Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 353, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39154297

RESUMEN

The morphology of dendritic spines, the postsynaptic compartment of most excitatory synapses, decisively modulates the function of neuronal circuits as also evident from human brain disorders associated with altered spine density or morphology. Actin filaments (F-actin) form the backbone of spines, and a number of actin-binding proteins (ABP) have been implicated in shaping the cytoskeleton in mature spines. Instead, only little is known about the mechanisms that control the reorganization from unbranched F-actin of immature spines to the complex, highly branched cytoskeleton of mature spines. Here, we demonstrate impaired spine maturation in hippocampal neurons upon genetic inactivation of cyclase-associated protein 1 (CAP1) and CAP2, but not of CAP1 or CAP2 alone. We found a similar spine maturation defect upon overactivation of inverted formin 2 (INF2), a nucleator of unbranched F-actin with hitherto unknown synaptic function. While INF2 overactivation failed in altering spine density or morphology in CAP-deficient neurons, INF2 inactivation largely rescued their spine defects. From our data we conclude that CAPs inhibit INF2 to induce spine maturation. Since we previously showed that CAPs promote cofilin1-mediated cytoskeletal remodeling in mature spines, we identified them as a molecular switch that control transition from filopodia-like to mature spines.


Asunto(s)
Proteínas del Citoesqueleto , Espinas Dendríticas , Forminas , Hipocampo , Proteínas de Microfilamentos , Espinas Dendríticas/metabolismo , Animales , Ratones , Forminas/metabolismo , Forminas/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Hipocampo/metabolismo , Hipocampo/citología , Células Cultivadas , Neuronas/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Ratones Noqueados , Humanos , Proteínas Portadoras
2.
Glia ; 72(6): 1150-1164, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38436489

RESUMEN

Ischemic stroke is the leading cause of adult disability. The rewiring of surviving neurons is the fundamental process for functional recovery. Accumulating evidence implicates astrocytes in synapses and neural circuits formation, but few studies have further studied how to enhance the effects of astrocytes on synapse and circuits after stroke and its impacts on post-stroke functional recovery. In this study, we made use of chemogenetics to specifically activate astrocytic Gi signaling in the peri-infarcted sensorimotor cortex at different time epochs in a mouse model of photothrombotic stroke. We found that early activation of astrocytic hM4Di after stroke by CNO modulates astrocyte activity and upregulates synaptogenic molecules including thrombospondin-1 (TSP1) as revealed by bulk RNA-sequencing, but no significant improvement was observed in dendritic spine density and behavioral performance in grid walking test. Interestingly, when the manipulation was initiated at the subacute phase of stroke, the recovery of spine density and motor function could be effectively promoted, accompanied by increased TSP1 expression. Our data highlight the important role of astrocytes in synapse remodeling during the repair phase of stroke and suggest astrocytic Gi signaling activation as a potential strategy for synapse regeneration, circuit rewiring, and functional recovery.


Asunto(s)
Astrocitos , Accidente Cerebrovascular , Ratones , Animales , Astrocitos/metabolismo , Accidente Cerebrovascular/metabolismo , Transducción de Señal , Neuronas/metabolismo , Sinapsis/metabolismo
3.
Exp Neurol ; 376: 114756, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508482

RESUMEN

Overexpression of the Ube3a gene and the resulting increase in Ube3a protein are linked to autism spectrum disorder (ASD). However, the cellular and molecular processes underlying Ube3a-dependent ASD remain unclear. Using both male and female mice, we find that neurons in the somatosensory cortex of the Ube3a 2× Tg ASD mouse model display reduced dendritic spine density and increased immature filopodia density. Importantly, the increased gene dosage of Ube3a in astrocytes alone is sufficient to confer alterations in neurons as immature dendritic protrusions, as observed in primary hippocampal neuron cultures. We show that Ube3a overexpression in astrocytes leads to a loss of astrocyte-derived spinogenic protein, thrombospondin-2 (TSP2), due to a suppression of TSP2 gene transcription. By neonatal intraventricular injection of astrocyte-specific virus, we demonstrate that Ube3a overexpression in astrocytes in vivo results in a reduction in dendritic spine maturation in prelimbic cortical neurons, accompanied with autistic-like behaviors in mice. These findings reveal an astrocytic dominance in initiating ASD pathobiology at the neuronal and behavior levels. SIGNIFICANCE STATEMENT: Increased gene dosage of Ube3a is tied to autism spectrum disorders (ASDs), yet cellular and molecular alterations underlying autistic phenotypes remain unclear. We show that Ube3a overexpression leads to impaired dendritic spine maturation, resulting in reduced spine density and increased filopodia density. We find that dysregulation of spine development is not neuron autonomous, rather, it is mediated by an astrocytic mechanism. Increased gene dosage of Ube3a in astrocytes leads to reduced production of the spinogenic glycoprotein thrombospondin-2 (TSP2), leading to abnormalities in spines. Astrocyte-specific Ube3a overexpression in the brain in vivo confers dysregulated spine maturation concomitant with autistic-like behaviors in mice. These findings indicate the importance of astrocytes in aberrant neurodevelopment and brain function in Ube3a-depdendent ASD.


Asunto(s)
Trastorno del Espectro Autista , Espinas Dendríticas , Neuroglía , Ubiquitina-Proteína Ligasas , Animales , Ratones , Astrocitos/metabolismo , Astrocitos/patología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Células Cultivadas , Espinas Dendríticas/patología , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Corteza Somatosensorial/metabolismo , Corteza Somatosensorial/patología , Trombospondinas/metabolismo , Trombospondinas/genética , Trombospondinas/biosíntesis , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Front Pharmacol ; 14: 1211663, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900157

RESUMEN

Introduction: Natural products such as phytoestrogens-enriched foods or supplements have been considered as an alternative therapy to reduce depressive symptoms associated with menopause. It is known that the aqueous extract of Punica granatum (AE-PG) exerts antidepressant-like effects by activating ß-estrogen receptors and facilitates the antidepressant response of the clinical drug citalopram (CIT). However, the effects on neuroplasticity are unknown. Objectvie investigated the antidepressant-like response of combining AE-PG and CIT at sub-optimal doses, analyzing their effects on the formation and maturation of dendrite spines in granule cells as well as on the dendrite complexity. Methods: Ovariectomized Wistar rats (3-month-old) were randomly assigned to one of the following groups: A) control (saline solution as vehicle of CIT and AE-PG, B) AE-PG at a sub-threshold dose (vehicle of CIT plus AE-PG at 0.125 mg/kg), C) CIT at a sub-threshold dose (0.77 mg/kg plus vehicle of AE-PG), and D) a combination of CIT plus AE-PG (0.125 mg/kg and 0.77 mg/kg, respectively). All rats were treated intraperitoneally for 14 days. Antidepressant-like effects were evaluated using the force swimming test test (FST). The complexity of dendrites and the number and morphology of dendrite spines of neurons were assessed in the dentate gyrus after Golgi-Cox impregnation. The expressions of the mature brain-derived neurotrophic factor (mBDNF) in plasma and of mBDNF and synaptophysin in the hippocampus, as markers of synaptogenesis, were also determined. Results: Administration of CIT combined with AE-PG, but not alone, induced a significant antidepressant-like effect in the FST with an increase in the dendritic complexity and the number of dendritic spines in the dentate gyrus (DG) of the hippocampus, revealed by the thin and stubby categories of neurons at the granular cell layer. At the same time, an increase of mBDNF and synaptophysin expression was observed in the hippocampus of rats that received the combination of AE-PG and CIT.

5.
eNeuro ; 10(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253589

RESUMEN

Synaptic modification in postnatal development is essential for the maturation of neural networks. Developmental maturation of excitatory synapses occurs at the loci of dendritic spines that are dynamically regulated by growth and pruning. Striatal spiny projection neurons (SPNs) receive excitatory input from the cerebral cortex and thalamus. SPNs of the striatonigral direct pathway (dSPNs) and SPNs of the striatopallidal indirect pathway (iSPNs) have different developmental roots and functions. The spatial and temporal dynamics of dendritic spine maturation of these two types of SPNs remain elusive. Here, we delineate the developmental trajectories of dendritic spines of dSPNs and iSPNs in the caudoputamen and nucleus accumbens (NAc). We labeled dendritic spines of SPNs by microinjecting Cre-dependent AAV-eYFP viruses into newborn Drd1-Cre or Adora2a-Cre mice, and analyzed spinogenesis at three levels, including different SPN cell types, subregions and postnatal times. In the dorsolateral striatum, spine pruning of dSPNs and iSPNs occurred at postnatal day (P)30-P50. In the dorsomedial striatum, the spine density of both dSPNs and iSPNs reached its peak between P30 and P50, and spine pruning occurred after P30 and P50, respectively, for dSPNs and iSPNs. In the NAc shell, spines of dSPNs and iSPNs were pruned after P21-P30, but no significant pruning was observed in iSPNs of lateral NAc shell. In the NAc core, the spine density of dSPNs and iSPNs reached its peak at P21 and P30, respectively, and subsequently declined. Collectively, the developmental maturation of dendritic spines in dSPNs and iSPNs follows distinct spatiotemporal trajectories in the dorsal and ventral striatum.


Asunto(s)
Espinas Dendríticas , Núcleo Accumbens , Ratones , Animales , Ratones Transgénicos , Cuerpo Estriado/metabolismo , Neuronas/fisiología
6.
Acta Pharmacol Sin ; 44(8): 1576-1588, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37012493

RESUMEN

Emerging evidence demonstrates the vital role of synaptic transmission and structural remodeling in major depressive disorder. Activation of melanocortin receptors facilitates stress-induced emotional behavior. Prolylcarboxypeptidase (PRCP) is a serine protease, which splits the C-terminal amino acid of α-MSH and inactivates it. In this study, we asked whether PRCP, the endogenous enzyme of melanocortin system, might play a role in stress susceptibility via regulating synaptic adaptations. Mice were subjected to chronic social defeat stress (CSDS) or subthreshold social defeat stress (SSDS). Depressive-like behavior was assessed in SIT, SPT, TST and FST. Based on to behavioral assessments, mice were divided into the susceptible (SUS) and resilient (RES) groups. After social defeat stress, drug infusion or viral expression and behavioral tests, morphological and electrophysiological analysis were conducted in PFX-fixed and fresh brain slices containing the nucleus accumbens shell (NAcsh). We showed that PRCP was downregulated in NAcsh of susceptible mice. Administration of fluoxetine (20 mg·kg-1·d-1, i.p., for 2 weeks) ameliorated the depressive-like behavior, and restored the expression levels of PRCP in NAcsh of susceptible mice. Pharmacological or genetic inhibition of PRCP in NAcsh by microinjection of N-benzyloxycarbonyl-L-prolyl-L-prolinal (ZPP) or LV-shPRCP enhanced the excitatory synaptic transmission in NAcsh, facilitating stress susceptibility via central melanocortin receptors. On the contrary, overexpression of PRCP in NAcsh by microinjection of AAV-PRCP alleviated the depressive-like behavior and reversed the enhanced excitatory synaptic transmission, abnormal dendritogenesis and spinogenesis in NAcsh induced by chronic stress. Furthermore, chronic stress increased the level of CaMKIIα, a kinase closely related to synaptic plasticity, in NAcsh. The elevated level of CaMKIIα was reversed by overexpression of PRCP in NAcsh. Pharmacological inhibition of CaMKIIα in NAcsh alleviated stress susceptibility induced by PRCP knockdown. This study has revealed the essential role of PRCP in relieving stress susceptibility through melanocortin signaling-mediated synaptic plasticity in NAcsh.


Asunto(s)
Trastorno Depresivo Mayor , Núcleo Accumbens , Ratones , Animales , Núcleo Accumbens/metabolismo , alfa-MSH/metabolismo , Plasticidad Neuronal/fisiología , Receptores de Melanocortina/metabolismo , Estrés Psicológico
7.
Prog Neurobiol ; 219: 102352, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36089108

RESUMEN

A few developmental genes remain persistently expressed in the adult stage, whilst their potential functions in the mature brain remain underappreciated. Here, we report the unexpected importance of Celsr2, a core Planar cell polarity (PCP) component, in maintaining the structural and functional integrity of adult neocortex. Celsr2 is highly expressed during development and remains expressed in adult neocortex. In vivo synaptic imaging in Celsr2 deficient mice revealed alterations in spinogenesis and reduced neuronal calcium activities, which are associated with impaired motor learning. These phenotypes were accompanied with anomalies of both postsynaptic organization and presynaptic vesicles. Knockout of Celsr2 in adult mice recapitulated those features, further supporting the role of Celsr2 in maintaining the integrity of mature cortex. In sum, our data identify previously unrecognized roles of Celsr2 in the maintenance of synaptic function and motor learning in adulthood.


Asunto(s)
Polaridad Celular , Sinapsis , Animales , Ratones , Ratones Noqueados , Sinapsis/fisiología , Neuronas , Encéfalo , Plasticidad Neuronal/fisiología , Cadherinas
8.
J Biol Chem ; 298(10): 102388, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35987384

RESUMEN

BAR (Bin, Amphiphysin, and Rvs) protein domains are responsible for the generation of membrane curvature and represent a critical mechanical component of cellular functions. Thus, BAR domains have great potential as components of membrane-remodeling tools for cell biologists. In this work, we describe the design and implementation of a family of versatile light-gated I-BAR (inverse BAR) domain containing tools derived from the fusion of the Arabidopsis thaliana cryptochrome 2 photoreceptor and I-BAR protein domains ("CRY-BARs") with applications in the remodeling of membrane architectures and the control of cellular dynamics. By taking advantage of the intrinsic membrane-binding propensity of the I-BAR domain, CRY-BARs can be used for spatial and temporal control of cellular processes that require induction of membrane protrusions. Using cell lines and primary neuron cultures, we demonstrate here that the CRY-BAR optogenetic tool evokes membrane dynamic changes associated with cellular activity. Moreover, we provide evidence that ezrin, an actin and phosphatidylinositol 4,5-bisphosphate-binding protein, acts as a relay between the plasma membrane and the actin cytoskeleton and therefore is an important mediator of switch function. Overall, we propose that CRY-BARs hold promise as a useful addition to the optogenetic toolkit to study membrane remodeling in live cells.


Asunto(s)
Citoesqueleto de Actina , Proteínas de Arabidopsis , Membrana Celular , Optogenética , Citoesqueleto de Actina/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Dominios Proteicos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Extensiones de la Superficie Celular/química , Optogenética/métodos , Humanos , Células HEK293
9.
Aging Cell ; 20(3): e13332, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33709472

RESUMEN

We previously demonstrated that ibrutinib modulates LPS-induced neuroinflammation in vitro and in vivo, but its effects on the pathology of Alzheimer's disease (AD) and cognitive function have not been investigated. Here, we investigated the effects of ibrutinib in two mouse models of AD. In 5xFAD mice, ibrutinib injection significantly reduced Aß plaque levels by promoting the non-amyloidogenic pathway of APP cleavage, decreased Aß-induced neuroinflammatory responses, and significantly downregulated phosphorylation of tau by reducing levels of phosphorylated cyclin-dependent kinase-5 (p-CDK5). Importantly, tau-mediated neuroinflammation and tau phosphorylation were also alleviated by ibrutinib injection in PS19 mice. In 5xFAD mice, ibrutinib improved long-term memory and dendritic spine number, whereas in PS19 mice, ibrutinib did not alter short- and long-term memory but promoted dendritic spinogenesis. Interestingly, the induction of dendritic spinogenesis by ibrutinib was dependent on the phosphorylation of phosphoinositide 3-kinase (PI3K). Overall, our results suggest that ibrutinib modulates AD-associated pathology and cognitive function and may be a potential therapy for AD.


Asunto(s)
Adenina/análogos & derivados , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Cognición , Inflamación/patología , Piperidinas/farmacología , Proteínas tau/metabolismo , Adenina/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Cognición/efectos de los fármacos , Quinasa 5 Dependiente de la Ciclina/metabolismo , Citocinas/metabolismo , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Gliosis/complicaciones , Mediadores de Inflamación/metabolismo , Memoria a Largo Plazo/efectos de los fármacos , Ratones Transgénicos , Neurogénesis/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Fosforilación/efectos de los fármacos , Placa Amiloide/patología
10.
Biol Psychiatry ; 89(11): 1096-1105, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33637303

RESUMEN

BACKGROUND: Ketamine elicits rapid onset antidepressant effects in patients with clinical depression through mechanisms hypothesized to involve the genesis of neocortical dendritic spines and synapses. Yet, the observed changes in dendritic spine morphology usually emerge well after ketamine clearance, raising questions about the link between rapid behavioral effects of ketamine and plasticity. METHODS: Here, we used two-photon glutamate uncaging/imaging to focally induce spinogenesis in the medial prefrontal cortex, directly interrogating baseline and ketamine-associated plasticity of deep layer pyramidal neurons in C57BL/6 mice. We combined pharmacological, genetic, optogenetic, and chemogenetic manipulations to interrogate dopaminergic mechanisms underlying ketamine-induced rapid enhancement in evoked plasticity and associated behavioral changes. RESULTS: We found that ketamine rapidly enhances glutamate-evoked spinogenesis in the medial prefrontal cortex, with timing that matches the onset of its behavioral efficacy and precedes changes in dendritic spine density. Ketamine increases evoked cortical spinogenesis through dopamine Drd1 receptor (Drd1) activation that requires dopamine release, compensating blunted plasticity in a learned helplessness paradigm. The enhancement in evoked spinogenesis after Drd1 activation or ketamine treatment depends on postsynaptic protein kinase A activity. Furthermore, ketamine's behavioral effects are blocked by chemogenetic inhibition of dopamine release and mimicked by activating presynaptic dopaminergic terminals or postsynaptic Gαs-coupled cascades in the medial prefrontal cortex. CONCLUSIONS: Our findings highlight dopaminergic mediation of rapid enhancement in activity-dependent dendritic spinogenesis and behavioral effects induced by ketamine.


Asunto(s)
Ketamina , Animales , Espinas Dendríticas , Ácido Glutámico , Humanos , Ketamina/farmacología , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal
11.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467450

RESUMEN

Fear extinction requires coordinated neural activity within the amygdala and medial prefrontal cortex (mPFC). Any behavior has a transcriptomic signature that is modified by environmental experiences, and specific genes are involved in functional plasticity and synaptic wiring during fear extinction. Here, we investigated the effects of optogenetic manipulations of prelimbic (PrL) pyramidal neurons and amygdala gene expression to analyze the specific transcriptional pathways associated to adaptive and maladaptive fear extinction. To this aim, transgenic mice were (or not) fear-conditioned and during the extinction phase they received optogenetic (or sham) stimulations over photo-activable PrL pyramidal neurons. At the end of behavioral testing, electrophysiological (neural cellular excitability and Excitatory Post-Synaptic Currents) and morphological (spinogenesis) correlates were evaluated in the PrL pyramidal neurons. Furthermore, transcriptomic cell-specific RNA-analyses (differential gene expression profiling and functional enrichment analyses) were performed in amygdala pyramidal neurons. Our results show that the optogenetic activation of PrL pyramidal neurons in fear-conditioned mice induces fear extinction deficits, reflected in an increase of cellular excitability, excitatory neurotransmission, and spinogenesis of PrL pyramidal neurons, and associated to strong modifications of the transcriptome of amygdala pyramidal neurons. Understanding the electrophysiological, morphological, and transcriptomic architecture of fear extinction may facilitate the comprehension of fear-related disorders.


Asunto(s)
Amígdala del Cerebelo/fisiología , Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Células Piramidales/fisiología , Transcriptoma/genética , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/metabolismo , Animales , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/fisiología , Miedo/psicología , Masculino , Memoria/fisiología , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Optogenética/métodos , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Células Piramidales/metabolismo , Transmisión Sináptica/fisiología
12.
Neurotherapeutics ; 18(1): 624-639, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33006091

RESUMEN

Fragile X syndrome (FXS) is the most common inherited source of intellectual disability in humans. FXS is caused by mutations that trigger epigenetic silencing of the Fmr1 gene. Loss of Fmr1 results in increased activity of the mitogen-activated protein kinase (MAPK) pathway. An important downstream consequence is activation of the mitogen-activated protein kinase interacting protein kinase (MNK). MNK phosphorylates the mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E). Excessive phosphorylation of eIF4E has been directly implicated in the cognitive and behavioral deficits associated with FXS. Pharmacological reduction of eIF4E phosphorylation is one potential strategy for FXS treatment. We demonstrate that systemic dosing of a highly specific, orally available MNK inhibitor, eFT508, attenuates numerous deficits associated with loss of Fmr1 in mice. eFT508 resolves a range of phenotypic abnormalities associated with FXS including macroorchidism, aberrant spinogenesis, and alterations in synaptic plasticity. Key behavioral deficits related to anxiety, social interaction, obsessive and repetitive activities, and object recognition are ameliorated by eFT508. Collectively, this work establishes eFT508 as a potential means to reverse deficits associated with FXS.


Asunto(s)
Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Piridinas/uso terapéutico , Pirimidinas/uso terapéutico , Animales , Síndrome del Cromosoma X Frágil/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Prueba de Campo Abierto/efectos de los fármacos , Conducta Social
13.
Neurosci Res ; 170: 6-12, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33159992

RESUMEN

Morphogenetic processes during brain development and postdevelopmental remodeling of neural architecture depend on the exquisite interplay between the microtubule- and actin-based cytoskeletal systems. Accumulation of evidence indicates cooperative roles of another cytoskeletal system composed of the septin family. Here we overview experimental findings on mammalian septins and their hypothetical roles in the proliferation of neural progenitor cells, neurite development, synapse formation and regulations. The diverse, mostly unexpected phenotypes obtained from gain- and loss-of-function mutants point to unknown molecular network to be elucidated, which may underlie pathogenetic processes of infectious diseases and neuropsychiatric disorders in humans.


Asunto(s)
Citoesqueleto , Septinas , Animales , Encéfalo/metabolismo , Citoesqueleto/metabolismo , Humanos , Microtúbulos/metabolismo , Septinas/metabolismo
14.
Front Cell Dev Biol ; 8: 579513, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363141

RESUMEN

Correct brain wiring depends on reliable synapse formation. Nevertheless, signaling codes promoting synaptogenesis are not fully understood. Here, we report a spinogenic mechanism that operates during neuronal development and is based on the interaction of tumor necrosis factor receptor-associated factor 6 (TRAF6) with the synaptic cell adhesion molecule neuroplastin. The interaction between these proteins was predicted in silico and verified by co-immunoprecipitation in extracts from rat brain and co-transfected HEK cells. Binding assays show physical interaction between neuroplastin's C-terminus and the TRAF-C domain of TRAF6 with a K d value of 88 µM. As the two proteins co-localize in primordial dendritic protrusions, we used young cultures of rat and mouse as well as neuroplastin-deficient mouse neurons and showed with mutagenesis, knock-down, and pharmacological blockade that TRAF6 is required by neuroplastin to promote early spinogenesis during in vitro days 6-9, but not later. Time-framed TRAF6 blockade during days 6-9 reduced mEPSC amplitude, number of postsynaptic sites, synapse density and neuronal activity as neurons mature. Our data unravel a new molecular liaison that may emerge during a specific window of the neuronal development to determine excitatory synapse density in the rodent brain.

15.
Wellcome Open Res ; 5: 68, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32500097

RESUMEN

Background: Neuronal plasticity is thought to underlie learning and memory formation. The density of dendritic spines in the CA1 region of the hippocampus has been repeatedly linked to mnemonic processes. Both the number and spatial location of the spines, in terms of proximity to nearest neighbour, have been implicated in memory formation. To examine how spatial training impacts synaptic structure in the hippocampus, Lister-Hooded rats were trained on a hippocampal-dependent spatial task in the radial-arm maze.  Methods: One group of rats were trained on a hippocampal-dependent spatial task in the radial arm maze. Two further control groups were included: a yoked group which received the same sensorimotor stimulation in the radial-maze but without a memory load, and home-cage controls. At the end of behavioural training, the brains underwent Golgi staining. Spines on CA1 pyramidal neuron dendrites were imaged and quantitatively assessed to provide measures of density and distance from nearest neighbour.  Results: There was no difference across behavioural groups either in terms of spine density or in the clustering of dendritic spines. Conclusions: Spatial learning is not always accompanied by changes in either the density or clustering of dendritic spines on the basal arbour of CA1 pyramidal neurons when assessed using Golgi imaging.

16.
Mol Brain ; 13(1): 80, 2020 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-32448361

RESUMEN

Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome, a rare congenital anomaly syndrome characterized by intellectual disability, brain malformation, facial dysmorphism, musculoskeletal abnormalities, and some visceral malformations is caused by de novo heterozygous mutations of the SON gene. The nuclear protein SON is involved in gene transcription and RNA splicing; however, the roles of SON in neural development remain undetermined. We investigated the effects of Son knockdown on neural development in mice and found that Son knockdown in neural progenitors resulted in defective migration during corticogenesis and reduced spine density on mature cortical neurons. The induction of human wild-type SON expression rescued these neural abnormalities, confirming that the abnormalities were caused by SON insufficiency. We also applied truncated SON proteins encoded by disease-associated mutant SON genes for rescue experiments and found that a truncated SON protein encoded by the most prevalent SON mutant found in ZTTK syndrome rescued the neural abnormalities while another much shorter mutant SON protein did not. These data indicate that SON insufficiency causes neuronal migration defects and dendritic spine abnormalities, which seem neuropathological bases of the neural symptoms of ZTTK syndrome. In addition, the results support that the neural abnormalities in ZTTK syndrome are caused by SON haploinsufficiency independent of the types of mutation that results in functional or dysfunctional proteins.


Asunto(s)
Anomalías Múltiples/genética , Movimiento Celular , Proteínas de Unión al ADN/genética , Espinas Dendríticas/patología , Técnicas de Silenciamiento del Gen , Proteínas Nucleares/genética , Animales , Encéfalo/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Ratones , Mutación/genética , Proteínas Nucleares/metabolismo , Células Piramidales/metabolismo , Síndrome
17.
Neurochem Int ; 134: 104645, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31891737

RESUMEN

Diacylglycerol kinase ß (DGKß) is an enzyme converting DG to phosphatidic acid (PA) and is specifically expressed in neurons, especially those in the cerebral cortex, hippocampus and striatum. We previously reported that DGKß induces neurite outgrowth and spinogenesis, contributing to higher brain function including emotion and memory, and plasma membrane localization of DGKß via the C1 domain and a cluster of basic amino acids at the C-terminus is necessary for its function. To clarify the mechanisms involved in neuronal development by DGKß, we investigated whether DGKß activity induces neurite outgrowth using human neuroblastoma SH-SY5Y cells. DGKß induced neurite outgrowth by activation of mammalian target of rapamycin complex 1 (mTORC1) through a kinase-dependent pathway. In addition, in primary cultured cortical and hippocampal neurons, inhibition of mTORC1 abolished DGKß induced-neurite outgrowth, branching and spinogenesis. These results indicated that DGKß induces neurite outgrowth and spinogenesis by activating mTORC1 in a kinase-dependent pathway.


Asunto(s)
Diacilglicerol Quinasa/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proyección Neuronal/fisiología , Neuronas/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Proyección Neuronal/efectos de los fármacos
18.
FEBS Open Bio ; 10(3): 386-395, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31943943

RESUMEN

Synaptic dysfunction has been implicated as an early cause of cognitive decline in neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD). Methods to slow down or reverse the loss of functional synapses, therefore, represent a promising avenue to explore for treating NDDs. We have previously reported the development of a class of benzothiazole amphiphiles (BAMs) that exhibited the capability to improve memory and learning both in wild-type mice and in an AD rodent model, putatively through promoting RasGRF1-associated formation of dendritic spines in hippocampal neurons. While these results represent a good first step in exploring a new approach to treating NDDs, the capability of these compounds to increase spine density has not been previously examined in a human neuronal model. Here, we found that neurons derived from differentiated human induced pluripotent stem cells exhibited both an increase in RasGRF1 expression and a phenotypic increase in the density of postsynaptic density protein 95-positive puncta (which we use to provide an estimate of dendritic spine density) in BAM-treated vs. control neurons. These results demonstrate that the previously observed spinogenic effects of BAMs in rodent neurons can be recapitulated in a human neuronal model, which further supports the potential utility of BAM agents for treating human diseases associated with spine deficits such as AD or other NDDs.


Asunto(s)
Benzotiazoles/farmacología , Neuronas/metabolismo , ras-GRF1/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Benzotiazoles/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Células Cultivadas , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Homólogo 4 de la Proteína Discs Large/análisis , Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , ras-GRF1/efectos de los fármacos
19.
Int Rev Neurobiol ; 147: 323-360, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31607360

RESUMEN

Exercise training improves mental and cognitive functions by enhancing neurogenesis and neuroprotection. Recent studies suggest the facilitation of spinogenesis across different brain regions including hippocampus and cerebral cortex by physical activity. In this article we will summarize major findings for exercise effects on synaptogenesis and spinogenesis, in order to provide mechanisms for exercise intervention of both psychiatric diseases and neurodegenerative disorders. We will also revisit major findings for molecular mechanism governing exercise-related spinogenesis, and will discuss the screening for novel factors, or exerkines, whose levels are correlated with endurance training and affect neural plasticity. We believe that further studies focusing on the molecular mechanism of exercise-mediate spinogenesis should benefit the optimization of exercise therapy in clinics and the evaluation of treatment efficiency using specific biomarkers.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Terapia por Ejercicio , Ejercicio Físico/fisiología , Ejercicio Físico/psicología , Neurogénesis/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Encefalopatías/fisiopatología , Encefalopatías/terapia , Humanos , Trastornos Mentales/fisiopatología , Trastornos Mentales/terapia
20.
Neurobiol Dis ; 129: 44-55, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31085229

RESUMEN

Down syndrome (DS), a genetic condition due to triplication of chromosome 21, is characterized by reduced proliferation of neural progenitor cells (NPCs) starting from early life stages. This defect is worsened by a reduction of neuronogenesis (accompanied by an increase in astrogliogenesis) and dendritic spine atrophy. Since this triad of defects underlies intellectual disability, it seems important to establish whether it is possible to pharmacologically correct these alterations. In this study, we exploited the Ts65Dn mouse model of DS in order to obtain an answer to this question. In the framework of an in vitro drug-screening campaign of FDA/EMA-approved drugs, we found that the immunosuppressant cyclosporine A (CSA) restored proliferation, acquisition of a neuronal phenotype, and maturation of neural progenitor cells (NPCs) from the subventricular zone (SVZ) of the lateral ventricle of Ts65Dn mice. Based on these findings, we treated Ts65Dn mice with CSA in the postnatal period P3-P15. We found that treatment fully restored NPC proliferation in the SVZ and in the subgranular zone of the hippocampal dentate gyrus, and total number of hippocampal granule cells. Moreover, CSA enhanced development of dendritic spines on the dendritic arbor of the granule cells whose density even surpassed that of euploid mice. In hippocampal homogenates from Ts65Dn mice, we found that CSA normalized the excessive levels of p21, a key determinant of proliferation impairment. Results show that neonatal treatment with CSA restores the whole triad of defects of the trisomic brain. In DS CSA treatment may pose caveats because it is an immunosuppressant that may cause adverse effects. However, CSA analogues that mimic its effect without eliciting immunosuppression may represent practicable tools for ameliorating brain development in individuals with DS.


Asunto(s)
Encéfalo/efectos de los fármacos , Ciclosporina/farmacología , Síndrome de Down , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Animales Recién Nacidos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones , Células-Madre Neurales/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA