Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Cell Neurosci ; 17: 1176634, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674868

RESUMEN

Introduction: The paraventricular nucleus of the hypothalamus (PVN) contains premotor neurons involved in the control of sympathetic vasomotor activity. It is known that the stimulation of specific areas of the PVN can lead to distinct response patterns at different target territories. The underlying mechanisms, however, are still unclear. Recent evidence from sympathetic nerve recording suggests that relevant information is coded in the power distribution of the signal along the frequency range. In the present study, we addressed the hypothesis that the PVN is capable of organizing specific spectral patterns of sympathetic vasomotor activation to distinct territories in both normal and hypertensive animals. Methods: To test it, we investigated the territorially differential changes in the frequency parameters of the renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively), before and after disinhibition of the PVN by bicuculline microinjection. Subjects were control and Goldblatt rats, a sympathetic overactivity-characterized model of neurogenic hypertension (2K1C). Additionally, considering the importance of angiotensin II type 1 receptors (AT1) in the sympathetic responses triggered by bicuculline in the PVN, we also investigated the impact of angiotensin AT1 receptors blockade in the spectral features of the rSNA and sSNA activity. Results: The results revealed that each nerve activity (renal and splanchnic) presents its own electrophysiological pattern of frequency-coded rhythm in each group (control, 2K1C, and 2K1C treated with AT1 antagonist losartan) in basal condition and after bicuculline microinjection, but with no significant differences regarding total power comparison among groups. Additionally, the losartan 2K1C treated group showed no decrease in the hypertensive response triggered by bicuculline when compared to the non-treated 2K1C group. However, their spectral patterns of sympathetic nerve activity were different from the other two groups (control and 2K1C), suggesting that the blockade of AT1 receptors does not totally recover the basal levels of neither the autonomic responses nor the electrophysiological patterns in Goldblatt rats, but act on their spectral frequency distribution. Discussion: The results suggest that the differential responses evoked by the PVN were preferentially coded in frequency, but not in the global power of the vasomotor sympathetic responses, indicating that the PVN is able to independently control the frequency and the power of sympathetic discharges to different territories.

2.
Braz. j. med. biol. res ; 55: e11873, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1355918

RESUMEN

Sepsis causes long-term disability, such as immune dysfunction, neuropsychological disorders, persistent inflammation, catabolism, and immunosuppression, leading to a high risk of death in survivors, although the contributing factors of mortality are unknown. The purpose of this experimental study in rats was to examine renal (rSNA) and splanchnic (sSNA) sympathetic nerve activity, as well as baroreflex sensitivity, in acute and chronic post-sepsis periods. The rats were divided into two groups: control group with naïve Wistar rats and sepsis group with 2-mL intravenous inoculation of Escherichia coli at 108 CFU/mL. Basal mean arterial pressure, heart rate, rSNA, sSNA, and baroreflex sensitivity were evaluated in all groups at the acute (6 h) and chronic periods (1 and 3 months). Basal rSNA and sSNA were significantly reduced in the surviving rats, as was their baroreflex sensitivity, for both pressor and hypotensive responses, and this effect lasted for up to 3 months. A single episode of sepsis in rats was enough to induce long-term alterations in renal and splanchnic sympathetic vasomotor nerve activity, representing a possible systemic event that needs to be elucidated. These findings showed that post-sepsis impairment of sympathetic vasomotor response may be one of the critical components in the inability of sepsis survivors to respond effectively to new etiological illness factors, thereby increasing their risk of post-sepsis morbidity.

3.
Pharmacol Rep ; 72(1): 67-79, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32016845

RESUMEN

BACKGROUND: Knowledge of the central areas involved in the control of sympathetic vasomotor activity has advanced in the last few decades. γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammal nervous system, and a microinjection of bicuculline, an antagonist of GABA type A (GABA-A) receptors, into the paraventricular nucleus of the hypothalamus (PVN) alters the pattern of sympathetic activity to the renal, splanchnic and lumbar territories. However, studies are needed to clarify the role of GABAergic inputs in other central areas involved in the sympathetic vasomotor activity. The present work studied the cardiovascular effects evoked by GABAergic antagonism in the PVN, RVLM and spinal cord. METHODS AND RESULTS: Bicuculline microinjections (400 pMol in 100 nL) into the PVN and rostral ventrolateral medulla (RVLM) as well as intrathecal administration (1.6 nmol in 2 µL) evoked an increase in blood pressure, heart rate, and renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively), inducing a higher coherence between rSNA and sSNA patterns. However, some of these responses were more intense when the GABA-A antagonism was performed in the RVLM than when the GABA-A antagonism was performed in other regions. CONCLUSIONS: Administration of bicuculline into the RVLM, PVN and SC induced a similar pattern of renal and splanchnic sympathetic vasomotor burst discharge, characterized by a low-frequency (0.5 Hz) and high-amplitude pattern, despite different blood pressure responses. Thus, the differential control of sympathetic drive to different targets by each region is dependent, in part, on tonic GABAergic inputs.


Asunto(s)
Bicuculina/farmacología , Encéfalo/efectos de los fármacos , Antagonistas de Receptores de GABA-A/farmacología , Médula Espinal/efectos de los fármacos , Animales , Bicuculina/administración & dosificación , Encéfalo/metabolismo , Antagonistas de Receptores de GABA-A/administración & dosificación , Masculino , Microinyecciones , Ratas , Ratas Wistar , Médula Espinal/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Vasomotor/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA