SMC15 recorded the highest number of leaves (8). Tomato seedlings grown in SMC30 produced both the maximum number of fruits (8) with corresponding high weight (34.2 ± 7.7g). Pepper seedlings grown in lower concentrations (SMC5-15) recorded the highest plant heights (29.8-30.8cm), chlorophyll content (20.3CCI) and leaf area (53.5-66.2 cm2). Although the different combinations of sandy loam soil and SMC did not significantly (p ≥ 0.05) affect the number of axillary branches developed; different combinations significantly (p ≤ 0.05) affected the number of floral bud, flower and fruit, weight of fruits formed and value of each of these increased with increasing percentage of SMC. Pepper seedlings grown on SMC30 recorded the maximum number of floral buds (32.0 ± 3.6), number of flowers (19.4 ± 1.3), number of fruits (10.8 ± 1.2) and weight of fruits (31.9 ± 3.4g). Tomato seedlings raised on SMC100 (spent mushroom compost only) and soil only did not significantly (p ≥ 0.05) differ from each other however, was statistically significant (p ≤ 0.05) from amended sandy loam soil by all criteria investigated. The study shows that SMC provide favourable soil conditioners for the cultivation of fruits, vegetables and foliage crops as it improved growth and yield of tomato and pepper seedlings.

14.
Sci Total Environ ; 634: 922-933, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29660886

RESUMEN

Acetaminophen and sulfonamides are emerging contaminants. Conventional wastewater treatment systems fail to degrade these compounds properly. Mycoremediation, is a form of novel bioremediation that uses extracellular enzymes of white-rot fungi to degrade pollutants in the environment. In this study, spent mushroom compost (SMC), which contains fungal extracellular enzymes, was tested for acetaminophen and sulfonamides removal. Among the SMCs of nine mushrooms tested in batch experiments, the SMC of Pleurotus eryngii exhibited the highest removal rate for acetaminophen and sulfonamides. Several fungal extracellular enzymes that might be involved in removal of acetaminophen and sulfonamides were identified by metaproteomic analysis. The bacterial classes, Betaproteobacteria and Alphaproteobacteria, were revealed by metagenomic analysis and may be assisting with acetaminophen and sulfonamide removal, respectively, in the SMC of Pleurotus eryngii. Bioreactor experiments were used to simulate the capability of Pleurotus eryngii SMC for the removal of acetaminophen and sulfonamides from wastewater. The results of this study provide a feasible solution for acetaminophen and sulfonamide removal from wastewater using the SMC of Pleurotus eryngii.


Asunto(s)
Agaricales , Biodegradación Ambiental , Compostaje/métodos , Bacterias , Reactores Biológicos , Pleurotus , Eliminación de Residuos/métodos
15.
Bioresour Technol ; 244(Pt 1): 897-904, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28847078

RESUMEN

In order to remove nitrogen effectively from the wastewater with a low C/N ratio, the feasibility of using spent mushroom compost (SMC) hydrolysates as carbon sources for denitrification was investigated in a sequencing batch reactor (SBR). With SMCs supplement, the SBR performance was improved obviously within the 180days of operation. The total nitrogen removal was promoted from 46.9% to 81-89.4%, and no negative impact induced by different SMCs on the SBR system was observed. The abundance of functional genes including amoA, nirS/K, norB and nosZ in the active sludge was quantified by qPCR, and most of them elevated after SMC was fed. 16S rRNA gene high-throughput sequencing showed that the significant change in microbial community not only promoted pollutants removal but also benefited the stability of the reactor. Therefore, SMC could be an extremely promising carbon source used for nitrogen removal due to its cost-effective and efficient characteristics.


Asunto(s)
Agaricales , Desnitrificación , Reactores Biológicos , Nitrógeno , ARN Ribosómico 16S , Suelo
16.
Artículo en Inglés | MEDLINE | ID: mdl-28331625

RESUMEN

BACKGROUND: One of the most important environmental problems is the decontamination of petroleum hydrocarbons polluted soil, particularly in the oil-rich country. Bioremediation is the most effective way to remove these pollutants in the soil. Spent mushroom compost has great ability to decompose lignin-like pollution. The purpose of this study was the bioremediation of soil contaminated with crude oil by an Agaricomycetes. METHODS: Soil sample amended with spent mushroom compost into 3%, 5% and 10% (w/w) with or without fertilizer. Ecotoxicity germination test was conducted with Lipidium sativa. RESULTS: The amplified fragment (18 s rDNA) sequence of this mushroom confirmed that the strain belonged to Pleurotus ostreatus species with complete homology (100% identity). All tests experiment sets were effective at supporting the degradation of petroleum hydrocarbons contaminated soil after three months. Petroleum contaminated soil amended with Spent mushroom compost 10% and fertilizer removed 64.7% of total petroleum hydrocarbons compared control. The germination index (%) in ecotoxicity tests ranged from 60.4 to 93.8%. CONCLUSIONS: This showed that the petroleum hydrocarbons contaminated soil amended with 10% Spent mushroom compost had higher bioremediation ability and reduced soil toxicity in less than three months.

17.
Chemosphere ; 169: 23-31, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27855328

RESUMEN

Spent mushroom compost (SMC), a spent mushroom substrate (SMS) derived compost, is always applied to agriculture land to enhance soil organic matter and nutrient contents. However, nitrogen, phosphate and organic matter contained in SMC can leach out and contaminate ground water during its application. In this study, biochars prepared under different pyrolytic temperatures (550 °C, 650 °C or 750 °C) from SMS were applied to soil as a nutrient conservation strategy. The resultant biochars were characterized for physical and mineralogical properties. Surface area and pore volume of biochars increased as temperature increased, while pore size decreased with increasing temperature. Calcite and quartz were evidenced by X-ray diffraction analysis in all biochars produced. Results of column leaching test suggested that mixed treatment of SMC and SMS-750-800 (prepared with the temperature for pyrolysis and activation was chosen as 750 °C and 800 °C, respectively) could reduce 43% of TN and 66% of CODCr in leachate as compared to chemical fertilizers and SMC, respectively. Furthermore, increasing dosage of SMS-750-800 from 1% to 5% would lead to 54% CODCr reduction in leachate, which confirmed its nutrient retention capability. Findings from this study suggested that combined application of SMC and SMS-based biochar was an applicable strategy for reducing TN and CODCr leaching.


Asunto(s)
Agaricales , Carbón Orgánico/química , Fertilizantes , Agricultura , Nitrógeno/análisis , Suelo/química , Temperatura , Verduras , Difracción de Rayos X
18.
Environ Technol ; 38(16): 2003-2012, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27745113

RESUMEN

Passive bioremediation of metal- and sulfate-containing acid mine drainage (AMD) has been investigated in a batch study. Multiple substrates were used in the AMD remediation using spent mushroom compost (SMC), limestone, activated sludge (AS), and woodchips (WC) under anoxic conditions suitable for bacterial sulfate reduction (BSR). Limestones used were of crushed limestone (CLS) and uncrushed limestone, provided at two different ratios in mixed substrates treatment and varied by the proportion of SMC and limestone. The SMC greatly assisted the removals of sulfate and metals and also acted as an essential carbon source for BSR. The mixed substrate composed of 40% CLS, 30% SMC, 20% AS, and 10% WC was found to be effective for metal removal. Mn, Cu, Pb, and Zn were greatly removed (89-100%) in the mixed substrates treatment, while Fe was only removed at 65%. Mn was found to be removed at a greatly higher rate than Fe, suggesting important Mn adsorption onto organic materials, that is, greater sorption affinity to the SMC. Complementary with multiple treatment media was the main mechanism assisting the AMD treatment through microbial metal reduction reactions.


Asunto(s)
Agaricales , Biodegradación Ambiental , Minería , Contaminantes Químicos del Agua , Carbonato de Calcio , Metales , Suelo , Sulfatos
19.
Environ Sci Pollut Res Int ; 23(19): 19754-63, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27411536

RESUMEN

This study investigated the degradation of sulfonamide antibiotics (SAs) and microbial community changes in sludge-amended soil. In batch experiments, SA degradation was enhanced by addition of spent mushroom compost (SMC), SMC extract, and extract-containing microcapsule, with SMC showing higher SA degradation rate than the other additives in soil-sludge mixtures. In bioreactor experiments, the degradation of SAs in soil-sludge mixtures was in the order of sulfamethoxazole > sulfadimethoxine > sulfamethazine during four times of SA addition. SA removal was higher in soil-sludge mixtures than in soil alone. The bacterial composition differed in soil-sludge mixtures with and without SMC. In total, 44 differentially distributed bacterial genera were identified from different experimental settings and stages. Four bacterial genera, Acinetobacter, Alcaligenes, Brevundimonas, and Pseudomonas, were previously found involved in SA degradation, and 20 of the 44 bacterial genera were previously found in aromatic hydrocarbon degradation. Therefore, these bacteria have high potential to be SA degradation bacteria in this study.


Asunto(s)
Antibacterianos/metabolismo , Bacterias/metabolismo , Aguas del Alcantarillado/microbiología , Sulfadimetoxina/metabolismo , Sulfametazina/metabolismo , Sulfametoxazol/metabolismo , Agaricales , Bacterias/aislamiento & purificación , Reactores Biológicos , Microbiología del Suelo , Contaminantes del Suelo/metabolismo
20.
Chemosphere ; 150: 559-565, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26921914

RESUMEN

Sulfonamide antibiotics are widely used in human and veterinary medicine. This study assessed the degradation of three sulfonamides (100 mg kg(-1) each of sulfamethoxazole, sulfadimethoxine and sulfamethazine) and changes in the microbial communities of sewage sludge. Sulfamethoxazole degradation was enhanced by spent mushroom compost (SMC), SMC extract, and extract-containing microcapsules in the sludge. The degradation of sulfonamides in sludge and SMC mixtures occurred in the order of sulfamethoxazole > sulfadimethoxine > sulfamethazine. Bioreactor experiments revealed that the sulfonamides removal rates in sludge with SMC were greater than those in sludge alone. The sulfonamides removal rates were enhanced by the addition of SMC for six time additions. The sulfonamides concentrations were 200 and 500 mg kg(-1) for the first to third additions and the fourth to sixth additions, respectively. With the high correlations between TOC and the proportions of sulfonamides remaining in sludge, sulfonamides may be mineralized to a greater extent with SMC in sludge than in sludge alone. Four bacterial genera were identified from the different settings and stages of the bioreactor experiments. Acinetobacter and Pseudomonas were major bacterial communities that were responsible for sulfonamide degradation in sludge.


Asunto(s)
Antibacterianos/metabolismo , Aguas del Alcantarillado/microbiología , Sulfonamidas/metabolismo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodegradación Ambiental , Reactores Biológicos/microbiología , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA