Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1005910

RESUMEN

Objective To investigate the potential effect and mechanism of curcumin in inhibiting synaptic injury in the cortex of rats with cerebral ischemia-reperfusion. Methods Sprague-Dawley rats were divided into sham-operated group, model group, low-dose curcumin (50 mg/kg) group, and high-dose curcumin (100 mg/kg) group. A model of middle cerebral artery occlusion for 2 hours and reperfusion for 24 hours was constructed, and curcumin was administered. Based on the neurological function score, the effects of curcumin on cerebral infarct volume, synaptic ultrastructure changes, inflammatory cell infiltration, and the expression of NLRP3, Caspase-1, Synapsin1, and CAMKⅡ were observed after the end of the animal treatment. Results The neurological function scores were 0, 3.25±0.43, 2.50±0.50, and 1.50±0.50 for the sham-operated group, model group, low-dose curcumin group, and high-dose curcumin group, respectively. The percentage of cerebral infarct volume was 0, (38.89±2.21)%, (33.48±1.77)%, and (23.69±2.19)%, respectively. Compared with the sham operation group, the model group had severe synaptic ultrastructure damage, extensive inflammatory cell infiltration, significantly increased expression of Caspase-1 and NLRP3 (P < 0.5), and significantly decreased expression of Synapsin1 and CAMKⅡ (P < 0.5). Curcumin treatment significantly inhibited synaptic damage, reduced inflammatory cell infiltration, decreased the expression of Caspase-1 and NLRP3 (P < 0.5), and increased the expression of Synapsin1 and CAMKII (P < 0.5), when compared with the model group. Conclusion Ischemia-reperfusion-mediated synaptic injury in rat brain triggers an inflammatory response in cortical nerve cells, and curcumin alleviates synaptic damage and reduces brain injury by inhibiting inflammatory factor levels.

2.
Front Neurosci ; 17: 1247397, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37817802

RESUMEN

Introduction: Human induced pluripotent stem cells (iPSCs), with their ability to generate human neural cells (astrocytes and neurons) from patients, hold great promise for understanding the pathophysiology of major neuropsychiatric diseases such as schizophrenia and bipolar disorders, which includes alterations in cerebral development. Indeed, the in vitro neurodifferentiation of iPSCs, while recapitulating certain major stages of neurodevelopment in vivo, makes it possible to obtain networks of living human neurons. The culture model presented is particularly attractive within this framework since it involves iPSC-derived neural cells, which more specifically differentiate into cortical neurons of diverse types (in particular glutamatergic and GABAergic) and astrocytes. However, these in vitro neuronal networks, which may be heterogeneous in their degree of differentiation, remain challenging to bring to an appropriate level of maturation. It is therefore necessary to develop tools capable of analyzing a large number of cells to assess this maturation process. Calcium (Ca2+) imaging, which has been extensively developed, undoubtedly offers an incredibly good approach, particularly in its versions using genetically encoded calcium indicators. However, in the context of these iPSC-derived neural cell cultures, there is a lack of studies that propose Ca2+ imaging methods that can finely characterize the evolution of neuronal maturation during the neurodifferentiation process. Methods: In this study, we propose a robust and reliable method for specifically measuring neuronal activity at two different time points of the neurodifferentiation process in such human neural cultures. To this end, we have developed a specific Ca2+ signal analysis procedure and tested a series of different AAV serotypes to obtain expression levels of GCaMP6f under the control of the neuron-specific human synapsin1 (hSyn) promoter. Results: The retro serotype has been found to be the most efficient in driving the expression of the GCaMP6f and is compatible with multi-time point neuronal Ca2+ imaging in our human iPSC-derived neural cultures. An AAV2/retro carrying GCaMP6f under the hSyn promoter (AAV2/retro-hSyn-GCaMP6f) is an efficient vector that we have identified. To establish the method, calcium measurements were carried out at two time points in the neurodifferentiation process with both hSyn and CAG promoters, the latter being known to provide high transient gene expression across various cell types. Discussion: Our results stress that this methodology involving AAV2/retro-hSyn-GCaMP6f is suitable for specifically measuring neuronal calcium activities over multiple time points and is compatible with the neurodifferentiation process in our mixed human neural cultures.

3.
J Comp Neurol ; 531(17): 1846-1866, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37794741

RESUMEN

In the rat laryngeal mucosa, subepithelial corpuscular nerve endings, called laminar nerve endings, are distributed in the epiglottis and arytenoid region and are activated by the pressure changes of the laryngeal cavity. They are also suggested to play a role in efferent regulation because of secretory vesicles in the axoplasm. In the present study, the laminar nerve endings in the rat laryngeal mucosa were analyzed by 3D reconstruction from serial ultrathin sections in addition to immunohistochemistry for synapsin 1. In the light microscopy, synapsin 1-immunoreactive flattened or bulbous terminal parts of the laminar endings were also immunoreactive with VGLUT1, and were surrounded by S100- or S100B-immunoreactive Schwann cells and vimentin-immunoreactive fibroblasts. In the electron microscopy, 3D reconstruction views showed that laminar endings were composed of flattened terminal parts sized 2-5 µm in longitudinal length, overlapping in three to five multiple layers. The terminal parts of the endings were incompletely wrapped by flat cytoplasmic processes of the Schwann cells. In addition, the fibroblast network surrounded the complex of nerve endings and the Schwann cells. Several terminal parts entered through the basement membrane into the epithelial layer and attached to the basal epithelial cells, suggesting that interaction between epithelial cells and laminar nerve endings plays an important role in sensing the pressure changes in the laryngeal cavity. Secretory vesicles were unevenly distributed throughout the terminal part of the laminar nerve endings. The secretory vesicles were frequently observed in the peripheral limb of the terminal parts. It suggests that the laminar nerve endings in the larynx may release glutamate to maintain continuous discharge during the stretching of the laryngeal mucosa.


Asunto(s)
Epiglotis , Células Receptoras Sensoriales , Ratas , Animales , Microscopía Electrónica de Rastreo , Sinapsinas , Terminaciones Nerviosas
4.
Mol Med ; 29(1): 111, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596531

RESUMEN

BACKGROUND: Soluble oligomeric forms of alpha-synuclein (aSyn-O) are believed to be one of the main toxic species in Parkinson's disease (PD) leading to degeneration. aSyn-O can induce Ca2+ influx, over activating downstream pathways leading to PD phenotype. Calcineurin (CN), a phosphatase regulated by Ca2+ levels, activates NFAT transcription factors that are involved in the regulation of neuronal plasticity, growth, and survival. METHODS: Here, using a combination of cell toxicity and gene regulation assays performed in the presence of classical inhibitors of the NFAT/CN pathway, we investigate NFAT's role in neuronal degeneration induced by aSyn-O. RESULTS: aSyn-O are toxic to neurons leading to cell death, loss of neuron ramification and reduction of synaptic proteins which are reversed by CN inhibition with ciclosporin-A or VIVIT, a NFAT specific inhibitor. aSyn-O induce NFAT nuclear translocation and transactivation. We found that aSyn-O modulates the gene involved in the maintenance of synapses, synapsin 1 (Syn 1). Syn1 mRNA and protein and synaptic puncta are drastically reduced in cells treated with aSyn-O which are reversed by NFAT inhibition. CONCLUSIONS: For the first time a direct role of NFAT in aSyn-O-induced toxicity and Syn1 gene regulation was demonstrated, enlarging our understanding of the pathways underpinnings synucleinopathies.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , Linfocitos T , Homeostasis , Apoptosis , Calcineurina
5.
Front Psychiatry ; 14: 1197890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435405

RESUMEN

Background: Ketamine and psychedelics have abuse liability. They can also induce "transformative experiences" where individuals experience enhanced states of awareness. This enhanced awareness can lead to changes in preexisting behavioral patterns which could be beneficial in the treatment of substance use disorders (SUDs). Preclinical and clinical studies suggest that ketamine and psychedelics may alter markers associated with synaptic density, and that these changes may underlie effects such as sensitization, conditioned place preference, drug self-administration, and verbal memory performance. In this scoping review, we examined studies that measured synaptic markers in animals and humans after exposure to ketamine and/or psychedelics. Methods: A systematic search was conducted following PRISMA guidelines, through PubMed, EBSCO, Scopus, and Web of Science, based on a published protocol (Open Science Framework, DOI: 10.17605/OSF.IO/43FQ9). Both in vivo and in vitro studies were included. Studies on the following synaptic markers were included: dendritic structural changes, PSD-95, synapsin-1, synaptophysin-1, synaptotagmin-1, and SV2A. Results: Eighty-four studies were included in the final analyses. Seventy-one studies examined synaptic markers following ketamine treatment, nine examined psychedelics, and four examined both. Psychedelics included psilocybin/psilocin, lysergic acid diethylamide, N,N-dimethyltryptamine, 2,5-dimethoxy-4-iodoamphetamine, and ibogaine/noribogaine. Mixed findings regarding synaptic changes in the hippocampus and prefrontal cortex (PFC) have been reported when ketamine was administered in a single dose under basal conditions. Similar mixed findings were seen under basal conditions in studies that used repeated administration of ketamine. However, studies that examined animals during stressful conditions found that a single dose of ketamine counteracted stress-related reductions in synaptic markers in the hippocampus and PFC. Repeated administration of ketamine also counteracted stress effects in the hippocampus. Psychedelics generally increased synaptic markers, but results were more consistently positive for certain agents. Conclusion: Ketamine and psychedelics can increase synaptic markers under certain conditions. Heterogeneous findings may relate to methodological differences, agents administered (or different formulations of the same agent), sex, and type of markers. Future studies could address seemingly mixed results by using meta-analytical approaches or study designs that more fully consider individual differences.

6.
Cell Mol Biol Lett ; 28(1): 17, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869288

RESUMEN

BACKGROUND: Bidirectional communication between presynaptic and postsynaptic components contribute to the homeostasis of the synapse. In the neuromuscular synapse, the arrival of the nerve impulse at the presynaptic terminal triggers the molecular mechanisms associated with ACh release, which can be retrogradely regulated by the resulting muscle contraction. This retrograde regulation, however, has been poorly studied. At the neuromuscular junction (NMJ), protein kinase A (PKA) enhances neurotransmitter release, and the phosphorylation of the molecules of the release machinery including synaptosomal associated protein of 25 kDa (SNAP-25) and Synapsin-1 could be involved. METHODS: Accordingly, to study the effect of synaptic retrograde regulation of the PKA subunits and its activity, we stimulated the rat phrenic nerve (1 Hz, 30 min) resulting or not in contraction (abolished by µ-conotoxin GIIIB). Changes in protein levels and phosphorylation were detected by western blotting and cytosol/membrane translocation by subcellular fractionation. Synapsin-1 was localized in the levator auris longus (LAL) muscle by immunohistochemistry. RESULTS: Here we show that synaptic PKA Cß subunit regulated by RIIß or RIIα subunits controls activity-dependent phosphorylation of SNAP-25 and Synapsin-1, respectively. Muscle contraction retrogradely downregulates presynaptic activity-induced pSynapsin-1 S9 while that enhances pSNAP-25 T138. Both actions could coordinately contribute to decreasing the neurotransmitter release at the NMJ. CONCLUSION: This provides a molecular mechanism of the bidirectional communication between nerve terminals and muscle cells to balance the accurate process of ACh release, which could be important to characterize molecules as a therapy for neuromuscular diseases in which neuromuscular crosstalk is impaired.


Asunto(s)
Neurotransmisores , Sinapsinas , Animales , Ratas , Fosforilación , Transporte Biológico , Homeostasis
7.
Front Immunol ; 14: 1101087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36742338

RESUMEN

Maternal autoantibodies can be transmitted diaplacentally, with potentially deleterious effects on neurodevelopment. Synapsin 1 (SYN1) is a neuronal protein that is important for synaptic communication and neuronal plasticity. While monoallelic loss of function (LoF) variants in the SYN1 gene result in X-linked intellectual disability (ID), learning disabilities, epilepsy, behavioral problems, and macrocephaly, the effect of SYN1 autoantibodies on neurodevelopment remains unclear. We recruited a clinical cohort of 208 mothers and their children with neurologic abnormalities and analyzed the role of maternal SYN1 autoantibodies. We identified seropositivity in 9.6% of mothers, and seropositivity was associated with an increased risk for ID and behavioral problems. Furthermore, children more frequently had epilepsy, macrocephaly, and developmental delay, in line with the SYN1 LoF phenotype. Whether SYN1 autoantibodies have a direct pathogenic effect on neurodevelopment or serve as biomarkers requires functional experiments.


Asunto(s)
Autoanticuerpos , Epilepsia , Discapacidad Intelectual , Humanos , Neuronas/metabolismo , Fenotipo , Sinapsinas/genética , Sinapsinas/metabolismo
8.
Curr Alzheimer Res ; 20(9): 648-659, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38213171

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a persistent neuropathological injury that manifests via neuronal/synaptic death, age spot development, tau hyperphosphorylation, neuroinflammation, and apoptosis. Synapsin 1 (SYN1), a neuronal phosphoprotein, is believed to be responsible for the pathology of AD. OBJECTIVE: This study aimed to elucidate the exact role of SYN1 in ameliorating AD and its potential regulatory mechanisms. METHODS: The AD dataset GSE48350 was downloaded from the GEO database, and SYN1 was focused on differential expression analysis and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. After establishing an AD rat model, they were treated with RNAi lentivirus to trigger SYN1 overexpression. The amelioration of SYN1 in AD-associated behavior was validated using multiple experiments (water maze test and object recognition test). SYN1's repairing effect on the important factors in AD was confirmed by detecting the concentration of inflammatory factors (interleukin (IL)-6, IL-1ß, tumor necrosis factor (TNF)-α), neurotransmitters (acetylcholine (ACh), dopamine (DA), and 5-hydroxytryptophan (5-HT)) and markers of oxidative stress (glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS)). Molecular biology experiments (qRT-PCR and western blot) were performed to examine AD-related signaling pathways after SYN1 overexpression. RESULTS: Differential expression analysis yielded a total of 545 differentially expressed genes, of which four were upregulated and 541 were downregulated. The enriched pathways were basically focused on synaptic functions, and the analysis of the protein- protein interaction network focused on the key genes in SYN1. SYN1 significantly improved the spatial learning and memory abilities of AD rats. This enhancement was reflected in the reduced escape latency of the rats in the water maze, the significantly extended dwell time in the third quadrant, and the increased number of crossings. Furthermore, the results of the object recognition test revealed reduced time for rats to explore familiar and new objects. After SYN1 overexpression, the cAMP signaling pathway was activated, the phosphorylation levels of the CREB and PKA proteins were elevated, and the secretion of neurotransmitters such as ACh, DA, and 5-HT was promoted. Furthermore, oxidative stress was suppressed, as supported by decreased levels of MDA and ROS. Regarding inflammatory factors, the levels of IL-6, IL-1ß, and TNF-α were significantly reduced in AD rats with SYN1 overexpression. CONCLUSION: SYN1 overexpression improves cognitive function and promotes the release of various neurotransmitters in AD rats by inhibiting oxidative stress and inflammatory responses through cAMP signaling pathway activation. These findings may provide a theoretical basis for the targeted diagnosis and treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratas , Animales , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Sinapsinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedades Neuroinflamatorias , Serotonina/metabolismo , Disfunción Cognitiva/genética , Estrés Oxidativo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neurotransmisores , Modelos Animales de Enfermedad
9.
Biochem Pharmacol ; 206: 115332, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36323391

RESUMEN

Current in vivo developmental neurotoxicity (DNT) tests are not performed routinely for chemical risk assessment because they are time and resource intensive and require many animals. Therefore, new methodologies are required that can detect and evaluate the DNT potential of chemicals in a more simple, quantitative, and objective manner. Toward this end, we generated transgenic mice expressing reporter genes (luciferase and lacZ) under the control of the rat synapsin 1 promoter (Syn-Rep mice) and evaluated their usefulness as a DNT detection tool. Brain luciferase expression levels in Syn-Rep mice increased dramatically from just before to after birth, peaked early in the postnatal period, subsequently decreased sharply, and then remained low after weaning. This pattern is analogous to the generally recognized temporal changes in synapse numbers in the developing mammal brain. To evaluate further the responsiveness of Syn-Rep mice during DNT induction, we administered valproic acid (VPA), a reference DNT-inducing chemical, to pregnant mice and evaluated its effect on reporter gene expression in the developing brains of Syn-Rep pups. In vivo luminescence in the brains of VPA-exposed pups was significantly lower than in controls from postnatal days 4 to 13. Moreover, luciferase activity in the prefrontal cortexes of 8-week-old VPA-exposed offspring was significantly lower than in controls, reflecting the reduced number of neurons in the prefrontal cortex. These results suggest that the Syn-Rep mice are potentially useful tools for streamlined detection of chemical-induced DNT in the developing mammalian brain.


Asunto(s)
Síndromes de Neurotoxicidad , Animales , Femenino , Ratones , Embarazo , Ratas , Línea Celular , Mamíferos , Neuronas , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/metabolismo , Ácido Valproico/farmacología
10.
Wellcome Open Res ; 7: 185, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966957

RESUMEN

Cre/Lox technology is a powerful tool in the mouse genetics tool-box as it enables tissue-specific and inducible mutagenesis of specific gene loci. Correct interpretation of phenotypes depends upon knowledge of the Cre expression pattern in the chosen mouse driver line to ensure that appropriate cell types are targeted. For studies of the brain and neurological disease a pan-neuronal promoter that reliably drives efficient neuron-specific transgene expression would be valuable. Here we compare a widely used "pan-neuronal" mouse Cre driver line, Syn1-cre, with a little-known alternative, Snap25-IRES2-cre. Our results show that the Syn1-cre line broadly expresses in the brain but is indetectable in more than half of all neurons and weakly active in testes. In contrast the Snap25-IRES2-cre line expressed Cre in a high proportion of neurons (~85%) and was indetectable in all non-brain tissues that were analysed, including testes. Our findings suggest that for many purposes Snap25-IRES2-cre is superior to Syn1-cre as a potential pan-neuronal cre driver.

11.
Cell Rep ; 40(3): 111097, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858551

RESUMEN

Neuroendocrine (NE)-like tumors secrete various signaling molecules to establish paracrine communication within the tumor milieu and to create a therapy-resistant environment. It is important to identify molecular mediators that regulate this secretory phenotype in NE-like cancer. The current study highlights the importance of a cell surface molecule, Neuropilin-2 (NRP2), for the secretory function of NE-like prostate cancer (PCa). Our analysis on different patient cohorts suggests that NRP2 is high in NE-like PCa. We have developed cell line models to investigate NRP2's role in NE-like PCa. Our bioinformatics, mass spectrometry, cytokine array, and other supporting experiments reveal that NRP2 regulates robust secretory phenotype in NE-like PCa and controls the secretion of factors promoting cancer cell survival. Depletion of NRP2 reduces the secretion of these factors and makes resistant cancer cells sensitive to chemotherapy in vitro and in vivo. Therefore, targeting NRP2 can revert cellular secretion and sensitize PCa cells toward therapy.


Asunto(s)
Neuropilina-2 , Neoplasias de la Próstata , Línea Celular Tumoral , Humanos , Masculino , Neuropilina-2/metabolismo , Fenotipo , Próstata/metabolismo , Neoplasias de la Próstata/genética , Transducción de Señal/fisiología
12.
Mol Neurobiol ; 59(7): 4517-4534, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35578101

RESUMEN

Elevated levels of homocysteine (Hcy) in the blood, called hyperhomocysteinemia (HHcy), is a prevalent risk factor for it has been shown that Hcy induces oxidative stress and increases microglial activation and neuroinflammation, as well as causes cognitive impairment, which have been linked to the neurodegenerative process. This study aimed to evaluate the effect of mild hyperhomocysteinemia with or without ibuprofen and rivastigmine treatments on the behavior and neurochemical parameters in male rats. The chronic mild HHcy model was chemically induced in Wistar rats by subcutaneous administration of Hcy (4055 mg/kg body weight) twice daily for 30 days. Ibuprofen (40 mg/kg) and rivastigmine (0.5 mg/kg) were administered intraperitoneally once daily. Motor damage (open field, balance beam, rotarod, and vertical pole test), cognitive deficits (Y-maze), neurochemical parameters (oxidative status/antioxidant enzymatic defenses, presynaptic protein synapsin 1, inflammatory profile parameters, calcium binding adapter molecule 1 (Iba1), iNOS gene expression), and cholinergic anti-inflammatory pathway were investigated. Results showed that mild HHcy caused cognitive deficits in working memory, and impaired motor coordination reduced the amount of synapsin 1 protein, altered the neuroinflammatory picture, and caused changes in the activity of catalase and acetylcholinesterase enzymes. Both rivastigmine and ibuprofen treatments were able to mitigate this damage caused by mild HHcy. Together, these neurochemical changes may be associated with the mechanisms by which Hcy has been linked to a risk factor for AD. Treatments with rivastigmine and ibuprofen can effectively reduce the damage caused by increased Hcy levels.


Asunto(s)
Hiperhomocisteinemia , Acetilcolinesterasa/metabolismo , Animales , Homocisteína , Hiperhomocisteinemia/inducido químicamente , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/tratamiento farmacológico , Ibuprofeno , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Masculino , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Rivastigmina/farmacología , Rivastigmina/uso terapéutico , Sinapsinas/metabolismo
13.
Exp Neurol ; 353: 114059, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35367456

RESUMEN

Major Depressive Disorder (MDD) with Peripartum Onset was classified in 2013 by the Diagnostic and Statistical Manual, Fifth Edition (DMS-5) and approved in 2019 by the World Health Organization (WHO). These diagnostic revisions call for the development of new animal models of maternal depression, emphasizing the pregnancy period. We have recently described a novel rat model of maternal MDD with a Peripartum Onset. Exposure to pre-gestational chronic mild stress (CMS) with repeated restrain resulted in maternal depressive-like behavior and impacted offspring's neurodevelopment. The present study examined gender differences in short- vs. long-term neurodevelopmental impact of pre-gestational maternal stress. Stress response was assessed in Sprague Dawley CMS-exposed dams (n=7) by metabolic, hormonal, and behavioral changes and compared to controls dams (n=7). Short-term impact of maternal stress on offspring was examined in terms of metabolic, neurodevelopmental, and behavioral tests in male (n=40) and female (n=35) adolescent offspring on a postnatal day (PD) 48; the long-term impact was assessed in adult male (n=13) and female (n=12) offspring on PD 225. Brain tissue was collected from adolescent and adult offspring for biochemical analysis. Maternal stress was associated with decreased body weight and increased urinary corticosterone during the pre-pregnancy period, but depressive-like behavior was delayed until later in pregnancy. No significant neurodevelopmental changes in suckling male or female offspring derived from the stress-exposed dams were observed. However, adolescent male and female offspring of stress-exposed dams displayed an increased depressive-like behavior and gender-dependent increase in anxiety-like behavior in female offspring. These changes were associated with a brain-region-specific increase in brain-derived neurotrophic factor (BDNF) protein and BDNF receptor (TrkB) mRNA in males. Behavioral changes observed in the adolescents receded in adult male and female offspring. However, plasma BDNF was elevated in stress-exposed adult female offspring. These results suggest that pre-gestational maternal stress is associated with gender-dependent short- vs. long-term neurodevelopmental impact in the offspring. Presented data are of significant public health relevance, and there is an urgent need for further research to confirm these findings and probe the underlying mechanisms.


Asunto(s)
Trastorno Depresivo Mayor , Efectos Tardíos de la Exposición Prenatal , Adolescente , Animales , Ansiedad/genética , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/etiología , Trastorno Depresivo Mayor/metabolismo , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Sprague-Dawley , Factores Sexuales , Estrés Psicológico/complicaciones
14.
Toxicol Lett ; 351: 99-110, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34461196

RESUMEN

Synaptogenesis plays critical roles in learning and memory processes and is susceptible to substance abuse toxicity. The present study aimed to elucidate the long-lasting effects of prenatal methamphetamine exposure on synaptogenesis and learning and memory. The involvement of BDNF-TrkB signaling was also investigated. Pregnant mice (C57BL/6 JNc) were administered methamphetamine (5 mg/kg, s.c.) on gestation days 8-15. Primary hippocampal cultures were prepared from fetuses at gestational day 16.5 to study neuronal morphology and synaptogenesis. The expression of synaptic proteins, BDNF and TrkB receptor was determined in postnatal day 14 (PND14), adolescent and adult mice; memory tests were also conducted. MA exposure decreased axon length and diameter, and synaptic areas in the primary cultures. Presynaptic protein was decreased in the hippocampus of PND14 mice prenatally exposed to MA, while increases in postsynaptic protein (PSD-95) were found in MA-exposed adolescent and adult mice. BDNF expression was enhanced in the prefrontal cortex and striatum of MA-exposed PND14 mice. Memory impairment was observed in MA-exposed adolescent and adult mice compared to control mice. Prenatal MA exposure disrupted neuronal growth and synapse formation in the developing brain with only short-term interference of the BDNF-TrkB signaling pathway, resulting in the adaptation of postsynaptic neurons. Alterations in the developing brain and synaptogenesis lead to long-lasting learning and memory impairment.


Asunto(s)
Envejecimiento/fisiología , Trastornos de la Memoria/inducido químicamente , Metanfetamina/toxicidad , Neuronas/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Femenino , Ratones , Neuronas/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal , Sinapsis/fisiología
15.
Chemosphere ; 282: 130994, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34102488

RESUMEN

Studies have shown that there were associations between endocrine disrupting chemicals (EDCs) and anxiety. Nonylphenol (NP) is an EDC with weak estrogen activity. This study aimed to clarify whether subchronic exposure of NP at environmental concentrations induces anxiety-like behavior, and effects of NP on the regulators (NMDAR2B, PSD-95, Synapsin1) expressions of synaptic plasticity in vivo and in vitro experiments. In vivo, 40 male SD rats were randomly divided into 4 groups (each with 10 rats): low dose (0.4 mg/kg/day, L-NP), middle-dose (4 mg/kg/day, M - NP), high-dose (40 mg/kg/day, H-NP) and corn oil (Control) groups. In vitro, HT22 cells were divided into a control group (Control), NP group (NP, 20 µM), glutamine acid receptor inhibitor group (MK-801, 10 µM) and MK-801 + NP group. The concentration of NP in the hippocampus rised with the increase of NP exposure concentration in the treatment groups (F = 7.542, P = 0.001). Compared with the control group, the residence time in the dark box after NP exposure had extended (F = 117.927, P < 0.01). The duration (F = 112.054, P < 0.01) and the number of times (F = 13.514, P < 0.01) to enter the closed arm in the NP exposure group significantly increased. There were more neurons degeneration and nuclear shrinkage in the M - and H- NP groups, while the average number of shrinked neurons increased with the increasing dose of NP exposure. The protein expressions of PSD-95 (F = 97.723, P < 0.01), Synapsin1 (F = 41.797, P < 0.01) and NMDAR2B (F = 3.440, P = 0.036) in the NP group were lower than those of the control. Simultaneously, the expressions of PSD-95, Synapsin1 and NMDAR2B in the hippocampus were down-regulated; the mRNA expression of PSD-95 (F = 19.950, P < 0.01), Synapsin1 (F = 3.498, P = 0.035) and NMDAR2B (F = 9.293, P < 0.01) genes in the hippocampus decreased in the M - and H-NP groups. In vitro, the trend of the fluorescence intensity expressed by PSD-95 (F = 2.606, P = 0.124) and Synapsin1 (F = 20.573, P < 0.01) among the groups was: MK-801 + NP group < MK-801 < NP group. The protein expressions of PSD-95 (F = 5.699, P = 0.022), Synapsin1 (F = 10.820, P = 0.003) and NMDAR2B (F = 6.041, P = 0.019) were down-regulated. These results suggested that subchronic exposure to environmental concentrations of NP induced anxiety, and reduced the protein and/or mRNA expressions of regulators of synaptic plasticity (PSD-95, Synapsin1, NMDAR2B).


Asunto(s)
Ansiedad , Fenoles , Animales , Ansiedad/inducido químicamente , Masculino , Plasticidad Neuronal , Fenoles/toxicidad , Ratas , Ratas Sprague-Dawley
16.
Cell Mol Life Sci ; 78(11): 4973-4992, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33864480

RESUMEN

Amyloid beta (Aß) is linked to the pathology of Alzheimer's disease (AD). At physiological concentrations, Aß was proposed to enhance neuroplasticity and memory formation by increasing the neurotransmitter release from presynapse. However, the exact mechanisms underlying this presynaptic effect as well as specific contribution of endogenously occurring Aß isoforms remain unclear. Here, we demonstrate that Aß1-42 and Aß1-16, but not Aß17-42, increased size of the recycling pool of synaptic vesicles (SV). This presynaptic effect was driven by enhancement of endogenous cholinergic signalling via α7 nicotinic acetylcholine receptors, which led to activation of calcineurin, dephosphorylation of synapsin 1 and consequently resulted in reorganization of functional pools of SV increasing their availability for sustained neurotransmission. Our results identify synapsin 1 as a molecular target of Aß and reveal an effect of physiological concentrations of Aß on cholinergic modulation of glutamatergic neurotransmission. These findings provide new mechanistic insights in cholinergic dysfunction observed in AD.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Fragmentos de Péptidos/farmacología , Sinapsis/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Calcio/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotransmisores/metabolismo , Nicotina/farmacología , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Vesículas Sinápticas/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/deficiencia , Receptor Nicotínico de Acetilcolina alfa 7/genética
17.
J Mol Biol ; 433(12): 166961, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33774037

RESUMEN

Neurotransmission relies on the tight spatial and temporal regulation of the synaptic vesicle (SV) cycle. Nerve terminals contain hundreds of SVs that form tight clusters. These clusters represent a distinct liquid phase in which one component of the phase are SVs and the other synapsin 1, a highly abundant synaptic protein. Another major family of disordered proteins at the presynapse includes synucleins, most notably α-synuclein. The precise physiological role of α-synuclein in synaptic physiology remains elusive, albeit its role has been implicated in nearly all steps of the SV cycle. To determine the effect of α-synuclein on the synapsin phase, we employ the reconstitution approach using natively purified SVs from rat brains and the heterologous cell system to generate synapsin condensates. We demonstrate that synapsin condensates recruit α-synuclein, and while enriched into these synapsin condensates, α-synuclein still maintains its high mobility. The presence of SVs enhances the rate of synapsin/α-synuclein condensation, suggesting that SVs act as catalyzers for the formation of synapsin condensates. Notably, at physiological salt and protein concentrations, α-synuclein alone is not able to cluster isolated SVs. Excess of α-synuclein disrupts the kinetics of synapsin/SV condensate formation, indicating that the molar ratio between synapsin and α-synuclein is important in assembling the functional condensates of SVs. Understanding the molecular mechanism of α-synuclein interactions at the nerve terminals is crucial for clarifying the pathogenesis of synucleinopathies, where α-synuclein, synaptic proteins and lipid organelles all accumulate as insoluble intracellular inclusions.


Asunto(s)
Encéfalo/citología , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Encéfalo/metabolismo , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Ratas , Sinapsinas/química , Transmisión Sináptica , alfa-Sinucleína/química , Proteína Fluorescente Roja
18.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-904754

RESUMEN

Objective To investigate the effects of ephedrine on the expression levels of brain-derived neurotropic factor (BDNF) and postsynaptic density protein 95 (PSD95) and synapsin1 in PC12 cells, and to explore the mechanism of ephedrine cytotoxicity on PC12. Methods After PC12 cells were treated with different concentration of ephedrine, the cell survival rate was measured by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The morphology changes of PC12 cells were observed by an inverted microscope. Western blot was used to detect the protein expression levels of BDNF, PSD95 and synapsin1 in PC12 cells. Results Ephedrine decreased the viability of PC12 cell in a concentration-dependent manner,with an IC25 and IC50 of 0.536 mmol and 2.8 mmol, respectively, for PC12 cell death. As ephedrine concentration increased, PC12 cells became smaller in size, with blurred boundary blurred, reduced synapses and shorter axon lengths. The expression levels of BDNF and PSD95 increased significantly. Meanwhile the expression level of synapsin1 decreased. Conclusion The mechanism of ephedrine cytotoxicity on PC12 may be related to the expression levels of BDNF, PSD95 and synapsin1.

19.
Br J Pharmacol ; 177(24): 5658-5676, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33080056

RESUMEN

BACKGROUND AND PURPOSE: A significant number of HIV-1 patients on antiretroviral therapy develop HIV-associated neurocognitive disorders (HAND). Evidence indicate that biological sex may regulate HAND pathogenesis, but the mechanisms remain unknown. We investigated synaptic mechanisms associated with sex differences in HAND, using the HIV-1-transgenic 26 (Tg26) mouse model. EXPERIMENTAL APPROACH: Contextual- and cue-dependent memories of male and female Tg26 mice and littermate wild type mice were assessed in a fear conditioning paradigm. Hippocampal electrophysiology, immunohistochemistry, western blot, qRT-PCR and ELISA techniques were used to investigate cellular, synaptic and molecular impairments. KEY RESULTS: Cue-dependent memory was unaltered in male and female Tg26 mice, when compared to wild type mice. Male, but not female, Tg26 mice showed deficits in contextual fear memory. Consistently, only male Tg26 mice showed depressed hippocampal basal synaptic transmission and impaired LTP induction in area CA1. These deficits in male Tg26 mice were independent of hippocampal neuronal loss and microglial activation but were associated with increased HIV-1 long terminal repeat mRNA expression, reduced hippocampal synapsin-1 protein, reduced BDNF mRNA and protein, reduced AMPA glutamate receptor (GluA1) phosphorylation levels and increased glycogen synthase kinase 3 (GSK3) activity. Importantly, selective GSK3 inhibition using 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione increased levels of synapsin-1, BDNF and phosphorylated-GluA1 proteins, restored hippocampal basal synaptic transmission and LTP, and improved contextual fear memory in male Tg26 mice. CONCLUSION AND IMPLICATIONS: Sex-dependent impairments in contextual fear memory and synaptic plasticity in Tg26 mice are associated with increased GSK3 activity. This implicates GSK3 inhibition as a potential therapeutic strategy to improve cognition in HIV-1 patients.


Asunto(s)
VIH-1 , Animales , Miedo , Femenino , Glucógeno Sintasa Quinasa 3 , Hipocampo , Humanos , Potenciación a Largo Plazo , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA