Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124813, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39018673

RESUMEN

Glycoproteins are difficult to be detected by imprinting strategy due to their low natural abundance, high flexible conformation and large size. Herein, a high-density boric acid modified metal-organic framework (MOF) surface molecularly imprinted polymer (SMIP) resonant light scattering sensor was constructed for the high-sensitivity detection of target glycoproteins. A MOF with large specific surface area was selected as the substrate material to support the boric acid group with high loading density (4.66 %). The introduction of the boric acid group in the SMIP provided a high-affinity binding site for the recognition and binding of glycoproteins. Shallow surface cavities with rapid mass transfer (equilibrium time 20 min) were thus formed by surface imprinting. Furthermore, high sensitivity (limit of detection 15 pM) was achieved at physiological pH (7.4), which was conducive to the detection of glycoproteins with low natural abundance in complex biological samples and maintaining physiological activity.

2.
ACS Appl Mater Interfaces ; 16(26): 33182-33191, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38903013

RESUMEN

Direct observation by the naked eye of fluorescence-stained microbes adsorbed on surface imprinted polymers (SIPs) is highly challenging and limited by speed, accuracy and the semiquantitative nature of the method. In this study, we tested for the presence of spores of Fusarium oxysporum f. sp. cubense race 4 (Foc4), which cause severe banana Fusarium wilt disease and reduces the area of banana plants. This kind of spore can become dormant in soil, which means that the detection of secreted molecules (molecular imprinting) in soil may be inaccurate; detection methods such as polymerase chain reaction (PCR) and Raman spectroscopy are more accurate but time-consuming and inconvenient. Therefore, a semiquantitative and rapid SIP detection method for Foc4 was proposed. Based on the ITO conductive layer, a reusable and naked-eye-detectable Foc4-PDMS SIP film was prepared with a site density of approximately 9000 mm-2. Adsorption experiments showed that when the Foc4 spore concentration was between 104 to 107 CFU/mL, the number of Foc4 spores adsorbed and the fluorescence intensity were strongly correlated with the concentration and could be fully distinguished by the naked eye after fluorescence staining. Adsorption tests on other microbes showed that the SIP film completely recognized only the Foc series. All the results were highly consistent with the naked-eye observations after fluorescence staining, and the results of the Foc4-infected soil experiment were also close to the ideal situation. Taken together, these results showed that Foc4-PDMS SIPs have the ability to rapidly and semiquantitatively detect the concentration of Foc in soil, which can provide good support for banana cultivation. This method also has potential applications in the detection of other fungal diseases.


Asunto(s)
Fusarium , Fusarium/aislamiento & purificación , Fusarium/química , Siloxanos/química , Esporas Fúngicas/aislamiento & purificación , Esporas Fúngicas/química , Musa/microbiología , Musa/química , Enfermedades de las Plantas/microbiología , Adsorción , Impresión Molecular , Propiedades de Superficie , Microbiología del Suelo
3.
Micromachines (Basel) ; 15(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38399001

RESUMEN

Parkinson's Disease (PD) is a debilitating neurodegenerative disease, causing loss of motor function and, in some instances, cognitive decline and dementia in those affected. The quality of life can be improved, and disease progression delayed through early interventions. However, current methods of confirming a PD diagnosis are extremely invasive. This prevents their use as a screening tool for the early onset stages of PD. We propose a surface imprinted polymer (SIP) electroimpedance spectroscopy (EIS) biosensor for detecting α-Synuclein (αSyn) and its aggregates, a biomarker that appears in saliva and blood during the early stages of PD as the blood-brain barrier degrades. The surface imprinted polymer stamp is fabricated by low-temperature melt stamping polycaprolactone (PCL) on interdigitated EIS electrodes. The result is a low-cost, small-footprint biosensor that is highly suitable for non-invasive monitoring of the disease biomarker. The sensors were tested with αSyn dilutions in deionized water and in constant ionic concentration matrix solutions with decreasing concentrations of αSyn to remove the background effects of concentration. The device response confirmed the specificity of these devices to the target protein of monomeric αSyn. The sensor limit of detection was measured to be 5 pg/L, and its linear detection range was 5 pg/L-5 µg/L. This covers the physiological range of αSyn in saliva and makes this a highly promising method of quantifying αSyn monomers for PD patients in the future. The SIP surface was regenerated, and the sensor was reused to demonstrate its capability for repeat sensing as a potential continuous monitoring tool for the disease biomarker.

4.
Sensors (Basel) ; 20(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32069788

RESUMEN

Owing to their merits of simple, fast, sensitive, and low cost, electrochemical biosensors have been widely used for the diagnosis of infectious diseases. As a critical element, the receptor determines the selectivity, stability, and accuracy of the electrochemical biosensors. Molecularly imprinted polymers (MIPs) and surface imprinted polymers (SIPs) have great potential to be robust artificial receptors. Therefore, extensive studies have been reported to develop MIPs/SIPs for the detection of infectious diseases with high selectivity and reliability. In this review, we discuss mechanisms of recognition events between imprinted polymers with different biomarkers, such as signaling molecules, microbial toxins, viruses, and bacterial and fungal cells. Then, various preparation methods of MIPs/SIPs for electrochemical biosensors are summarized. Especially, the methods of electropolymerization and micro-contact imprinting are emphasized. Furthermore, applications of MIPs/SIPs based electrochemical biosensors for infectious disease detection are highlighted. At last, challenges and perspectives are discussed.


Asunto(s)
Técnicas Biosensibles/instrumentación , Enfermedades Transmisibles/diagnóstico , Técnicas Electroquímicas/instrumentación , Impresión Molecular , Polímeros/química , Biomarcadores/análisis , Humanos
5.
Artículo en Inglés | MEDLINE | ID: mdl-31812006

RESUMEN

Concanavalin A is a representative of the plant protein group known as lectins. Many lectin proteins have useful characteristics for studies on cell division and cell surfaces. In this study, a new adsorbent for the specific separation of Concanavalin A was prepared by applying a silica particle surface imprinting method. First, silica particles were activated via acidic treatment, and then, 3-methacryloyloxypropyl trimethoxysilane (MPTMS) was used for modification. For the preparation of Concanavalin A surface-imprinted silica particles (Con A-MISPs), N-methacryloyl-l-histidine methyl ester (MAH) was used as a functional monomer. The silica particles were characterized using a Zetasizer, scanning electron microscopy equipment (SEM), and Fourier transform infrared spectroscopy (FTIR). The effects of parameters such as the pH, initial concentration of Concanavalin A, and temperature on the adsorption of Concanavalin A were determined. The maximum Concanavalin A adsorption onto Con A-MISPs was observed to be 305.2 mg/g at a pH of 6. The reusability of the Con A-MISPs was approximately 93.5%. The non-imprinted silica particles (NISPs) were prepared in the same manner without Concanavalin A to compare the surface imprinting factor. Selective binding studies were carried out with lysozyme and hemoglobin molecules. The selectivity of the Con A-MISPs was also investigated by isolating Concanavalin A from Canavalia ensiformis. The purity of the Concanavalin A was shown by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE).


Asunto(s)
Canavalia/química , Concanavalina A/aislamiento & purificación , Impresión Molecular/métodos , Dióxido de Silicio/química , Electroforesis en Gel de Poliacrilamida , Concentración de Iones de Hidrógeno , Temperatura
6.
Biosens Bioelectron ; 136: 97-105, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048213

RESUMEN

We report on a novel biomimetic sensor that allows sensitive and specific detection of Escherichia coli (E. coli) bacteria in a broad concentration range from 102 up to 106 CFU/mL in both buffer fluids and relevant food samples (i.e. apple juice). The receptors are surface-imprinted polyurethane layers deposited on stainless-steel chips. Regarding the transducer principle, the sensor measures the increase in thermal resistance between the chip and the liquid due to the presence of bacteria captured on the receptor surface. The low noise level that enables the low detection limit originates from a planar meander element that serves as both a heater and a temperature sensor. Furthermore, the experiments show that the presence of bacteria in a liquid enhances the thermal conductivity of the liquid itself. Reference tests with a set of other representative species of Enterobacteriaceae, closely related to E. coli, indicate a very low cross-sensitivity with a sensor response at or below the noise level.


Asunto(s)
Técnicas Bacteriológicas/métodos , Técnicas Biosensibles/métodos , Escherichia coli/aislamiento & purificación , Microbiología de Alimentos , Biomimética
7.
ACS Sens ; 4(1): 69-75, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30596236

RESUMEN

Zika virus (ZIKV) is a flavivirus that was first identified in 1947. Initially, the virus was of little concern for health authorities given there were very few casualties among those suffering an infection. As such, only limited studies were performed on ZIKV. Recently, the viral infection has been linked to microcephaly in infants, which has prompted a dramatic increase in scientific interest in ZIKV research, including methods to allow for rapid virus identification. In this work we report the development of a new type of ZIKV electrochemical biosensor based on surface imprinted polymers and graphene oxide composites. The biosensor was used to detect ZIKV by measuring changes in the electrical signal with changing virus concentrations in buffer and serum using standard electrochemical techniques. The detection limit of our method is similar to the detection limit of the real-time quantitative reverse transcription PCR method.


Asunto(s)
Técnicas Biosensibles/métodos , Sangre/virología , Técnicas Electroquímicas/métodos , Virus Zika/aislamiento & purificación , Aedes/virología , Animales , Técnicas Biosensibles/instrumentación , Línea Celular , Técnicas Electroquímicas/instrumentación , Electrodos , Oro/química , Grafito/química , Humanos , Límite de Detección , Nanocompuestos/química , Polímeros/química , Propiedades de Superficie
8.
ACS Infect Dis ; 3(5): 388-397, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28388095

RESUMEN

This paper introduces a novel bacterial identification assay based on thermal wave analysis through surface-imprinted polymers (SIPs). Aluminum chips are coated with SIPs, serving as synthetic cell receptors that have been combined previously with the heat-transfer method (HTM) for the selective detection of bacteria. In this work, the concept of bacterial identification is extended toward the detection of nine different bacterial species. In addition, a novel sensing approach, thermal wave transport analysis (TWTA), is introduced, which analyzes the propagation of a thermal wave through a functional interface. The results presented here demonstrate that bacterial rebinding to the SIP layer resulted in a measurable phase shift in the propagated wave, which is most pronounced at a frequency of 0.03 Hz. In this way, the sensor is able to selectively distinguish between the different bacterial species used in this study. Furthermore, a dose-response curve was constructed to determine a limit of detection of 1 × 104 CFU mL-1, indicating that TWTA is advantageous over HTM in terms of sensitivity and response time. Additionally, the limit of selectivity of the sensor was tested in a mixed bacterial solution, containing the target species in the presence of a 99-fold excess of competitor species. Finally, a first application for the sensor in terms of infection diagnosis is presented, revealing that the platform is able to detect bacteria in clinically relevant concentrations as low as 3 × 104 CFU mL-1 in spiked urine samples.


Asunto(s)
Materiales Biomiméticos/química , Técnicas Biosensibles/métodos , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Poliuretanos/química , Aluminio/química , Técnicas Biosensibles/instrumentación , Calor , Límite de Detección , Impresión Molecular , Receptores Artificiales/química , Urinálisis/métodos
9.
J Sep Sci ; 39(22): 4354-4359, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27682825

RESUMEN

We present a protocol for the preparation of surface-imprinted polymer microspheres by core-shell precipitation polymerization for the enantioseparation of (S)-amlodipine. In this work, submicron mesoporous silica microspheres were prepared with gemini cationic surfactant as soft template. Molecularly imprinted polymers were coated on the silica supports with a low level of crosslinking, and the thickness of the thin-walled imprinted shell was about 45 nm. The material showed fast binding kinetics for (S)-amlodipine (within only 20 min for complete equilibrium), and the saturation adsorption capacity reached 309.2 mg/g, indicating the good accessibility of binding sites and improved mass transfer for target molecule. The imprinted microspheres exhibited an appreciable enantiomeric excess of (S)-amlodipine of 11.3% when used as a glass chromatography column for the enantioseparation of (S)-amlodipine from amlodipine besylate without extra chiral additives. The surface-imprinted materials display potentially amplification for industrial enantioseparation of (S)-amlodipine.


Asunto(s)
Amlodipino/aislamiento & purificación , Microesferas , Adsorción , Impresión Molecular , Polimerizacion , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA