Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 343: 122440, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174085

RESUMEN

Starch is the main source of dietary energy for humans. In order to understand the mechanisms governing native starch in vitro digestion, digestion data for six starches [wheat, maize, (waxy) maize, rice, potato and pea] of different botanical sources were fitted with the most common first-order kinetic models, i.e. the single, sequential, parallel and combined models. Parallel and combined models provided the most accurate fits and showed that all starches studied except potato starch followed a biphasic in vitro digestion pattern. The biological relevance of the kinetic parameters was explored by determining changes in crystallinity and molecular structure of the undigested starch residues during in vitro digestion. While the crystallinity of the undigested potato starch residues did not change substantially, a respectively small and large decrease in their amylose content and chain length during in vitro digestion was observed, indicating that amylose was digested slightly preferentially over amylopectin in native starch. However, the molecular structure of the starch residues changed too slowly and/or only to an insufficient extent to relate it to the kinetic parameters of the digested fractions predicted by the models. Such parameters thus need to be interpreted with caution, as their biological relevance still needs to be proven.


Asunto(s)
Digestión , Almidón , Cinética , Almidón/química , Almidón/metabolismo , Amilosa/química , Amilosa/metabolismo , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Oryza/química , Oryza/metabolismo , Zea mays/química , Zea mays/metabolismo , Humanos , Amilopectina/química , Cristalización , Hidrólisis
2.
Int J Biol Macromol ; 278(Pt 1): 134627, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128746

RESUMEN

The molecular structures of starch and sugar/sugar alcohol are recognized as critical determinants of starch pasting and retrogradation properties. However, their combined effects on these properties remain elusive. This study for the first time examined the pasting and retrogradation properties of nine starches with diverse molecular structures, both with and without the addition of glucose, sucrose, isomaltose, isomalt, and sorbitol. The presence of sugar/sugar alcohol significantly enhanced starch pasting viscosity. In particular, the variations of the peak viscosity of wheat starch were more pronounced than other starches, possibly due to its distinct molecular structures. The changes in melting temperatures and enthalpy of retrograded starches were complex, varying depending on the type of starch and sugar/sugar alcohol used. For example, the melting peak temperature ranged from 56.45 °C (TS) to 61.9 °C (WMS), and the melting enthalpy ranged from 0.16 J/g (TS) to 5.6 J/g (PES). The micromorphology of retrograded starch revealed agglomeration and needle-like structures, instead of a network structure, after the addition of glucose and sorbitol, respectively. Correlations between starch molecular structure and pasting properties remained largely unchanged, while the relationship between starch molecular structure and retrogradation properties exhibited notable variations after the addition of sugars or sugar alcohols. These findings help a better understanding of the effects of starch molecular structure and the presence of sugar/sugar alcohol on starch pasting and retrogradation properties.


Asunto(s)
Almidón , Alcoholes del Azúcar , Almidón/química , Alcoholes del Azúcar/química , Viscosidad , Azúcares/química , Estructura Molecular , Termodinámica , Temperatura
3.
Foods ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38540810

RESUMEN

Zongzi, made from glutinous rice, is usually thought to stay in the stomach for a long time, causing many people to shy away. In our research, Zongzi was prepared from three indica glutinous rice samples, and three japonica glutinous rice samples were digested in vitro in a human gastric simulator (HGS). It was found that digestion performance in HGS (gastric emptying) was mainly related to the hardness and stickiness of texture properties, and surprisingly, the hardness and stickiness of Zongzi were positively correlated, which contradicts past perception. Through the extraction and analysis of the coated layer on the surface of glutinous rice grains in Zongzi, the main source of its stickiness was the entanglement between the long chains of leached amylopectin molecules. The hardness was also mainly due to the high proportion of long chains in its glutinous rice starch, which made it difficult to gelatinize. Studies suggested that stickiness gradually disappeared during digestion, while hardness had a longer impact on digestive performance. The indica glutinous rice Zongzi with a higher long-chain level showed a higher resistant-starch (RS) level and slow hydrolysis in the intestinal digestion stage. Therefore, the texture and digestibility of Zongzi can be adjusted by changing the molecular structure of glutinous rice starch.

4.
Foods ; 13(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38472789

RESUMEN

This study systematically investigates the impact of corn starch molecular structures on the quality attributes of surimi gel products. Employing molecular analyses to characterize corn starch, three amylopectin fractions (A, B1, and B2), categorized by the degree of polymerization ranges (6 < X ≤ 12, 12 < X ≤ 24, and 24 < X ≤ 36, respectively) were specifically focused on. The surimi gel quality was comprehensively assessed through texture profile analysis, nuclear magnetic resonance, scanning electron microscopy, stained section analysis, and Fourier transform infrared spectroscopy. Results indicated the substantial volume expansion of corn amylopectin upon water absorption, effectively occupying the surimi gel matrix and fostering the development of a more densely packed protein network. Starch gels with higher proportions of A, B1, and B2 exhibited improved hardness, chewiness, and bound water content in the resultant surimi gels. The weight-average molecular weight and peak molecular weight of corn starch showed a strong positive correlation with surimi gel hardness and chewiness. Notably, the secondary structure of proteins within the surimi gel was found to be independent of corn starch's molecular structure. This study provides valuable insights for optimizing formulations in surimi gel products, emphasizing the significance of elevated A, B1, and B2 content in corn starch as an optimal choice for crafting dense, chewy, water-retaining surimi gels.

5.
Food Chem X ; 20: 100949, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144746

RESUMEN

Buckwheat is considered as a healthy cereal food, and it is essential to cultivate new buckwheat lines with good starch physicochemical properties for both consumers and food producers. Six novel buckwheat (Duoku, Dk) were generated by crossing of Golden buckwheat and Tatary buckwheat, and their kernel appearance properties and starch physicochemical properties were analyzed together with one domestic line (Cimiqiao) and one wild line (Yeku). The results showed that Dk samples had better appearance properties than two control samples. The Dk samples showed lower amylose content, similar amylopectin molecular structure and chain length distributions, and larger starch granules compared with Cimiqiao. The digestion results showed that two Dk samples: Dk6 & Dk9 had high resistant starch content; while the other two Dk samples: Dk37 & Dk38 had a steady glucose releasing rate. The Dk samples also showed high gelatinization temperature, indicating they were good raw materials for producing glass noodle. This study proved that Dk buckwheat had unique starch physicochemical properties, and could be used as new food materials in the future.

6.
Carbohydr Polym ; 321: 121260, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739518

RESUMEN

Swelling behavior involves the process of starch granules absorbing enough water to swell and increase the viscosity of starch suspension under hydrothermal conditions, making it one of the important aspects in starch research. The changes that starch granules undergo during the swelling process are important factors in predicting their functional properties in food processing. However, the factors that affect starch swelling and how swelling, in turn, affects the texture and digestion characteristics of starch-based foods have not been systematically summarized. Compared to its long chains, the short chains of amylose easily interact with amylopectin chains to inhibit starch swelling. Generally, reducing the swelling of starch could increase the strength of the gel while limiting the accessibility of digestive enzymes to starch chains, resulting in a reduction in starch digestibility. This article aims to conduct a comprehensive review of the mechanism of starch swelling, its influencing factors, and the relationship between swelling and the pasting, gelling, and digestion characteristics of starch. The role of starch swelling in the edible quality and nutritional characteristics of starch-based foods is also discussed, and future research directions for starch swelling are proposed.


Asunto(s)
Calidad de los Alimentos , Almidón , Humanos , Amilopectina , Manipulación de Alimentos , Amilosa , Edema
7.
Polymers (Basel) ; 15(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36771875

RESUMEN

Variations in starch pasting properties, considered an alternative potential quality classification parameter for rice starches, are directly controlled by the diverse starch molecular composition and structural features. Here, the starch characteristics of four rice cultivars (i.e., RD57, RD29, KDML105, and RD6) differing in pasting properties were assessed, and their relationship was determined. The results revealed that protein and moisture contents and their crystalline type were similar among the four rice starches. However, their molecular compositions and structures (i.e., reducing sugar and amylose contents, amylopectin branch chain-length distributions, granule size and size distribution, and degree of crystallinity) significantly varied among different genotypes, which resulted in distinct swelling, solubility, gelatinization, retrogradation, and hydrolytic resistance properties. The swelling power and gelatinization enthalpy (∆H) were positively correlated with C-type granule and relative crystallinity, but were negatively correlated with amylose content, B-type granule and median particle size (d(0.5)). Conversely, the water solubility and resistant starch content negatively correlated with C-type granule, but positively correlated with amylose content, B-type granule, and d(0.5). The gelatinization onset temperature (To(g)), and retrogradation concluding temperatures (Tc(r)), enthalpy (∆H(r)), and percentage (R%) were positively impacted by the amount of protein, amylose, and B1 chains (DP 13-24), while they were negatively correlated with short A chains (DP 6-12). Collectively, the starch physicochemical and functional properties of these Thai rice starches are attributed to an interplay between compositional and structural features. These results provide decisive and crucial information on rice cultivars' suitability for consumption as cooked rice and for specific industrial applications.

8.
Carbohydr Polym ; 293: 119735, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35798430

RESUMEN

Starch gelatinization is a crucial process in determining both texture and nutrition properties of starch-based foods, while its complex nature is still not fully understood. Kinetics modeling has been recently developed for understanding starch gelatinization under both limited and excessive water content. Amylose with different chain lengths has distinct effects on starch gelatinization temperatures and enthalpy by interacting with amylopectin chains in semi-crystalline lamella. Moisture is a crucial factor in determining starch gelatinization property, with new evidence suggesting that different groups of amylopectin-amylopectin or amylose-amylopectin double helices are involved for multi-endothermic gelatinization peaks under limited moisture content. The presence of salts, sugars, protein, lipids and non-starch polysaccharides can affect starch gelatinization through various mechanisms. All these new insights and future directions in terms of better understanding starch gelatinization property were summarized. This information could help develop new generations of foods with desirable properties through a better understanding of starch gelatinization process.


Asunto(s)
Amilopectina , Almidón , Amilopectina/química , Amilosa/química , Calidad de los Alimentos , Almidón/química , Temperatura
9.
Food Chem ; 387: 132835, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35398681

RESUMEN

Highland barley (HB) has become popular due to nutritional benefits, and thermal treatment could broaden its application. In this study, superheated steam (SS) as a novel commercially thermal treatment was compared with other traditional heating (steam and roasting). The physiochemical properties of treated HB kernels and subsequent produced flour were investigated. After thermal treatments, gelatinization enthalpy was decreased by 38.39% and the degree of gelatinization was increased by 38.40%. SS at 180 °C (SS-180) induced the highest thermal stability, lowest viscoelasticity gel and delayed the starch retrogradation compared to other treatments. Meanwhile, SS-180 caused lowest short-range order and relative crystallinity of starch along with changes in protein secondary structure. Particularly, SS-180 decreased damaged starch content by 6.44% due to starch granules closely wrapped by glue-like protein, while steam and roasting increased it by 32.92% and 21.40%, respectively. Overall, SS treatment is most effective to improve the physiochemical properties of HB.


Asunto(s)
Harina , Hordeum , Harina/análisis , Almidón/química , Vapor , Viscosidad
11.
Front Nutr ; 7: 583997, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33490097

RESUMEN

In this study, by analyzing the relationship between hybrid combinations and parental lines, we found that the eating quality traits of hybrid combinations were determined by both parents. The sterile lines determined the overall eating quality characteristics of the hybrid combinations. For the same sterile line, there were some correlations between the hybrid combinations and restorer lines in terms of taste value, rapid visco analyzer breakdown and setback values, apparent amylose content, and cooked rice hardness and stickiness. Analysis of the starch fine structure between hybrid combinations and their restorer lines demonstrated positive correlations between them in terms of short-branch amylopectin chains and amylose. Moreover, different allelic combinations of the Wx gene showed different genetic effects on the eating quality traits of hybrid rice. Overall, this study provides a framework for the development of hybrid rice with superior eating quality.

12.
Front Plant Sci ; 8: 469, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28421099

RESUMEN

High-amylose cereal starches provide many health benefits for humans. The inhibition or mutation of starch branching enzyme (SBE) genes is an effective method to develop high-amylose cereal crops. This review summarizes the development of high-amylose cereal crops through the inactivation of one or more SBE isoforms or combination with other genes. This review also reveals the causes of increase in amylose content in high-amylose crops. A series of changes, including amylopectin structure, crystalline structure, thermal properties, and hydrolysis properties, occurs as amylose content increases. The different morphological starch granules nominated as heterogeneous starch granules or differently stained starch granules are detected in high-amylose cereal crops. Detailed studies on four heterogeneous starch granules in high-amylose rice, which is developed by antisense RNA inhibition of SBEI/IIb, indicate that granules with different morphologies possess various molecular structures and physicochemical and functional properties. This variation diversifies their applications in food and non-food industries. However, current knowledge regarding how these heterogeneous starch granules form and why they exhibit regional distribution in endosperm remain largely unknown.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA