Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Trends Neurosci ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39191629

RESUMEN

Recent work by Giusti and colleagues showed that circTulp4 modulates excitatory synaptic strength. Knocking down circTulp4 disrupts the excitation-inhibition (E/I) balance in mice and leads to hypersensitivity toward aversive stimuli. These observations update our appreciation of the functions of circular (circ)RNA in the nervous system and their potential implication in neurodevelopmental and neuropsychiatric disorders.

2.
Adv Neurobiol ; 37: 243-260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39207696

RESUMEN

Sleep serves a multitude of roles in brain maturation and function. Although the neural networks involved in sleep regulation have been extensively characterized, it is increasingly recognized that neurons are not the sole conductor orchestrating the rhythmic cycle of sleep and wakefulness. In the central nervous system, microglia have emerged as an important player in sleep regulation. Within the last two decades, microglia have gained substantial attention for carrying out numerous nonimmune tasks that are crucial for brain development and function by co-opting similar mechanisms used in their conventional immune functions. Here, we highlight the importance of microglia in sleep regulation with recent findings reporting an arrhythmic sleep/wake cycle in the absence of microglia. Although the underlying mechanisms for such regulation are still being uncovered, it is likely that microglial contributions to the rhythmic control of the sleep/wake cycle come from their influence on synaptic strength and neuronal activity. We review the current literature to provide speculative signaling pathways and suggest key questions for future research. Advancing our knowledge of the mechanistic contribution of microglia to sleep regulation will not only further our insight into this critical biological process but also be instrumental in providing novel therapeutic strategies for sleep disorders.


Asunto(s)
Microglía , Sueño , Vigilia , Microglía/metabolismo , Microglía/fisiología , Vigilia/fisiología , Humanos , Sueño/fisiología , Animales , Encéfalo , Neuronas/fisiología , Neuronas/metabolismo , Transducción de Señal/fisiología
3.
Biol Sex Differ ; 14(1): 87, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082417

RESUMEN

BACKGROUND: The nucleus accumbens (NAc) is an important region in motivation and reward. Glutamatergic inputs from the infralimbic cortex (ILC) to the shell region of the NAc (NAcSh) have been implicated in driving the motivation to seek reward through repeated action-based behavior. While this has primarily been studied in males, observed sex differences in motivational circuitry and behavior suggest that females may be more sensitive to rewarding stimuli. These differences have been implicated for the observed vulnerability in women to substance use disorders. METHODS: We used an optogenetic self-stimulation task in addition to ex vivo electrophysiological recordings of NAcSh neurons in mouse brain slices to investigate potential sex differences in ILC-NAcSh circuitry in reward-seeking behavior. Glutamatergic neurons in the ILC were infected with an AAV delivering DNA encoding for channelrhodopsin. Entering the designated active corner of an open field arena resulted in photostimulation of the ILC terminals in the NAcSh. Self-stimulation occurred during two consecutive days of testing over three consecutive weeks: first for 10 Hz, then 20 Hz, then 30 Hz. Whole-cell recordings of medium spiny neurons in the NAcSh assessed both optogenetically evoked local field potentials and intrinsic excitability. RESULTS: Although both sexes learned to seek the active zone, within the first day, females entered the zone more than males, resulting in a greater amount of photostimulation. Increasing the frequency of optogenetic stimulation amplified female reward-seeking behavior. Males were less sensitive to ILC stimulation, with higher frequencies and repeated days required to increase male reward-seeking behavior. Unexpectedly, ex vivo optogenetic local field potentials in the NAcSh were greater in slices from male animals. In contrast, female medium-spiny neurons (MSNs) displayed significantly greater intrinsic neuronal excitability. CONCLUSIONS: Taken together, these data indicate that there are sex differences in the motivated behavior driven by glutamate within the ILC-NAcSh circuit. Though glutamatergic signaling was greater in males, heightened intrinsic excitability in females appears to drive this sex difference.


The shell region of the nucleus accumbens (NAcSh) is involved in motivation and reward. It receives excitatory glutamatergic inputs from multiple brain regions. One specific region is the infralimbic cortex (ILC), which when activated, influences reward-seeking behavior. While previous research has focused on males, there are inherent sex differences in reward circuitry and reward-seeking behavior. Using an optogenetic self-stimulation task, in addition to ex vivo electrophysiological recordings, we found inherent sex differences in the ILC-NAcSh circuit in behavioral output, synaptic strength, and intrinsic neurophysiology. Female mice showed more robust reward-seeking behavior. Increasing the frequency of stimulation intensified this behavior in females, while males required higher frequencies and repeated testing days to increase their reward-seeking behavior. Surprisingly, optogenetically stimulating the ILC terminals in the NAcSh in brain slices resulted in stronger responses in males. More consistent with the behavioral data, female MSNs displayed higher intrinsic excitability. Our results suggest that there are sex differences in motivated behavior, driven by glutamatergic signaling in the ILC-NAc circuit. Despite stronger ILC-based glutamatergic signaling in males, heightened intrinsic excitability of MSNs in females seems to be the driving force behind this sex difference in reward-seeking behavior. These findings contribute to our understanding of the neural mechanisms behind sex-based differences in motivation and their potential implications for substance use disorders.


Asunto(s)
Núcleo Accumbens , Caracteres Sexuales , Ratones , Animales , Femenino , Masculino , Humanos , Núcleo Accumbens/fisiología , Neuronas/fisiología , Corteza Cerebral
4.
J Comput Neurosci ; 51(1): 23-42, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35737171

RESUMEN

Between the onset of the critical period of mouse primary visual cortex and eye opening at postnatal day 14 is a complex process and that is vital for the cognitive function of vision. The onset of the critical period of mouse primary visual cortex involves changes of the intrinsic firing property of each neuron and short term plasticity of synapses. In order to investigate the functional role of each factor in regulating the circuit firing activity during the critical period plasticity, we adopted the Markram's model for short term plasticity and Wilson's model for intrinsic neuron firing activity, and construct a microcircuit for mouse visual cortex layer IV based on the connection probabilities from experimental results. Our results indicate that, during CP development, the most critical factors that regulate the firing pattern of microcircuit is the short term plasticity of the synapse from PC to PV and SST interneurons, which upregulates the PV interneuron firing and produces new balance between excitation and inhibition; the intrinsic firing activity of PC and PV during development downregulates the firing frequency of the circuits. In addition, we have investigated the function of feedforward excitatory thalamic-cortical projection to PC and PV interneuron during CP, and found that neural firing activity largely depends on the TC input and the results are similar to the local circuit with minor differences. We conclude that the short term plasticity development during critical period plays a crucial role in regulating the circuit behavior.


Asunto(s)
Modelos Neurológicos , Corteza Visual , Ratones , Animales , Plasticidad Neuronal/fisiología , Neuronas , Interneuronas/fisiología , Corteza Visual/fisiología
5.
Brain Sci ; 12(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36552177

RESUMEN

Astroglia are an active element of brain plasticity, capable to release small molecule gliotransmitters by various mechanisms and regulate synaptic strength. While importance of glia-neuron communications for long-term potentiation has been rather widely reported, research into role for astrocytes in long-depression (LTD) is just gaining momentum. Here, we explored the role for astrocytes in the prominent form of synaptic plasticity-mGluR-dependent LTD. We found out the substantial contribution of the Group I receptors, especially mGluR1 subtype, into Ca2+-signaling in hippocampal and neocortical astrocytes, which can be activated during synaptic stimulation used for LTD induction. Our data demonstrate that mGluR receptors can activate SNARE-dependent release of ATP from astrocytes which in turn can directly activate postsynaptic P2X receptors in the hippocampal and neocortical neurons. The latter mechanism has recently been shown to cause the synaptic depression via triggering the internalisation of AMPA receptors. Using mouse model of impaired glial exocytosis (dnSNARE mice), we demonstrated that mGluR-activated release of ATP from astrocytes is essential for regulation of mGluR-dependent LTD in CA3-CA1 and layer 2/3 synapses. Our data also suggest that astrocyte-related pathway relies mainly on mGluR1 receptors and act synergistically with neuronal mechanisms dependent mainly on mGluR5.

6.
J Neurochem ; 163(6): 444-460, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36326567

RESUMEN

Experience triggers molecular cascades in organisms (learning) that lead to alterations (memory) to allow the organism to change its behavior based on experience. Understanding the molecular mechanisms underlying memory, particularly in the nervous system of animals, has been an exciting scientific challenge for neuroscience. We review what is known about forms of neuronal plasticity that underlie memory highlighting important issues in the field: (1) the importance of being able to measure how neurons are activated during learning to identify the form of plasticity that underlies memory, (2) the many distinct forms of plasticity important for memories that naturally decay both within and between organisms, and (3) unifying principles underlying the formation and maintenance of long-term memories. Overall, the diversity of molecular mechanisms underlying memories that naturally decay contrasts with more unified molecular mechanisms implicated in long-lasting changes. Despite many advances, important questions remain as to which mechanisms of neuronal plasticity underlie memory.


Asunto(s)
Memoria a Largo Plazo , Plasticidad Neuronal , Animales , Plasticidad Neuronal/fisiología , Memoria a Largo Plazo/fisiología , Aprendizaje , Neuronas/fisiología , Proteína Quinasa C , Sinapsis/fisiología
7.
8.
Chronic Stress (Thousand Oaks) ; 6: 24705470221092734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35434443

RESUMEN

Background: Trauma and chronic stress are believed to induce and exacerbate psychopathology by disrupting glutamate synaptic strength. However, in vivo in human methods to estimate synaptic strength are limited. In this study, we established a novel putative biomarker of glutamatergic synaptic strength, termed energy-per-cycle (EPC). Then, we used EPC to investigate the role of prefrontal neurotransmission in trauma-related psychopathology. Methods: Healthy controls (n = 18) and patients with posttraumatic stress (PTSD; n = 16) completed 13C-acetate magnetic resonance spectroscopy (MRS) scans to estimate prefrontal EPC, which is the ratio of neuronal energetic needs per glutamate neurotransmission cycle (VTCA/VCycle). Results: Patients with PTSD were found to have 28% reduction in prefrontal EPC (t = 3.0; df = 32, P = .005). There was no effect of sex on EPC, but age was negatively associated with prefrontal EPC across groups (r = -0.46, n = 34, P = .006). Controlling for age did not affect the study results. Conclusion: The feasibility and utility of estimating prefrontal EPC using 13C-acetate MRS were established. Patients with PTSD were found to have reduced prefrontal glutamatergic synaptic strength. These findings suggest that reduced glutamatergic synaptic strength may contribute to the pathophysiology of PTSD and could be targeted by new treatments.

9.
J Physiol ; 600(10): 2461-2497, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35439328

RESUMEN

Sound localization involves information analysis in the lateral superior olive (LSO), a conspicuous nucleus in the mammalian auditory brainstem. LSO neurons weigh interaural level differences (ILDs) through precise integration of glutamatergic excitation from the cochlear nucleus (CN) and glycinergic inhibition from the medial nucleus of the trapezoid body (MNTB). Sound sources can be localized even during sustained perception, an accomplishment that requires robust neurotransmission. Virtually nothing is known about the sustained performance and the temporal precision of MNTB-LSO inputs after postnatal day (P)12 (time of hearing onset) and whether acoustic experience guides development. Here we performed whole-cell patch-clamp recordings to investigate neurotransmission of single MNTB-LSO fibres upon sustained electrical stimulation (1-200 Hz/60 s) at P11 and P38 in wild-type (WT) and deaf otoferlin (Otof) knock-out (KO) mice. At P11, WT and KO inputs performed remarkably similarly. In WTs, the performance increased drastically between P11 and P38, e.g. manifested by an 8 to 11-fold higher replenishment rate (RR) of synaptic vesicles and action potential robustness. Together, these changes resulted in reliable and highly precise neurotransmission at frequencies ≤100 Hz. In contrast, KO inputs performed similarly at both ages, implying impaired synaptic maturation. Computational modelling confirmed the empirical observations and established a reduced RR per release site for P38 KOs. In conclusion, acoustic experience appears to contribute massively to the development of reliable neurotransmission, thereby forming the basis for effective ILD detection. Collectively, our results provide novel insights into experience-dependent maturation of inhibitory neurotransmission and auditory circuits at the synaptic level. KEY POINTS: Inhibitory glycinergic inputs from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) are involved in sound localization. This brainstem circuit performs reliably throughout life. How such reliability develops is unknown. Here we investigated the role of acoustic experience on the functional maturation of MNTB-LSO inputs at juvenile (postnatal day P11) and young adult ages (P38) employing deaf mice lacking otoferlin (KO). We analysed neurotransmission at single MNTB-LSO fibres in acute brainstem slices employing prolonged high-frequency stimulation (1-200 Hz/60 s). At P11, KO inputs still performed normally, as manifested by normal synaptic attenuation, fidelity, replenishment rate, temporal precision and action potential robustness. Between P11 and P38, several synaptic parameters increased substantially in wild-type mice, collectively resulting in high-fidelity and temporally precise neurotransmission. In contrast, maturation of synaptic fidelity was largely absent in KOs after P11. Collectively, reliable neurotransmission at inhibitory MNTB-LSO inputs develops under the guidance of acoustic experience.


Asunto(s)
Sordera , Localización de Sonidos , Potenciales de Acción/fisiología , Animales , Vías Auditivas/fisiología , Proteínas de la Membrana , Ratones , Núcleo Olivar/fisiología , Reproducibilidad de los Resultados , Localización de Sonidos/fisiología , Transmisión Sináptica/fisiología
10.
J Neural Eng ; 19(3)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35462357

RESUMEN

Objective. Reconstruction of connectomes at the cellular scale is a prerequisite for understanding the principles of neural circuits. However, due to methodological limits, scientists have reconstructed the connectomes of only a few organisms such asC. elegans, and estimated synaptic strength indirectly according to their size and number.Approach. Here, we propose a graph network model to predict synaptic connections and estimate synaptic strength by using the calcium activity data fromC. elegans. Main results. The results show that this model can reliably predict synaptic connections in the neural circuits ofC. elegans, and estimate their synaptic strength, which is an intricate and comprehensive reflection of multiple factors such as synaptic type and size, neurotransmitter and receptor type, and even activity dependence. In addition, the excitability or inhibition of synapses can be identified by this model. We also found that chemical synaptic strength is almost linearly positively correlated to electrical synaptic strength, and the influence of one neuron on another is non-linearly correlated with the number between them. This reflects the intrinsic interaction between electrical and chemical synapses.Significance. Our model is expected to provide a more accessible quantitative and data-driven approach for the reconstruction of connectomes in more complex nervous systems, as well as a promising method for accurately estimating synaptic strength.


Asunto(s)
Conectoma , Neuronas/fisiología , Neurotransmisores , Sinapsis/fisiología
11.
Elife ; 102021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34693906

RESUMEN

Experience-dependent plasticity is a key feature of brain synapses for which neuronal N-Methyl-D-Aspartate receptors (NMDARs) play a major role, from developmental circuit refinement to learning and memory. Astrocytes also express NMDARs, although their exact function has remained controversial. Here, we identify in mouse hippocampus, a circuit function for GluN2C NMDAR, a subtype highly expressed in astrocytes, in layer-specific tuning of synaptic strengths in CA1 pyramidal neurons. Interfering with astrocyte NMDAR or GluN2C NMDAR activity reduces the range of presynaptic strength distribution specifically in the stratum radiatum inputs without an appreciable change in the mean presynaptic strength. Mathematical modeling shows that narrowing of the width of presynaptic release probability distribution compromises the expression of long-term synaptic plasticity. Our findings suggest a novel feedback signaling system that uses astrocyte GluN2C NMDARs to adjust basal synaptic weight distribution of Schaffer collateral inputs, which in turn impacts computations performed by the CA1 pyramidal neuron.


Asunto(s)
Región CA1 Hipocampal/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Receptores de N-Metil-D-Aspartato/genética , Animales , Ratones , Receptores de N-Metil-D-Aspartato/metabolismo
12.
eNeuro ; 8(4)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34001638

RESUMEN

Pyramidal neurons in rodent visual cortex homeostatically maintain their firing rates in vivo within a target range. In young cultured rat cortical neurons, Ca2+/calmodulin-dependent kinase IV (CaMKIV) signaling jointly regulates excitatory synaptic strength and intrinsic excitability to allow neurons to maintain their target firing rate. However, the role of CaMKIV signaling in regulating synaptic strength and intrinsic excitability in vivo has not been tested. Here, we show that in pyramidal neurons in visual cortex of juvenile male and female mice, CaMKIV signaling is not essential for the maintenance of basal synaptic or intrinsic properties. Neither CaMKIV conditional knock-down nor viral expression of dominant negative CaMKIV (dnCaMKIV) in vivo disrupts the intrinsic excitability or synaptic input strength of pyramidal neurons in primary visual cortex (V1), and CaMKIV signaling is not required for the increase in intrinsic excitability seen following monocular deprivation (MD). Viral expression of constitutively active CaMKIV (caCaMKIV) in vivo causes a complex disruption of the neuronal input/output function but does not affect synaptic input strength. Taken together, these results demonstrate that although augmented in vivo CaMKIV signaling can alter neuronal excitability, either endogenous CaMKIV signaling is dispensable for maintenance of excitability, or impaired CaMKIV signaling is robustly compensated.


Asunto(s)
Corteza Visual , Animales , Femenino , Masculino , Ratones , Plasticidad Neuronal , Neuronas , Células Piramidales , Ratas , Transducción de Señal
13.
Cell Rep ; 34(8): 108773, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33626349

RESUMEN

Mutations in genes essential for synaptic function, such as the presynaptic adhesion molecule Neurexin1α (Nrxn1α), are strongly implicated in neuropsychiatric pathophysiology. As the input nucleus of the basal ganglia, the striatum integrates diverse excitatory projections governing cognitive and motor control, and its impairment may represent a recurrent pathway to disease. Here, we test the functional relevance of Nrxn1α in striatal circuits by employing optogenetic-mediated afferent recruitment of dorsal prefrontal cortical (dPFC) and parafascicular thalamic connections onto dorsomedial striatal (DMS) spiny projection neurons (SPNs). For dPFC-DMS circuits, we find decreased synaptic strength specifically onto indirect pathway SPNs in both Nrxn1α+/- and Nrxn1α-/- mice, driven by reductions in neurotransmitter release. In contrast, thalamic excitatory inputs to DMS exhibit relatively normal excitatory synaptic strength despite changes in synaptic N-methyl-D-aspartate receptor (NMDAR) content. These findings suggest that dysregulation of Nrxn1α modulates striatal function in an input- and target-specific manner.


Asunto(s)
Vías Aferentes/metabolismo , Proteínas de Unión al Calcio/metabolismo , Cuerpo Estriado/metabolismo , Sinapsis Eléctricas/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Transmisión Sináptica , Vías Aferentes/citología , Animales , Proteínas de Unión al Calcio/genética , Cuerpo Estriado/citología , Sinapsis Eléctricas/genética , Potenciales Postsinápticos Excitadores , Ácido Glutámico/metabolismo , Heterocigoto , Homocigoto , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Moléculas de Adhesión de Célula Nerviosa/genética , Optogenética , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Neuron ; 109(4): 663-676.e5, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33333001

RESUMEN

Neocortical pyramidal neurons regulate firing around a stable mean firing rate (FR) that can differ by orders of magnitude between neurons, but the factors that determine where individual neurons sit within this broad FR distribution are not understood. To access low- and high-FR neurons for ex vivo analysis, we used Ca2+- and UV-dependent photoconversion of CaMPARI2 in vivo to permanently label neurons according to mean FR. CaMPARI2 photoconversion was correlated with immediate early gene expression and higher FRs ex vivo and tracked the drop and rebound in ensemble mean FR induced by prolonged monocular deprivation. High-activity L4 pyramidal neurons had greater intrinsic excitability and recurrent excitatory synaptic strength, while E/I ratio, local output strength, and local connection probability were not different. Thus, in L4 pyramidal neurons (considered a single transcriptional cell type), a broad mean FR distribution is achieved through graded differences in both intrinsic and synaptic properties.


Asunto(s)
Calcio/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Neuronas/metabolismo , Células Piramidales/metabolismo , Transmisión Sináptica/fisiología , Animales , Calcio/análisis , Potenciales Postsinápticos Excitadores/efectos de la radiación , Femenino , Potenciales Postsinápticos Inhibidores/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/química , Neuronas/efectos de la radiación , Células Piramidales/química , Células Piramidales/efectos de la radiación , Transmisión Sináptica/efectos de la radiación , Rayos Ultravioleta
15.
J Physiol ; 599(2): 471-483, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32628275

RESUMEN

AMPA-type glutamate receptors (AMPARs) are key molecules of neuronal communication in our brain. The discovery of AMPAR auxiliary subunits, such as proteins of the TARP, CKAMP and CNIH families, fundamentally changed our understanding of how AMPAR function is regulated. Auxiliary subunits control almost all aspects of AMPAR function in the brain. They influence AMPAR assembly, composition, structure, trafficking, subcellular localization and gating. This influence has important implications for synapse function. In the present review, we first discuss how auxiliary subunits affect the strength of synapses by modulating number and localization of AMPARs in synapses as well as their glutamate affinity, conductance and peak open probability. Next we explain how the presence of auxiliary subunits alters temporal precision and integrative properties of synapses by influencing gating kinetics of the receptors. Auxiliary subunits of the TARP and CKAMP family modulate synaptic short-term plasticity by increasing anchoring of AMPARs in synapses and by altering their desensitization kinetics. We then describe how auxiliary subunits of the TARP, CKAMP and CNIH families are involved in Hebbian and homeostatic plasticity, which can be explained by their influence on surface trafficking and synaptic targeting. In conclusion, the series of studies covered in this review show that auxiliary subunits play a pivotal role in controlling information processing in the brain by modulating synaptic computation.


Asunto(s)
Receptores AMPA , Sinapsis , Ácido Glutámico , Humanos , Plasticidad Neuronal , Neuronas/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
16.
Front Cell Neurosci ; 14: 571133, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192316

RESUMEN

During postnatal development of the visual cortex between eye-opening to puberty, visual experience promotes a gradual increase in the strength of inhibitory synaptic connections from parvalbumin-positive interneurons (PV-INs) onto layer 2/3 pyramidal cells. However, the detailed connectivity properties and molecular mechanisms underlying these developmental changes are not well understood. Using dual-patch clamp in brain slices from G42 mice, we revealed that both connection probability and the number of synaptic release sites contributed to the enhancement of synaptic strength. The increase of release site number was hindered by dark rearing from eye-opening and rescued by 3-days re-exposure to the normal visual environment. The effect of light re-exposure on restoring synaptic release sites in dark reared mice was mimicked by the agonist of cannabinoid-1 (CB1) receptors and blocked by an antagonist of these receptors, suggesting a role for endocannabinoid signaling in light-induced maturation of inhibitory connectivity from PV-INs to pyramidal cells during postnatal development.

17.
Brain Sci ; 10(7)2020 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-32708382

RESUMEN

Experience- and diet-dependent regulation of synaptic plasticity can underlie beneficial effects of active lifestyle on the aging brain. Our previous results demonstrate a key role for brain-derived neurotrophic factor (BDNF) and MSK1 kinase in experience-related homeostatic synaptic scaling. Astroglia has been recently shown to release BDNF via a calcium-dependent mechanism. To elucidate a role for astroglia-derived BDNF in homeostatic synaptic plasticity in the aging brain, we explored the experience- and diet-related alterations of synaptic transmission and plasticity in transgenic mice with impairment of the BDNF/MSK1 pathway (MSK1 kinase dead knock-in mice, MSK1 KD) and impairment of glial exocytosis (dnSNARE mice). We found that prolonged tonic activation of astrocytes caused BDNF-dependent increase in the efficacy of excitatory synapses accompanied by enlargement of synaptic boutons. We also observed that exposure to environmental enrichment (EE) and caloric restriction (CR) enhanced the Ca2+ signalling in cortical astrocytes and strongly up-regulated the excitatory and down-regulated inhibitory synaptic currents in old wild-type mice, thus counterbalancing the impact of ageing on astroglial and synaptic signalling. The EE- and CR-induced up-scaling of excitatory synaptic transmission in neocortex was accompanied by the enhancement of long-term synaptic potentiation. Importantly, effects of EE and CR on synaptic transmission and plasticity was significantly reduced in the MSK1 KD and dnSNARE mice. Combined, our results suggest that astroglial release of BDNF is important for the homeostatic regulation of cortical synapses and beneficial effects of EE and CR on synaptic transmission and plasticity in aging brain.

18.
Front Neurosci ; 14: 364, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410945

RESUMEN

Electrical synapses between neurons exhibit a high degree of plasticity, which makes critical contributions to neuronal communication. The GABAergic parvalbumin-expressing (PV+) neurons in the thalamic reticular nucleus (TRN) interact with each other through electrical and chemical synapses. Plasticity of electrical synaptic transmission in TRN plays a key role in regulating thalamocortical and corticothalamic circuits and even the formation of consciousness. We here examined the effects of propofol, a commonly used general anesthetic agent, on the strength of electrical synapses between TRN PV+ neurons by fluorescence-guided patch-clamp recording and pharmacological methods. Results show that 100 µM propofol reduced the electrical synaptic strength between TRN PV+ neurons. Notably, the propofol-induced depression of electrical synaptic strength between TRN PV+ neurons was diminished by saclofen (10 µM, antagonist of GABAB receptors), but not blocked by gabazine (10 µM, antagonist of GABAA receptors). Application of baclofen (10 µM, agonist of GABAB receptors), similar to propofol, also reduced the electrical synaptic strength between TRN PV+ neurons. Moreover, the propofol-induced depression of electrical synaptic strength between TRN PV+ neurons was abolished by 9-CPA (100 µM, specific adenylyl cyclase inhibitor), and by KT5720 (1 µM, selective inhibitor of PKA). Our findings indicate that propofol acts on metabotropic GABAB receptors, resulting in a depression of electrical synaptic transmission of coupled TRN PV+ neurons, which is mediated by the adenylyl cyclase-cAMP-PKA signaling pathway. Our findings also imply that propofol may change the thalamocortical communication via inducing depression of electrical synaptic strength in the TRN.

19.
Artículo en Inglés | MEDLINE | ID: mdl-32113851

RESUMEN

Glycogen synthase kinase 3ß (GSK3ß) has gained interest regarding its involvement in psychiatric and neurodegenerative disorders. Recently GSK3 inhibitors were highlighted as promising rescuers of cognitive impairments for a gamut of CNS disorders. Growing evidence supports that fast-spiking parvalbumin (PV) interneurons are critical regulators of cortical computation. Albeit, how excitatory receptors on PV interneurons are regulated and how this affects cognitive function remains unknown. To address these questions, we have generated a novel triple-transgenic conditional mouse with GSK3ß genetically deleted from PV interneurons. PV-GSK3ß-/- resulted in increased excitability and augmented excitatory synaptic strength in prefrontal PV interneurons. More importantly, these synaptic changes are correlated with accelerated learning with no changes in locomotion and sociability. Our study, for the first time, examined how GSK3ß activity affects learning capability via regulation of PV interneurons. This study provides a novel insight into how GSK3ß may contribute to disorders afflicted by cognitive deficits.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Glucógeno Sintasa Quinasa 3 beta/deficiencia , Interneuronas/metabolismo , Aprendizaje/fisiología , Parvalbúminas/biosíntesis , Sinapsis/metabolismo , Factores de Edad , Animales , Femenino , Eliminación de Gen , Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Parvalbúminas/genética , Sinapsis/genética
20.
Can J Psychiatry ; 65(5): 347-355, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31526043

RESUMEN

BACKGROUND: Glutamatergic system has been known to play a role in the pathogenesis of major depression disorder by inducing N-methyl-d-aspartate receptor-dependent long-term depression (LTD) or metabotropic glutamate receptors (mGluR)-dependent LTD. Here, we characterized the LTD in a chronic social defeat stress (CSDS)-induced depressive mouse model. METHODS: CSDS was used to induce the depressive-like behaviors in C57BL/6 male mice, which were assessed using sucrose preference test and social interaction test. The synaptic strength including LTD and long-term potentiation (LTP) induced by paired-pulse low frequency stimulation (PP-LFS) was measured using whole-cell recording technique. RESULTS: CSDS induced depressive-like behaviors and facilitated PP-LFS-induced LTD in hippocampal CA3-CA1 pathway in the susceptible mice. Interestingly, mGluR5 but not N-methyl-d-aspartate receptor mediated the PP-LFS-induced LTD. In addition, mGluR5 agonist dihydroxyphenylglycine promoted PP-LFS-induced LTD specifically in susceptible mice, which was diminished by activating the BDNF/TrkB signaling pathway. CONCLUSIONS: Our results suggest that mGluR5-dependent LTD might be responsible for the development of depressive-like behaviors in CSDS-induced depression mice model.


Asunto(s)
Antagonistas de Aminoácidos Excitadores , Depresión Sináptica a Largo Plazo , Animales , Potenciales Postsinápticos Excitadores , Humanos , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA