Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64.671
Filtrar
1.
Front Immunol ; 15: 1349138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720903

RESUMEN

Autoimmune diseases can damage specific or multiple organs and tissues, influence the quality of life, and even cause disability and death. A 'disease in a dish' can be developed based on patients-derived induced pluripotent stem cells (iPSCs) and iPSCs-derived disease-relevant cell types to provide a platform for pathogenesis research, phenotypical assays, cell therapy, and drug discovery. With rapid progress in molecular biology research methods including genome-sequencing technology, epigenetic analysis, '-omics' analysis and organoid technology, large amount of data represents an opportunity to help in gaining an in-depth understanding of pathological mechanisms and developing novel therapeutic strategies for these diseases. This paper aimed to review the iPSCs-based research on phenotype confirmation, mechanism exploration, drug discovery, and cell therapy for autoimmune diseases, especially multiple sclerosis, inflammatory bowel disease, and type 1 diabetes using iPSCs and iPSCs-derived cells.


Asunto(s)
Enfermedades Autoinmunes , Células Madre Pluripotentes Inducidas , Humanos , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Animales , Descubrimiento de Drogas , Tratamiento Basado en Trasplante de Células y Tejidos/métodos
2.
Blood Sci ; 6(2): e00187, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38721470

RESUMEN

Hematopoietic stem cells (HSCs) have been considered to progressively lose their self-renewal and differentiation potentials prior to the commitment to each blood lineage. However, recent studies have suggested that megakaryocyte progenitors (MkPs) are generated at the level of HSCs. In this study, we newly identified early megakaryocyte lineage-committed progenitors (MgPs) mainly in CD201-CD48- cells and CD48+ cells separated from the CD150+CD34-Kit+Sca-1+Lin- HSC population of the bone marrow in adult mice. Single-cell colony assay and single-cell transplantation showed that MgPs, unlike platelet-biased HSCs, had little repopulating potential in vivo, but formed larger megakaryocyte colonies in vitro (on average 8 megakaryocytes per colony) than did previously reported MkPs. Single-cell RNA sequencing supported that HSCs give rise to MkPs through MgPs along a Mk differentiation pathway. Single-cell reverse transcription polymerase chain reaction (RT-PCR) analysis showed that MgPs expressed Mk-related genes, but were transcriptionally heterogenous. Clonal culture of HSCs suggested that MgPs are not direct progeny of HSCs. We propose a differentiation model in which HSCs give rise to MgPs which then give rise to MkPs, supporting a classic model in which Mk-lineage commitment takes place at a late stage of differentiation.

3.
Elife ; 132024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722021

RESUMEN

Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here we addressed how murine adult hippocampal NSC fate is regulated and describe how Scaffold Attachment Factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor Nuclear Factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.

4.
Stem Cell Rev Rep ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722523

RESUMEN

COVID-19 and infectious diseases have been included in strategic development goals (SDG) of United Nations (UN). The SARS-CoV-2 pandemic has unveiled complex pathophysiological mechanisms underpinning COVID-19, notably inducing a systemic acquired vascular hemopathy characterized by endothelial dysfunction and intussusceptive angiogenesis, a rapid vascular remodeling process identified as a hallmark in severe COVID-19 cases affecting pulmonary and cardiac tissues. Stem cell migration have been proposed as significant regulators of this neoangiogenic process. In a monocentric cross-sectional study, through spectral flow cytometry analysis of peripheral blood mononuclear cells, we identified a distinct stem cell subpopulation mobilized in critical COVID-19. Indeed, by an unsupervised analysis generating a UMAP representation we highlighted eleven different clusters in critical and non-critical COVID-19 patients. Only one cluster was significantly associated to critical COVID-19 compared to non-critical patients. This cluster expressed the markers: CD45dim, CD34+, CD117+, CD147+, and CD143+, and were negative for CD133. Higher level of expression of hemangioblast markers CD143 were found in critical COVID-19 patients. This population, indicative of hemangioblast-like cells, suggests a key role in COVID-19-related neoangiogenesis, potentially driving the severe vascular complications observed. Our findings underscore the need for further investigation into the contributions of adult stem cells in COVID-19 pathology, offering new insights into therapeutic targets and interventions.

5.
Daru ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722566

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) are a subpopulation of cancer cells that are believed to be responsible for tumor initiation, progression, metastasis, and resistance to conventional therapies. Oleuropein as a natural compound found in olive leaves and olive oil, has potential therapeutic effects in cancer treatment, particularly in targeting CSCs. It induces apoptosis in CSCs while sparing normal cells, inhibit proliferation, migration, and invasion, and suppress the self-renewal ability of CSCs. Additionally, oleuropein has shown synergistic effects with conventional chemotherapy drugs, enhancing their efficacy against CSCs. OBJECTIVES: This study aims to selectively target therapeutically resistant cancer stem cells (CSCs) within a heterogeneous tumor population by utilizing oleuropein (OLE) encapsulated in methacrylated alginate (OLE-mALG) within an in vivo-like microenvironment. PURPOSE: This study aims to target therapeutically resistant cancer stem cells (CSCs) with oleuropein (OLE) encapsulated in the methacrylated alginate (OLE-mALG) in a heterogeneous tumor population with an in vivo-like microenvironment. METHODS: Co-culture of CSCs with non-tumorogenic MCF-12 A cells was performed, the 3D breast cancer model was supported with methocel/matrigel/collagen-I, and vascularization was ensured with human umbilical vein endothelial cells (HUVEC). Then, OLE-loaded methacrylated alginate microparticles (mALG) were formed by dual crosslinking in the presence of both ionic and visible light obtained with a droplet based microfluidic system. The characterization and effectiveness of the produced OLE-mALG were evaluated by the FTIR, swelling/degradation/release analysis. Before producing OLE loaded mALG microparticles, a preliminary study was carried out to determine the effective dose of OLE for cells and the duration of OLE action on MCF-7, CSCs and MCF-12 A. Subsequently, CSC viability (WST-1), apoptosis (Bcl-2, Bax, caspase-3, caspase-9), stemness (OCT3/4, NANOG, SOX2), EMT profile (E-cadherin, Vimentin, Slug) and proliferation (SURVIVIN, p21, CYCLIN D1) after OLE-mALG treatment were all evaluated in the 3D model. RESULTS: OLE was encapsulated in mALG with an efficiency of 90.49% and released 73% within 7 h. OLE-mALG induced apoptosis through the decrease in anti-apoptotic Bcl-2 and an increase in pro-apoptotic Bax, caspase-3, and caspase-9 protein levels. While Vimentin and Slug protein levels decreased after 200 µg/mL OLE-mALG treatment to 3D breast cancer culture, E-cadherin levels increased. OLE-mALG treatment to CSC co-culture led to a decrease in proliferation by triggering p21/SURVIVIN expressions, and also resulted in an increase in stemness genes (OCT3/4/NANOG/SOX2). CONCLUSION: 200 µg/mL OLE-loaded mALG microparticles suppressed epithelial-to-mesenchymal transition by suppressing Vimentin and Slug protein levels, and increased E-cadherin levels in the 3D breast cancer model we created with CSCs, MCF-12 A and HUVECs. This complex system may allow the use of personalized cells for rapid drug screening in preclinical studies compared to animal experiments. OLE-mALG showed apoptotic and metastasis suppressive properties in cancer cells and it was concluded that it can be used in combination with or alternatively with chemotherapeutic agents to target breast cancer stem cells.

6.
Phytomedicine ; 129: 155656, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38723529

RESUMEN

BACKGROUND: Gemcitabine is the first-line chemotherapy drug that can easily cause chemotherapy resistance. Huaier is a traditional Chinese medicine and shows an antitumor effect in pancreatic cancer, but whether it can enhance the gemcitabine chemotherapeutic response and the potential mechanism remain unknown. PURPOSE: This study was performed to explore the effect of Huaier in promoting the tumor-killing effect of gemcitabine and elucidate the possible mechanism in pancreatic cancer. METHODS: Cell Counting Kit-8 assays and colony formation assays were used to detect proliferation after different treatments. Protein coimmunoprecipitation was applied to demonstrate protein interactions. Nuclear protein extraction and immunofluorescence were used to confirm the intracellular localization of the proteins. Western blotting was performed to detect cell proliferation-related protein expression or cancer stem cell-associated protein expression. Sphere formation assays and flow cytometry were used to assess the stemness of pancreatic cancer cells. The in vivo xenograft model was used to confirm the inhibitory effect under physiological conditions, and immunohistochemistry was used to detect protein expression. RESULTS: Huaier suppressed the proliferation and stem cell-like properties of pancreatic cancer cells. We found that Huaier suppressed the expression of forkhead box protein M1 (FoxM1). In addition, Huaier inhibited FoxM1 function by blocking its nuclear translocation. Treatment with Huaier reversed the stemness induced by gemcitabine in a FoxM1-dependent manner. Furthermore, we verified the above results by an in vivo study, which reached the same conclusion as those in vitro. CONCLUSION: Overall, this study illustrates that Huaier augments the tumor-killing effect of gemcitabine through suppressing the stemness induced by gemcitabine in a FoxM1-dependent way. These results indicate that Huaier can be applied to overcome gemcitabine resistance.

7.
Cell Stem Cell ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38723634

RESUMEN

Generation of chimeric antigen receptor macrophages (CAR-Ms) from human pluripotent stem cells (hPSCs) offers new prospects for cancer immunotherapy but is currently challenged by low differentiation efficiency and limited function. Here, we develop a highly efficient monolayer-based system that can produce around 6,000 macrophages from a single hPSC within 3 weeks. Based on CAR structure screening, we generate hPSC-CAR-Ms with stable CAR expression and potent tumoricidal activity in vitro. To overcome the loss of tumoricidal activity of hPSC-CAR-Ms in vivo, we use interferon-γ and monophosphoryl lipid A to activate an innate immune response that repolarizes the hPSC-CAR-Ms to tumoricidal macrophages. Moreover, through combined activation of T cells by hPSC-CAR-Ms, we demonstrate that activating a collaborative innate-adaptive immune response can further enhance the anti-tumor effect of hPSC-CAR-Ms in vivo. Collectively, our study provides feasible methodologies that significantly improve the production and function of hPSC-CAR-Ms to support their translation into clinical applications.

8.
Dent Mater ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724333

RESUMEN

OBJECTIVE: to compare conventional nanohybrid (Ceram.x Spectra) and ormocer-based (Admira fusion) dental composite resins effects on human dental pulp stem cells (hDPSCs) in terms of cytotoxicity, self-renewal, migration and osteogenic differentiation. METHODS: hDPSCs were cultured in presence of different dilutions (undiluted, form 1:2 to 1:100) of CeramX (CX) and Admira fusion (AD) eluates and viability assay in standard or osteogenic conditions were performed. Samples and eluates were prepared according to ISO 10993-12. In addition, apoptosis, self-renewal and migration activity evaluations were carried out. Osteogenic differentiation potential was tested by Alkaline Phosphatase Activity, alizarin red staining and gene expression of specific markers (ALP, RUNX2, OCN, OPN and COL1α1). Statistical analysis was performed by means of a One-way analysis of variance (One-way ANOVA) followed by a Tukey's test for multiple comparison; results were presented as mean ± standard error of mean (SEM). RESULTS: Admira Fusion demonstrated to be highly biocompatible and showed positive effects on hDPSCs proliferation and differentiation; on the contrary, conventional nanohybrid composite showed to be more cytotoxic and without any notable effect on stem cells differentiation. Moreover, the obtained results were further corroborated by a significant upregulation of osteogenic differentiation markers obtained in presence of ormocer-based composite resin eluate. Specifically, in AD 1:50 group expression levels of ALP, Runx2, Col1α1 were double than control (ALP, p = 0.045; Runx2, p = 0.003; Col1α1, p = 0.001) and CX 1:50 (ALP, p = 0.006; RUNX2, p = 0.029; Col1α1, p = 0.005). Moreover, in the same group, OPN and OCN resulted about 5 times more expressed as compared to control (OPN, p = 0.009; OCN, p = 0.0005) and CX 1:50 (OPN, p = 0.012; OCN, p = 0.0006). SIGNIFICANCE: The less cytotoxicity obtained by AD than conventional nanohybrid composite may be attributed to a reduced monomers release in the oral environment, supporting the hypothesis of limited adverse effect and enhanced healing potential, mainly when the material is positioned in close contact with pulp tissue.

9.
ACS Appl Bio Mater ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743786

RESUMEN

Cell therapy has the potential to become a feasible solution for several diseases, such as those related to the lungs and airways, considering the more beneficial intratracheal administration route. However, in lung diseases, an impaired pulmonary extracellular matrix (ECM) precludes injury resolution with a faulty engraftment of mesenchymal stem cells (MSCs) at the lung level. Furthermore, a shielding strategy to avoid cell damage as well as cell loss due to backflow through the injection path is required. Here, an approach to deliver cells encapsulated in a biomimetic stem niche is used, in which the interplay between cells and physiological lung ECM constituents, such as collagen and hyaluronic acid (HA), can occur. To this aim, a biphasic delivery system based on MSCs encapsulated in collagen microspheres (mCOLLs) without chemical modification and embedded in an injectable HA solution has been developed. Such biphasic delivery systems can both increase the mucoadhesive properties at the site of interest and improve cell viability and pulmonary differentiation. Rheological results showed a similar viscosity at high shear rates compared to the MSC suspension used in intratracheal administration. The size of the mCOLLs can be controlled, resulting in a lower value of 200 µm, suitable for delivery in alveolar sacs. Biological results showed that mCOLLs maintained good cell viability, and when they were suspended in lung medium implemented with low molecular weight HA, the differentiation ability of the MSCs was further enhanced compared to their differentiation ability in only lung medium. Overall, the results showed that this strategy has the potential to improve the delivery and viability of MSCs, along with their differentiation ability, in the pulmonary lineage.

10.
Int Immunopharmacol ; 134: 112255, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38744176

RESUMEN

Inflammatory bowel disease (IBD) is distinguished by persistent immune-mediated inflammation of the gastrointestinal tract. Previous experimental investigations have shown encouraging outcomes for the use of mesenchymal stem cell (MSC)-based therapy in the treatment of IBD. However, as a primary medication for IBD patients, there is limited information regarding the potential interaction between 5-aminosalicylates (5-ASA) and MSCs. In this present study, we employed the dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse model to examine the influence of a combination of MSCs and 5-ASA on the development of UC. The mice were subjected to weight measurement, DAI scoring, assessment of calprotectin expression, and collection of colons for histological examination. The findings revealed that both 5-ASA and MSCs have demonstrated efficacy in the treatment of UC. However, it is noteworthy that 5-ASA exhibits a quicker onset of action, while MSCs demonstrate more advantageous and enduring therapeutic effects. Additionally, the combination of 5-ASA and MSC treatment shows a less favorable efficacy compared to the MSCs alone group. Moreover, our study conducted in vitro revealed that 5-ASA could promote MSC migration, but it could also inhibit MSC proliferation, induce apoptosis, overexpress inflammatory factors (IL-2, IL-12P70, and TNF-α), and reduce the expression of PD-L1 and PD-L2. Furthermore, a significant decrease in the viability of MSCs within the colon was observed as a result of 5-ASA induction. These findings collectively indicate that the use of 5-ASA has the potential to interfere with the therapeutic efficacy of MSC transplantation for the treatment of IBD.

11.
Biomed Pharmacother ; 175: 116725, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38744219

RESUMEN

Qualitative alterations in type I collagen due to pathogenic variants in the COL1A1 or COL1A2 genes, result in moderate and severe Osteogenesis Imperfecta (OI), a rare disease characterized by bone fragility. The TGF-ß signaling pathway is overactive in OI patients and certain OI mouse models, and inhibition of TGF-ß through anti-TGF-ß monoclonal antibody therapy in phase I clinical trials in OI adults is rendering encouraging results. However, the impact of TGF-ß inhibition on osteogenic differentiation of mesenchymal stem cells from OI patients (OI-MSCs) is unknown. The following study demonstrates that pediatric skeletal OI-MSCs have imbalanced osteogenesis favoring the osteogenic commitment. Galunisertib, a small molecule inhibitor (SMI) that targets the TGF-ß receptor I (TßRI), favored the final osteogenic maturation of OI-MSCs. Mechanistically, galunisertib downregulated type I collagen expression in OI-MSCs, with greater impact on mutant type I collagen, and concomitantly, modulated the expression of unfolded protein response (UPR) and autophagy markers. In vivo, galunisertib improved trabecular bone parameters only in female oim/oim mice. These results further suggest that type I collagen is a tunable target within the bone ECM that deserves investigation and that the SMI, galunisertib, is a promising new candidate for the anti-TGF-ß targeting for the treatment of OI.

12.
Curr Diabetes Rev ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38747221

RESUMEN

The epidemic of diabetes continues to be an increasing problem, and there is a need for new therapeutic strategies. There are several promising drugs and molecules in synthetic medicinal chemistry that are developing for diabetes. In addition to this approach, extensive studies with gene and cell therapies are being conducted. Gene therapy is an existing approach in treating several diseases, such as cancer, autoimmune diseases, heart disease and diabetes. Several reports have also suggested that stem cells have the differentiation capability to functional pancreatic beta cell development in vitro and in vivo, with the utility to treat diabetes and prevent the progression of diabetes-related complications. In this current review, we have focused on the different types of cell therapies and vector-based gene therapy in treating or preventing diabetes.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38747224

RESUMEN

Alzheimer's disease (AD), an inexorable neurodegenerative ailment marked by cognitive impairment and neuropsychiatric manifestations, stands as the foremost prevailing form of dementia in the geriatric population. Its pathological signs include the aggregation of amyloid proteins, hyperphosphorylation of tau proteins, and the consequential loss of neural cells. The etiology of AD has prompted the formulation of numerous conjectures, each endeavoring to elucidate its pathogenesis. While a subset of therapeutic agents has displayed clinical efficacy in AD patients, a significant proportion has encountered disappointment. Notably, the extent of neural cell depletion bears a direct correlation with the disease's progressive severity. However, the absence of efficacious therapeutic remedies for neurodegenerative afflictions engenders a substantial societal burden and exerts a notable economic toll. In the past two decades, the realm of regenerative cell therapy, referred to as stem cell therapy, has unfolded as an avenue for the exploration of profoundly innovative approaches to treat neurodegenerative conditions. This promise is underpinned by the remarkable capacity of stem cells to remediate compromised neural tissue by means of cell replacement, to cultivate an environment conducive to regeneration, and to shield extant healthy neuronal and glial components from further degradation. Thus, this review aims to delve into the current knowledge of stem cell-based therapies and future possibilities in this domain.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38747225

RESUMEN

BACKGROUND: Aging is a phenomenon which occurs over time and leads to the decay of living organisms. During the progression of aging, some age-associated diseases including cardiovascular disease, cancers, and neurological, mental, and physical disorders could develop. Genetic and epigenetic factors like microRNAs, as one of the post-transcriptional regulators of genes, play important roles in senescence. The self-renewal and differentiation capacity of mesenchymal stem cells makes them good candidates for regenerative medicine. OBJECTIVE: The objective of this study is to evaluate senescence-related miRNAs in human MSCs using bioinformatics analysis. METHODS: In this study, the Gene Expression Omnibus (GEO) database was used to investigate the senescence-related genome profile. Then, down-regulated genes were selected for further bioinformatics analysis with the assumption that their decreased expression is associated with an increased aging process. Considering that miRNAs can interfere in gene expression, miRNAs complementary to these genes were identified using bioinformatics software. RESULTS: Through bioinformatics analysis, we predicted hsa-miR-590-3p, hsa-miR-10b-3p, hsamiR- 548 family, hsa-miR-144-3p, and hsa-miR-30b-5p which involve in cellular senescence and the aging of human MSCs. CONCLUSION: miRNA mimics or anti-miRNA agents have the potential to be used as anti-aging tools for MSCs.

15.
J Crohns Colitis ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747506

RESUMEN

BACKGROUND AND AIMS: Crohn's disease (CD) is characterised by the expansion of mesenteric adipose tissue (MAT), named creeping fat (CF), which seems to be directly related to disease activity. Adipose-stem cells (ASCs) isolated from the CF of patients with CD are extremely pro-inflammatory, which persists during disease remission. We hypothesised that the dysfunctional ASCs in CD accumulate epigenetic modifications triggered by the inflammatory environment that could serve as molecular markers. METHODS: Genome-wide DNA methylome and transcriptome profiling were performed in ASCs isolated from MAT adipose-tissue biopsies of patients with active and inactive disease and from non-Crohn's disease patients (non-CD). A validation cohort was used to test the main candidate genes via qPCR in other fat depots and immune cells. RESULTS: We found differences in DNA-methylation and gene expression between ASCs isolated from patients with CD and from non-CD subjects, but we found no differences related to disease activity. Pathway enrichment analysis revealed that oxidative stress and immune response were significantly enriched in active CD and integration analysis identified MAB21L2, a cell fate-determining gene, as the most affected gene in CD. Validation analysis confirmed the elevated gene expression of MAB21L2 in MAT and in adipose tissue macrophages in active CD. We also found a strong association between expression of the calcium channel subunit gene CACNA1H and disease remission, as CACNA1H expression was higher in ASCs and MAT from patients with inactive CD, and correlates negatively with C-reactive protein in peripheral blood mononuclear cells. CONCLUSION: We identified a potential gene signature of CD in ASCs obtained from MAT. Integration analysis highlighted two novel genes demonstrating a negative correlation between promoter DNA methylation and transcription: one linked to ASCs in CD (MAB21L2) and the other (CACNA1H) related to disease remission.

16.
J Cell Physiol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747637

RESUMEN

Critical reprogramming factors resided predominantly in the oocyte or male pronucleus can enhance the efficiency or the quality of induced pluripotent stem cells (iPSCs) induction. However, few reprogramming factors exist in the male pronucleus had been verified. Here, we demonstrated that granulin (Grn), a factor enriched specifically in male pronucleus, can significantly improve the generation of iPSCs from mouse fibroblasts. Grn is highly expressed on Day 1, Day 3, Day 14 of reprogramming induced by four Yamanaka factors and functions at the initial stage of reprogramming. Transcriptome analysis indicates that Grn can promote the expression of lysosome-related genes, while inhibit the expression of genes involved in DNA replication and cell cycle at the early reprogramming stage. Further verification determined that Grn suppressed cell proliferation due to the arrest of cell cycle at G2/M phase. Moreover, ectopic Grn can enhance the lysosomes abundance and rescue the efficiency reduction of reprogramming resulted from lysosomal protease inhibition. Taken together, we conclude that Grn serves as an activator for somatic cell reprogramming through mitigating cell hyperproliferation and promoting the function of lysosomes.

17.
J Clin Med ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731023

RESUMEN

Wound management presents a significant global challenge, necessitating a comprehensive understanding of wound care products and clinical expertise in selecting dressings. Bioactive dressings (BD) represent a diverse category of dressings, capable of influencing wound healing through various mechanisms. These dressings, including honey, hyaluronic acid, collagen, alginates, and polymers enriched with polyhexamethylene biguanide, chitin, and chitosan derivatives, create a conducive environment for healing, promoting moisture balance, pH regulation, oxygen permeability, and fluid management. Interactive dressings further enhance targeted action by serving as substrates for bioactive agents. The continuous evolution of BDs, with new products introduced annually, underscores the need for updated knowledge in wound care. To facilitate dressing selection, a practical algorithm considers wound exudate, infection probability, and bleeding, guiding clinicians through the process. This algorithm aims to optimize wound care by ensuring the appropriate selection of BDs tailored to individual patient needs, ultimately improving outcomes in wound management.

18.
Animals (Basel) ; 14(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731296

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) are increasingly trialed in cellular therapy applications in humans. They can also be applied to treat a range of diseases in animals, particularly in cattle to combat inflammatory conditions and aging-associated degenerative disorders. We sought to demonstrate the feasibility of obtaining MSCs from adipose tissue and characterizing them using established assays. METHODS: Bovine adipose MSCs (BvAdMSCs) were isolated using in-house optimized tissue digestion protocols and characterized by performing a colony formation assay, cell growth assessments, cell surface marker analysis by immunocytochemistry and flow cytometry, osteogenic and adipogenic differentiation, and secretion of indoleamine 2,3-dioxygenease (IDO). RESULTS: Our results demonstrate the feasibility of successful MSC isolation and culture expansion from bovine adipose tissues with characteristic features of colony formation, in vitro multilineage differentiation into osteogenic and adipogenic lineages, and cell surface marker expression of CD105, CD73, CD90, CD44, and CD166 with negative expression of CD45. BvAdMSCs secreted significant amounts of IDO with or without interferon-gamma stimulation, indicating ability for immunomodulation. CONCLUSIONS: We report a viable approach to obtaining autologous adipose-derived MSCs that can be applied as potential adjuvant cell therapy for tissue repair and regeneration in cattle. Our methodology can be utilized by veterinary cell therapy labs for preparing MSCs for disease management in cattle.

19.
Animals (Basel) ; 14(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731367

RESUMEN

Mesenchymal stem cells (MSCs) are considered a very promising alternative tool in cell therapies and regenerative medicine due to their ease of obtaining from various tissues and their ability to differentiate into different cell types. This manuscript provides a review of current knowledge on the use of MSC-based therapies as an alternative for certain common pathologies in dogs and cats where conventional treatments are ineffective. The aim of this review is to assist clinical veterinarians in making decisions about the suitability of each protocol from a clinical perspective, rather than focusing solely on research. MSC-based therapies have shown promising results in certain pathologies, such as spinal cord injuries, wounds, and skin and eye diseases. However, the effectiveness of these cell therapies can be influenced by a wide array of factors, leading to varying outcomes. Future research will focus on designing protocols and methodologies that allow more precise and effective MSC treatments for each case.

20.
Diagnostics (Basel) ; 14(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732382

RESUMEN

BACKGROUND: The current manuscript's aim was to determine the human papillomavirus (HPV) genotype-specific prevalence and distribution among individuals, males, and females, of different ages in the region of Apulia, Italy, highlighting the possible variables involved in the carcinogenicity mechanism. In addition, we proposed two hypothetical models of HPV's molecular dynamics, intending to clarify the impact of prevention and therapeutic strategies, explicitly modeled by recent survey data. METHODS: We presented clinical data from 9647 participants tested for either high-risk (HR) or low-risk (LR) HPV at the affiliated Bari Policlinic University Hospital of Bari from 2011 to 2022. HPV DNA detection was performed using nested-polymerase chain reaction (PCR) and multiplex real-time PCR assay. Statistical analysis showed significant associations for all genders and ages and both HR- and LR-HPV types. A major number of significant pairwise associations were detected for the higher-risk types and females and lower-risk types and males. RESULTS: The overall prevalence of HPV was 50.5% (n-4.869) vs. 49.5% (n-4.778) of the study population, of which 74.4% (n-3621) were found to be HPV high-risk (HR-HPV) genotypes and 57.7% (n-2.807) low-risk HPV (LR-HPV) genotypes, of which males were 58% and females 49%; the three most prevalent HR-HPV genotypes were HPV 53 (n707-15%), 16 (n704-14%), and 31 (n589-12%), and for LR-HPV, they were 42 (19%), 6 (16%), and 54 (13%); 56% of patients screened for HPV were ≤ 30 years old, 53% were between 31 and 40 years old, 46% were 41-50 and 51-60 years old, and finally, 44% of subjects were >60 years old. CONCLUSIONS: Our study provided comprehensive epidemiological data on HPV prevalence and genotype distribution among 9647 participants, which could serve as a significant reference for clinical practice, and it implied the necessity for more effective screening methods for HPV carcinogenesis covering the use of more specific molecular investigations. Although this is a predominantly descriptive and epidemiological study, the data obtained offer not only a fairly unique trend compared to other studies of different realities and latitudes but also lead us to focus on the HPV infection within two groups of young people and adults and hypothesize the possible involvement of dysbiosis, stem cells, and the retrotransposition mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...