Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.219
Filtrar
1.
Biomol Ther (Seoul) ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39091020

RESUMEN

Sesquiterpene lactones, a class of natural compounds abundant in the Asteraceae family, have gained attention owing to their diverse biological activities, and particularly their anti-proliferative effects on human cancer cells. In this study, we systematically investigated the structure-activity relationship of ten sesquiterpene lactones with the aim of elucidating the structural determinants for the STAT3 inhibition governing their anti-proliferative effects. Our findings revealed a significant correlation between the STAT3 inhibitory activity and the anti-proliferative effects of sesquiterpene lactones in MDA-MB-231 breast cancer cell lines. Among the compounds tested, alantolactone and isoalantolactone emerged as the most potent STAT3 inhibitors, highlighting their potential as candidates for anticancer drug development. Through protein-ligand docking studies, we revealed the structural basis of STAT3 inhibition by sesquiterpene lactones, emphasizing the critical role of hydrogen-bonding interactions with key residues, including Arg609, Ser611, Glu612, and Ser613, in the SH2 domain of STAT3. Furthermore, our conformational analysis revealed the decisive role of the torsion angle within the geometry-optimized structures of sesquiterpene lactones in their STAT3 inhibitory activity (R=0.80, p<0.01). These findings not only provide preclinical evidence for sesquiterpene lactones as promising phytomedicines against diseases associated with abnormal STAT3 activation, but also highlight the importance of stereochemical aspects in their activity.

2.
Colloids Surf B Biointerfaces ; 244: 114136, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39116602

RESUMEN

Aggregation-induced emission (AIE) materials are attracting great attention in biomedical fields such as sensors, bioimaging, and cancer treatment, et al. due to their strong fluorescence emission in the aggregated state. In this contribution, a series of tetraphenylene-acetonitrile AIE compounds with D-A-D' structures were synthesized by Suzuki coupling reaction and Knoevenagel condensation, and their relationship of chemical structure and fluorescence properties was investigated in detail, among which TPPA compound was selected as the monomer owing to the longest emission wavelength at about 530 nm with low energy band gap ΔE 3.09 eV of neutral TPPA and 1.43 eV of protonated TPPA. Novel amphiphilic AIE PEG-TA copolymers were prepared by RAFT polymerization of TPPA and PEGMA with about 1.44×104 Mw and narrow PDI, and the molar ratio of TPPA in the PEG-TA1 and PEG-TA2 copolymers was about 23.4 % and 29.6 %. The as-prepared PEG-TA copolymers would self-assembled in aqueous solution to form core-shell structures with a diameter of 150-200 nm, and their emission wavelength could reversibly convert from 545 nm to 650 nm with excellent pH sensitivity. The CLSM images showed that the PEG-TA FONs and PTX drugs-loaded PTX-TA FONs could be endocytosed by cells and mainly enriched in the cytoplasm, and CCK-8 results showed that the PEG-TA FONs had excellent biocompatibility but PTX-TA FONs had high inhibition ratio for A549 cells, moreover, the flow cytometry also showed that PTX-TA FONs could result in the apoptosis of A549 cells with some extent anti-tumor effect.

3.
Angew Chem Int Ed Engl ; : e202405941, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110923

RESUMEN

The opioid crisis has highlighted the urgent need to develop non-opioid alternatives for managing pain, with an effective, safe, and non-addictive pharmacotherapeutic profile. Using an extensive structure-activity relationship approach, here we have identified a new series of highly selective neurotensin receptor type 2 (NTS2) macrocyclic compounds that exert potent, opioid-independent analgesia in various experimental pain models. To our knowledge, the constrained macrocycle in which the Ile12 residue of NT(7-12) was substituted by cyclopentylalanine, Pro7 and Pro10 were replaced by allyl-glycine followed by side-chain to side-chain cyclization is the most selective analog targeting NTS2 identified to date (Ki 2.9 nM), showing 30,000-fold selectivity over NTS1. Of particular importance, this macrocyclic analog is also able to potentiate the analgesic effects of morphine in a dose- and time-dependent manner. Exerting complementary analgesic actions via distinct mechanisms of nociceptive transmission, NTS2-selective macrocycles can therefore be exploited as opioid-free analgesics or as opioid-sparing therapeutics, offering superior pain relief with reduced adverse effects to pain patients.

4.
Ultrason Sonochem ; 109: 107014, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39111249

RESUMEN

Buckwheat sprouts are rich in pectic polysaccharides, which possess numerous health-improving benefits. However, the precise structure-activity relationship of pectic polysaccharides from Tartary buckwheat sprouts (TP) is still scant, which ultimately restricts their applications in the food industry. Hence, both ultrasound-assisted Fenton treatment (UAFT) and mild alkali treatment (MATT) were utilized for the modification of TP, and then the effects of physicochemical characteristics of original and modified TPs on their bioactivities were assessed. Our findings reveled that the UAFT treatment could precisely reduce TP's molecular weight, with the levels decreased from 8.191 × 104 Da to 0.957 × 104 Da. Meanwhile, the MATT treatment could precisely reduce TP's esterification degree, with the values decreased from 28.04 % to 4.72 %. Nevertheless, both UAFT and MATT treatments had limited effects on the backbone and branched chain of TP. Moreover, our findings unveiled that the UAFT treatment could notably promote TP's antioxidant, antiglycation, and immunostimulatory effects, while remarkedly reduce TP's anti-hyperlipidemic effect, which were probably owing to that the UAFT treatment obviously reduced TP's molecular weight. Additionally, the MATT treatment could also promote TP's immunostimulatory effect, which was probably attributed to that the MATT treatment significantly decreased TP's esterification degree. Interestingly, the MATT treatment could regulate TP's antioxidant and antiglycation effects, which was probably attributed to that the MATT treatment simultaneously reduced its esterification degree and bound phenolics. Our findings are conducive to understanding TP's structure-activity relationship, and can afford a scientific theoretical basis for the development of functional or healthy products based on TPs. Besides, the UAFT treatment can be a promising approach for the modification of TP to improve its biological functions.

5.
Int J Cosmet Sci ; 46(4): 544-552, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39113315

RESUMEN

Lecithin:retinol acyltransferase (LRAT) is the main enzyme catalysing the esterification of retinol to retinyl esters and, hence, is of central importance for retinol homeostasis. As retinol, by its metabolite retinoic acid, stimulates fibroblasts to synthesize collagen fibres and inhibits collagen-degrading enzymes, the inhibition of LRAT presents an intriguing strategy for anti-ageing ingredients by increasing the available retinol in the skin. Here, we synthesized several derivatives mimicking natural lecithin substrates as potential LRAT inhibitors. By exploring various chemical modifications of the core scaffold consisting of a central amino acid and an N-terminal acylsulfone, we explored 10 different compounds in a biochemical assay, resulting in two compounds with IC50 values of 21.1 and 32.7 µM (compounds 1 and 2), along with a simpler arginine derivative with comparative inhibitory potency. Supported by computational methods, we investigated their structure-activity relationship, resulting in the identification of several structural features associated with high inhibition of LRAT. Ultimately, we conducted an ex vivo study with human skin, demonstrating an increase of collagen III associated with a reduction of the skin ageing process. In conclusion, the reported compounds offer a promising approach to boost retinol abundance in human skin and might present a new generation of anti-ageing ingredients for cosmetic application.


La lécithine/rétinol acyltransférase (LRAT) est la principale enzyme qui catalyse l'estérification du rétinol en esters de rétinyle et, par conséquent, est d'une importance centrale pour l'homéostasie du rétinol. Étant donné que le rétinol, par son métabolite l'acide rétinoïque, stimule les fibroblastes pour synthétiser les fibres de collagène et inhibe les enzymes de dégradation du collagène, l'inhibition de la LRAT constitue une stratégie intéressante pour les ingrédients anti­âge en augmentant le rétinol disponible dans la peau. Ici, nous avons synthétisé plusieurs dérivés imitant les substrats naturels de la lécithine comme inhibiteurs de LRAT potentiels. En étudiant différentes modifications chimiques du noyau composé d'un acide aminé central et d'un acylsulfone N­terminal, nous avons étudié dix composés différents dans le cadre d'un essai biochimique; il en est résulté deux composés avec des valeurs de CI50 de 21.1 et 32.7 µm (composés 1 et 2), ainsi qu'un dérivé d'arginine plus simple avec une puissance inhibitrice comparative. Avec le soutien de méthodes computationnelles, nous avons étudié leur relation structure­activité, ce qui a permis d'identifier plusieurs caractéristiques structurelles associées à une inhibition élevée de la LRAT. Enfin, nous avons mené une étude ex vivo sur la peau humaine, démontrant une augmentation du collagène III associée à une réduction du processus de vieillissement de la peau. En conclusion, les composés rapportés offrent une approche prometteuse pour stimuler l'abondance du rétinol dans la peau humaine et pourraient aboutir à une nouvelle génération d'ingrédients anti­âge pour des applications cosmétiques.


Asunto(s)
Aciltransferasas , Inhibidores Enzimáticos , Vitamina A , Vitamina A/farmacología , Aciltransferasas/antagonistas & inhibidores , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Relación Estructura-Actividad , Piel/efectos de los fármacos , Piel/metabolismo
6.
ChemistryOpen ; : e202400142, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115105

RESUMEN

The present study describes an eco-friendly NBS-assisted regioselective synthesis of new 5-acylfunctionalized 5-acylfunctionalized 2-(1H-pyrazol-1-yl)thiazoles by condensation of 3,5-dimethyl-1H-pyrazole-1-carbothioamide with unsymmetrical 1,3-diketones under solvent-free conditions. The structural elucidation of the newly synthesized compounds was accomplished using various spectroscopic techniques viz. FTIR, NMR and mass spectrometry. All the newly synthesized compounds were examined for their in vitro antimicrobial potential against both pathogenic gram positive and gram negative bacterial and fungal species as well as anthelmintic activity against Pheretima posthuma earthworms. The results of antimicrobial activity revealed that all tested compounds 3 a-j showed excellent antimicrobial potential particularly against S. aureus. It was also observed that compounds 3 e and 3 i (MIC=62.5 µg/mL) showed greater potency against E. coli, whereas compounds 3 a and 3 h (MIC=50 µg/mL and 62.5 µg/mL) demonstrated better activity against P. aeruginosa and compound 3 i (MIC=62.5 µg/mL) exhibited superior activity against S. pyogenus when compared to standard drug Ampicillin (MIC=100µg/mL). Compound 3 e and 3 j revealed remarkable antifungal and anthelmintic activities. To find out binding interactions of target compounds with target proteins and pharmacokinetic parameters of the compounds, in silico investigations involving molecular docking studies and ADMET predictions were also performed.

7.
Front Pharmacol ; 15: 1394053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101130

RESUMEN

Introduction: Despite the rising concern with fungal resistance, a myriad of molecules has yet to be explored. Geraniol, linalool, and citronellal are monoterpenes with the same molecular formula (C10H18O), however, neither the effect of these compounds on inflammatory axis induced by Candida spp. nor the antibiofilm Structure-Activity Relationship (SAR) have been well-investigated. Herein we analyzed geraniol, linalool and citronellal antifungal activity, cytotoxicity, and distinctive antibiofilm SAR, also the influence of geraniol on Candida spp induced dysregulated inflammatory axis, and in vivo toxicity. Methods: Minimal inhibitory (MIC) and fungicidal (MFC) concentrations against Candida spp were defined, followed by antibiofilm activity (CFU-colony forming unit/mL/g of dry weight). Cytotoxic activity was assessed using human monocytes (THP-1) and oral squamous cell (TR146). Geraniol was selected for further analysis based on antifungal, antibiofilm and cytotoxic results. Geraniol was tested using a dual-chamber co-culture model with TR146 cells infected with C. albicans, and THP-1 cells, used to mimic oral epithelium upon fungal infection. Expression of Candida enzymes (phospholipase-PLB and aspartyl proteases-SAP) and host inflammatory cytokines (interleukins: IL-1ß, IL-6, IL-17, IL-18, IL-10, and Tumor necrosis factor-TNF) were analyzed. Lastly, geraniol in vivo toxicity was assessed using Galleria mellonella. Results: MIC values obtained were 1.25-5 mM/mL for geraniol, 25-100 mM/mL for linalool, and 100-200 mM/mL for citronellal. Geraniol 5 and 50 mM/mL reduced yeast viability during biofilm analysis, only 500 mM/mL of linalool was effective against a 72 h biofilm and no biofilm activity was seen for citronellal. LD50 for TR146 and THP-1 were, respectively: geraniol 5.883 and 8.027 mM/mL; linalool 1.432 and 1.709 mM/mL; and citronellal 0.3006 and 0.1825 mM/mL. Geraniol was able to downregulate expression of fungal enzymes and host pro-inflammatory cytokines IL-1ß, IL-6, and IL-18. Finally, safety in vivo parameters were observed up to 20 mM/Kg. Discussion: Despite chemical similarities, geraniol presented better antifungal, antibiofilm activity, and lower cytotoxicity when compared to the other monoterpenes. It also showed low in vivo toxicity and capacity to downregulate the expression of fungal enzymes and host pro-inflammatory cytokines. Thus, it can be highlighted as a viable option for oral candidiasis treatment.

8.
Future Med Chem ; : 1-22, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101588

RESUMEN

Adiposity and obesity-related proteins (FTO), the earliest identified mRNA N6-methyladenosine (m6A) demethylases, are known to play crucial roles in several biological processes. Therefore, FTO is a promising target for anticancer treatment. Understanding the biological functions and regulatory mechanisms of FTO targets can serve as guidelines for drug development. Despite significant efforts to develop FTO inhibitors, no specific small-molecule inhibitors have entered clinical trials so far. In this manuscript, we review the relationship between FTO and various cancers, the small-molecule inhibitors developed against FTO targets from the perspective of medicinal chemistry and other fields, and describe their structural optimization process and structure-activity relationship, providing clues for their future development direction.


[Box: see text].

9.
Pest Manag Sci ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39104300

RESUMEN

BACKGROUND: Weed control is a significant challenge for farmers around the globe. Of the various methods available for combatting weeds, small molecules remain the most effective and versatile technology to date. In the search for novel chemical entities with new modes of action toward herbicide-resistant weeds, we have investigated hexahydrofuro[3,4-b]furan-based acyl-acyl carrier protein (ACP) thioesterase inhibitors inspired by X-ray co-crystal structure-based modeling studies. RESULTS: By exploiting scaffold hopping concepts and molecular modeling studies we were able to identify new hexahydrofuro[3,4-b]furan-based lead structures showing promising activity in vivo against commercially important grass weeds in line with strong target affinity. CONCLUSION: The present work covers a series of novel herbicidal lead structures that possess a hexahydrofuro[3,4-b]furan scaffold as a structural key feature, carrying ortho-substituted aryloxy side chains. Based on an optimized synthetic approach a broad structure-activity relationship (SAR) study was carried out. The new compounds emerging from our modeling-inspired structural variations show good acyl-ACP thioesterase inhibition in line with promising initial herbicidal activity. Glasshouse trials showed that the hexahydrofuro[3,4-b]furans outlined herein display good control of cold and warm season grass-weed species in pre-emergence application. Remarkably, some of the novel acyl-ACP thioesterase-inhibitors also showed promising efficacy against warm season weeds that are difficult to control. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

10.
bioRxiv ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39091845

RESUMEN

Sterol transport proteins (STPs) play a pivotal role in cholesterol homeostasis and therefore are essential for healthy human physiology. Despite recent advances in dissecting functions of STPs in the human cell, there is still a significant knowledge gap regarding their specific biological functions and a lack of suitable selective probes for their study. Here, we profile fluorescent steroid-based probes across ten STPs, uncovering substantial differences in their selectivity, aiding the retrospective and prospective interpretation of biological results generated with those probes. These results guided the establishment of an STP screening panel combining diverse biophysical assays, enabling the evaluation of 41 steroid-based natural products and derivatives. Combining this with a thorough structural analysis revealed the molecular basis for STP specific selectivity profiles, leading to the uncovering of several new potent and selective Aster-B inhibitors, and supporting the role of this protein in steroidogenesis.

11.
Front Mol Biosci ; 11: 1423351, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130374

RESUMEN

Parasympathetic activation in the anterior eye segment regulates various physiological functions. This process, mediated by muscarinic acetylcholine receptors, also impacts intraocular pressure (IOP) through the trabecular meshwork. While FDA-approved M3 muscarinic receptor (M3R) agonists exist for IOP reduction, their systemic cholinergic adverse effects pose limitations in clinical use. Therefore, advancing our understanding of the cholinergic system in the anterior segment of the eye is crucial for developing additional IOP-reducing agents with improved safety profiles. Systems genetics analyses were utilized to explore correlations between IOP and the five major muscarinic receptor subtypes. Molecular docking and dynamics simulations were applied to human M3R homology model using a comprehensive set of human M3R ligands and 1,667 FDA-approved or investigational drugs. Lead compounds from the modeling studies were then tested for their IOP-lowering abilities in mice. Systems genetics analyses unveiled positive correlations in mRNA expressions among the five major muscarinic receptor subtypes, with a negative correlation observed only in M3R with IOP. Through modeling studies, rivastigmine and edrophonium emerged as the most optimally suited cholinergic drugs for reducing IOP via a potentially distinct mechanism from pilocarpine or physostigmine. Subsequent animal studies confirmed comparable IOP reductions among rivastigmine, edrophonium, and pilocarpine, with longer durations of action for rivastigmine and edrophonium. Mild cholinergic adverse effects were observed with pilocarpine and rivastigmine but absent with edrophonium. These findings advance ocular therapeutics, suggesting a more nuanced role of the parasympathetic system in the anterior eye segment for reducing IOP than previously thought.

12.
Foods ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123556

RESUMEN

Hyperuricemia (HUA), or elevated uric acid in the blood, has become more prevalent in recent years. Polyphenols, which are known to have good inhibitory activity on xanthine oxidoreductase (XOR), are effective in uric acid reduction. In this review, we address the structure-activity relationship of flavonoids that inhibit XOR activity from two perspectives: the key residues of XOR and the structural properties of flavonoids. Flavonoids' inhibitory effect is enhanced by their hydroxyl, methoxy, and planar structures, whereas glycosylation dramatically reduces their activity. The flavonoid structure-activity relationship informed subsequent discussions of the changes that occur in polyphenols' XOR inhibitory activity during their extraction, processing, gastrointestinal digestion, absorption, and interactions. Furthermore, gastrointestinal digestion and heat treatment during processing can boost the inhibition of XOR. Polyphenols with comparable structures may have a synergistic effect, and their synergy with allopurinol thus provides a promising future research direction.

13.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124884

RESUMEN

Carbamate is a key structural motif in the development of fungicidal compounds, which is still promising and robust in the discovery of green pesticides. Herein, we report the synthesis and evaluation of the fungicidal activity of 35 carbamate derivatives, among which 19 compounds were synthesized in our previous report. These derivatives were synthesized from aromatic amides in a single step, which was a green oxidation process for Hofmann rearrangement using oxone, KCl and NaOH. Their chemical structures were characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry. Their antifungal activity was tested against seven plant fungal pathogens. Many of the compounds exhibited good antifungal activity in vitro (inhibitory rate > 60% at 50 µg/mL). Compound 1ag exhibited excellent broad-spectrum antifungal activities with inhibition rates close to or higher than 70% at 50 µg/mL. Notably, compound 1af demonstrated the most potent inhibition against F. graminearum, with an EC50 value of 12.50 µg/mL, while compound 1z was the most promising candidate fungicide against F. oxysporum (EC50 = 16.65 µg/mL). The structure-activity relationships are also discussed in this paper. These results suggest that the N-aryl carbamate derivatives secured by our green protocol warrant further investigation as potential lead compounds for novel antifungal agents.


Asunto(s)
Antifúngicos , Carbamatos , Tecnología Química Verde , Pruebas de Sensibilidad Microbiana , Carbamatos/química , Carbamatos/farmacología , Carbamatos/síntesis química , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Relación Estructura-Actividad , Estructura Molecular , Hongos/efectos de los fármacos , Fungicidas Industriales/farmacología , Fungicidas Industriales/síntesis química , Fungicidas Industriales/química , Fusarium/efectos de los fármacos
14.
Molecules ; 29(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39124974

RESUMEN

In our ongoing work to create potential antifungal agents, we synthesized and tested a group of C1-substituted acylhydrazone ß-carboline analogues 9a-o and 10a-o for their effectiveness against Valsa mali, Fusarium solani, Fusarium oxysporum, and Fusarium graminearum. Their compositions were analyzed using different spectral techniques, such as 1H/13C NMR and HRMS, with the structure of 9l being additionally confirmed through X-ray diffraction. The antifungal evaluation showed that, among all the target ß-carboline analogues, compounds 9n and 9o exhibited more promising and broad-spectrum antifungal activity than the commercial pesticide hymexazol. Several intriguing findings regarding structure-activity relationships (SARs) were examined. In addition, the cytotoxicity test showed that these acylhydrazone ß-carboline analogues with C1 substitutions exhibit a preference for fungi, with minimal harm to healthy cells (LO2). The reported findings provide insights into the development of ß-carboline analogues as new potential antifungal agents.


Asunto(s)
Antifúngicos , Carbolinas , Fusarium , Hidrazonas , Pruebas de Sensibilidad Microbiana , Carbolinas/química , Carbolinas/farmacología , Carbolinas/síntesis química , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Relación Estructura-Actividad , Fusarium/efectos de los fármacos , Hidrazonas/farmacología , Hidrazonas/química , Hidrazonas/síntesis química , Estructura Molecular , Humanos
15.
Environ Sci Technol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137267

RESUMEN

Acute oral toxicity is currently not available for most polycyclic aromatic hydrocarbons (PAHs), especially their derivatives, because it is cost-prohibitive to experimentally determine all of them. Here, quantitative structure-activity relationship (QSAR) models using machine learning (ML) for predicting the toxicity of PAH derivatives were developed, based on oral toxicity data points of 788 individual substances of rats. Both the individual ML algorithm gradient boosting regression trees (GBRT) and the stacking ML algorithm (extreme gradient boosting + GBRT + random forest regression) provided the best prediction results with satisfactory determination coefficients for both cross-validation and the test set. It was found that those PAH derivatives with fewer polar hydrogens, more large-sized atoms, more branches, and lower polarizability have higher toxicity. Software based on the optimal ML-QSAR model was successfully developed to expand the application potential of the developed model, obtaining reliable prediction of pLD50 values and reference doses for 6893 external PAH derivatives. Among these chemicals, 472 were identified as moderately or highly toxic; 10 out of them had clear environment detection or use records. The findings provide valuable insights into the toxicity of PAHs and their derivatives, offering a standard platform for effectively evaluating chemical toxicity using ML-QSAR models.

16.
Eur J Med Chem ; 277: 116759, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39137454

RESUMEN

In 2022, the U.S. Food and Drug Administration approved a total of 16 marketing applications for small molecule drugs, which not only provided dominant scaffolds but also introduced novel mechanisms of action and clinical indications. The successful cases provide valuable information for optimizing efficacy and enhancing pharmacokinetic properties through strategies like macrocyclization, bioequivalent group utilization, prodrug synthesis, and conformation restriction. Therefore, gaining an in-depth understanding of the design principles and strategies underlying these drugs will greatly facilitate the development of new therapeutic agents. This review focuses on the research and development process of these newly approved small molecule drugs including drug design, structural modification, and improvement of pharmacokinetic properties to inspire future research in this field.

17.
Adv Mater ; : e2408416, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161083

RESUMEN

This review focuses on the mechanism and driving force in the intractable gas separation using porous adsorbents. A variety of intractable mixtures have been discussed, including air separation, carbon capture, and hydrocarbon purification. Moreover, the separation systems are categorized according to distinctly biased modes depending on the minor differences in the kinetic diameter, dipole/quadruple moment, and polarizability of the adsorbates, or sorted by the varied separation occasions (e.g., CO2 capture from flue gas or air) and driving forces (thermodynamic and kinetic separation, molecular sieving). Each section highlights the functionalization strategies for porous materials, like synthesis condition optimization and organic group modifications for porous carbon materials, cation exchange and heteroatom doping for zeolites, and metal node-organic ligand adjustments for MOFs. These functionalization strategies are subsequently associated with enhanced adsorption performances (capacity, selectivity, structural/thermal stability, moisture resistance, etc.) toward the analog gas mixtures. Finally, this review also discusses future challenges and prospects for using porous materials in intractable gas separation. Therein, the combination of theoretical calculation with the synthesis condition and adsorption parameters optimization of porous adsorbents may have great potential, given its fast targeting of candidate adsorbents and deeper insights into the adsorption forces in the confined pores and cages.

18.
J Enzyme Inhib Med Chem ; 39(1): 2387415, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39140677

RESUMEN

EcGUS has drawn considerable attention for its role as a target in alleviating serious GIAEs. In this study, a series of 72 (thio)urea derivatives were designed, synthesised, and biologically assayed. The bioassay results revealed that E-9 (IC50 = 2.68 µM) exhibited a promising inhibitory effect on EcGUS, surpassing EcGUS inhibitor D-saccharic acid-1,4-lactone (DSL, IC50 = 45.8 µM). Additionally, the inhibitory kinetic study indicated that E-9 (Ki = 1.64 µM) acted as an uncompetitive inhibitor against EcGUS. The structure-activity relationship revealed that introducing an electron-withdrawing group into the benzene ring at the para-position is beneficial for enhancing inhibitory activity against EcGUS. Furthermore, molecular docking analysis indicated that E-9 has a strong affinity to EcGUS by forming interactions with residues Asp 163, Tyr 472, and Glu 504. Overall, these results suggested that E-9 could be a potent EcGUS inhibitor, providing valuable insights and guidelines for the development of future inhibitors targeting EcGUS.


Asunto(s)
Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Inhibidores Enzimáticos , Escherichia coli , Glucuronidasa , Relación Estructura-Actividad , Estructura Molecular , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/metabolismo , Simulación del Acoplamiento Molecular , Tiourea/farmacología , Tiourea/química , Tiourea/síntesis química , Glicoproteínas
19.
J Control Release ; 374: 219-229, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39146980

RESUMEN

Nanoparticles (NPs) can be designed for targeted delivery in cancer nanomedicine, but the challenge is a low delivery efficiency (DE) to the tumor site. Understanding the impact of NPs' physicochemical properties on target tissue distribution and tumor DE can help improve the design of nanomedicines. Multiple machine learning and artificial intelligence models, including linear regression, support vector machine, random forest, gradient boosting, and deep neural networks (DNN), were trained and validated to predict tissue distribution and tumor delivery based on NPs' physicochemical properties and tumor therapeutic strategies with the dataset from Nano-Tumor Database. Compared to other machine learning models, the DNN model had superior predictions of DE to tumors and major tissues. The determination coefficients (R2) for the test datasets were 0.41, 0.42, 0.45, 0.79, 0.87, and 0.83 for DE in tumor, heart, liver, spleen, lung, and kidney, respectively. All the R2 and root mean squared error (RMSE) results of the test datasets were similar to the 5-fold cross validation results. Feature importance analysis showed that the core material of NPs played an important role in output predictions among all physicochemical properties. Furthermore, multiple NP formulations with greater DE to the tumor were determined by the DNN model. To facilitate model applications, the final model was converted to a web dashboard. This model could serve as a high-throughput pre-screening tool to support the design of new and efficient nanomedicines with greater tumor DE and serve as an alternative tool to reduce, refine, and partially replace animal experimentation in cancer nanomedicine research.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39153063

RESUMEN

Twenty-two eco-friendly, novel Schiff bases were synthesized from 2,4,5-trichloro aniline and characterized by using FT-IR, 1H NMR, and 13C NMR techniques. Fungicidal activity against pathogenic fungi Sclerotium rolfsii and Rhizoctonia bataticola and insecticidal activity against the stored grain insect pest Callosobruchus maculatus of the test compounds were evaluated under control condition. All of the investigated compounds, according to the study, exhibited moderate to good antifungal and insecticidal activities. The best antifungal activity against both pathogenic fungi was demonstrated by C15 and C16 whose ED50 values were recorded 11.4 and 10.4 µg/mL against R. bataticola and 10.6 and 11.9 µg/mL against S. rolfsii, respectively. They were further screened in for disease suppression against both pathogenic fungi under pot condition through different methods of applications in green gram (Vigna radiata L.) crop. The compounds C10 and C18 had the highest insecticidal activity, with LD50 values of 0.024 and 0.042 percentages, respectively. Stepwise regression analysis using root mean square error (RMSE) and correlation coefficient (R) method used to validate the quantitative structure activity relationship (QSAR) of synthesized compounds in addition to their fungicidal and insecticidal actions. To the best of our knowledge, this investigation on the 22 new Schiff bases as possible agrochemicals is the first one that has been fully reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA