Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.414
Filtrar
1.
Sci Rep ; 14(1): 16007, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992147

RESUMEN

This study addresses the effect of using animal excreta on the nutritional content of forages, focusing on macro- and micro-element concentrations (nitrogen; N, phosphorus; P, sulphur; S, copper; Cu, zinc; Zn, manganese; Mn, selenium; Se) from animal feed to excreta, soil, and plants. Data were collected from pot and field trials using separate applications of sheep or cattle urine and faeces. Key findings indicate that soil organic carbon (SOC) and the type of excreta significantly influences nutrient uptake by forages, with varied responses among the seven elements defined above. Although urine contributes fewer micronutrients compared to faeces (as applied at a natural volume/mass basis, respectively), it notably improves forage yield and micronutrient accumulation, thus potentially delivering positive consequences at the farm level regarding economic performance and soil fertility when swards upon clayey soil types receive said urine in temperate agro-climatic regions (i.e., South West England in the current context). In contrast, faeces application in isolation hinders Se and Mn uptake, once again potentially delivering unintended consequences such as micronutrient deficiencies in areas of high faeces deposition. As it is unlikely that (b)ovine grazing fields will receive either urine or faeces in isolation, we also explored combined applications of both excreta types which demonstrates synergistic effects on N, Cu, and Zn uptake, with either synergistic or dilution effects being observed for P and S, depending largely on SOC levels. Additionally, interactions between excreta types can result in dilution or antagonistic effects on Mn and Se uptake. Notably, high SOC combined with faeces reduces Mn and Se in forages, raising concerns for grazed ruminant systems under certain biotic situations, e.g., due to insufficient soil Se levels typically observed in UK pastures for livestock growth. These findings underscore the importance of considering SOC and excreta nutritional composition when designing forage management to optimize nutrient uptake. It should be noted that these findings have potential ramifications for broader studies of sustainable agriculture through system-scale analyses, as the granularity of results reported herein elucidate gaps in knowledge which could affect, both positively and negatively, the interpretation of model-based environmental impact assessments of cattle and sheep production (e.g., in the case of increased yields [beneficial] or the requirement of additional synthetic supplementation [detrimental]).


Asunto(s)
Alimentación Animal , Heces , Suelo , Orina , Animales , Heces/química , Bovinos , Suelo/química , Ovinos , Orina/química , Alimentación Animal/análisis , Nutrientes/análisis , Nutrientes/metabolismo , Rumiantes/fisiología , Nitrógeno/metabolismo , Nitrógeno/orina , Nitrógeno/análisis , Fósforo/orina , Fósforo/análisis , Fósforo/metabolismo
2.
Microb Pathog ; : 106787, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992510

RESUMEN

A unique approach is imperative for the development of drugs aimed at inhibiting various stages of infection, rather than solely focusing on bacterial viability. Among the array of unconventional targets explored for formulating novel antimicrobial medications, blocking the quorum-sensing (QS) system emerges as a highly effective and promising strategy against a variety of pathogenic microbes. In this investigation, we have successfully assessed nine α-aminoamides for their anti-QS activity using Agrobacterium tumefaciens NT1 as a biosensor strain. Among these compounds, three (2, 3 and, 4) have been identified as potential anti-QS candidates. Molecular docking studies have further reinforced these findings, indicating that these compounds exhibit favourable pharmacokinetic profiles. Additionally, we have assessed the ligand's stability within the protein's binding pocket using molecular dynamics (MD) simulations and MMGBSA analysis. Further, combination of antiquorum sensing properties with antibiotics via self-assembly represents a promising approach to enhance antibacterial efficacy, overcome resistance, and mitigate the virulence of bacterial pathogens. The release study also reflects a slow and gradual release of the metronidazole at both pH 6.5 and pH 7.4, avoiding the peaks and troughs associated with more immediate release formulations.

3.
Oncol Res ; 32(7): 1231-1237, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948023

RESUMEN

Background: Despite the availability of chemotherapy drugs such as 5-fluorouracil (5-FU), the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects. This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines (AGS and EPG85-257). Materials and Methods: In this in vitro study, AGS and EPG85-257 cells were treated with different concentrations of celastrol, 5-FU, and their combination. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The synergistic effect of 5-FU and celastrol was studied using Compusyn software. The DNA content at different phases of the cell cycle and apoptosis rate was measured using flow cytometry. Results: Co-treatment with low concentrations (10% inhibitory concentration (IC10)) of celastrol and 5-FU significantly reduced IC50 (p < 0.05) so that 48 h after treatment, IC50 was calculated at 3.77 and 6.9 µM for celastrol, 20.7 and 11.6 µM for 5-FU, and 5.03 and 4.57 µM for their combination for AGS and EPG85-257 cells, respectively. The mean percentage of apoptosis for AGS cells treated with celastrol, 5-FU, and their combination was obtained 23.9, 41.2, and 61.9, and for EPG85-257 cells 5.65, 46.9, and 55.7, respectively. In addition, the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase. Conclusions: Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells, additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.


Asunto(s)
Apoptosis , Proliferación Celular , Sinergismo Farmacológico , Fluorouracilo , Triterpenos Pentacíclicos , Neoplasias Gástricas , Triterpenos , Humanos , Triterpenos Pentacíclicos/farmacología , Fluorouracilo/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Triterpenos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Ciclo Celular/efectos de los fármacos
4.
Pflugers Arch ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963545

RESUMEN

6-Cyanodopamine is a novel catecholamine released from rabbit isolated heart. However, it is not known whether this catecholamine presents any biological activity. Here, it was evaluated whether 6-cyanodopamine (6-CYD) is released from rat vas deferens and its effect on this tissue contractility. Basal release of 6-CYD, 6-nitrodopamine (6-ND), 6-bromodopamine, 6-nitrodopa, and 6-nitroadrenaline from vas deferens were quantified by LC-MS/MS. Electric-field stimulation (EFS) and concentration-response curves to noradrenaline, adrenaline, and dopamine of the rat isolated epididymal vas deferens (RIEVD) were performed in the absence and presence of 6-CYD and /or 6-ND. Expression of tyrosine hydroxylase was assessed by immunohistochemistry. The rat isolated vas deferens released significant amounts of both 6-CYD and 6-ND. The voltage-gated sodium channel blocker tetrodotoxin had no effect on the release of 6-CYD, but it virtually abolished 6-ND release. 6-CYD alone exhibited a negligible RIEVD contractile activity; however, at 10 nM, 6-CYD significantly potentiated the noradrenaline- and EFS-induced RIEVD contractions, whereas at 10 and 100 nM, it also significantly potentiated the adrenaline- and dopamine-induced contractions. The potentiation of noradrenaline- and adrenaline-induced contractions by 6-CYD was unaffected by tetrodotoxin. Co-incubation of 6-CYD (100 pM) with 6-ND (10 pM) caused a significant leftward shift and increased the maximal contractile responses to noradrenaline, even in the presence of tetrodotoxin. Immunohistochemistry revealed the presence of tyrosine hydroxylase in both epithelial cell cytoplasm of the mucosae and nerve fibers of RIEVD. The identification of epithelium-derived 6-CYD and its remarkable synergism with catecholamines indicate that epithelial cells may regulate vas deferens smooth muscle contractility.

5.
Environ Sci Technol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984974

RESUMEN

Global change confronts organisms with multiple stressors causing nonadditive effects. Persistent stress, however, leads to adaptation and related trade-offs. The question arises: How can the resulting effects of these contradictory processes be predicted? Here we show that Gammarus pulex from agricultural streams were more tolerant to clothianidin (mean EC50 148 µg/L) than populations from reference streams (mean EC50 67 µg/L). We assume that this increased tolerance results from a combination of physiological acclimation, epigenetic effects, and genetic evolution, termed as adaptation. Further, joint exposure to pesticide mixture and temperature stress led to synergistic interactions of all three stressors. However, these combined effects were significantly stronger in adapted populations as shown by the model deviation ratio (MDR) of 4, compared to reference populations (MDR = 2.7). The pesticide adaptation reduced the General-Stress capacity of adapted individuals, and the related trade-off process increased vulnerability to combined stress. Overall, synergistic interactions were stronger with increasing total stress and could be well predicted by the stress addition model (SAM). In contrast, traditional models such as concentration addition (CA) and effect addition (EA) substantially underestimated the combined effects. We conclude that several, even very disparate stress factors, including population adaptations to stress, can act synergistically. The strong synergistic potential underscores the critical importance of correctly predicting multiple stresses for risk assessment.

6.
Plants (Basel) ; 13(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38999701

RESUMEN

Essential oils (EOs) are plant metabolites with important insecticidal effects. Nevertheless, information on the efficacy of the major substances on aphids and their natural enemies is still missing. The objective of this paper is, therefore, to identify the efficacy of selected EO majority substances-ß-citronellol, carvacrol, isoeugenol, and linalool, including their binary mixtures-on the mortality and fertility of the aphid Metopolophium dirhodum, an important cereal pest. The best efficacy was proven for the binary mixture of ß-citronellol and linalool (1:1 ratio), for which the estimated LC50(90) is 0.56(1.58) mL L-1. This binary mixture applied in sublethal concentrations significantly reduced aphid fertility. It was found that the phenomenon can be attributed to ß-citronellol, as the females treated with LC30 laid 45.9% fewer nymphs, on average, compared to the control. Although ß-citronellol and linalool, including their 1:1 mixture, showed very good efficacy on aphid mortality, they were, on the other hand, very friendly to the larvae of Aphidoletes aphidimyza and Chrysoperla carnea, which are important aphid predators. Based on our results, the newly discovered synergically acting binary mixture ß-citronellol/linalool can be recommended as an efficient substance suitable for the further development of botanical insecticides used against aphids.

7.
Nutrients ; 16(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38999828

RESUMEN

This study aimed to investigate a synergistic anti-inflammatory effect of a citrus flavonoid nobiletin and docosahexaenoic acid (DHA), one of n-3 long-chain polyunsaturated fatty acids, in combination. Simultaneous treatment with nobiletin and DHA synergistically inhibited nitric oxide production (combination index < 0.9) by mouse macrophage-like RAW 264.7 cells stimulated with lipopolysaccharide (LPS) without cytotoxicity. On the other hand, the inhibitory effect of nobiletin and DHA in combination on proinflammatory cytokine production was not synergistic. Neither nobiletin nor DHA affected the phagocytotic activity of RAW 264.7 cells stimulated with LPS. Immunoblot analysis revealed that the inhibition potency of DHA on the phosphorylation of ERK and p38 and nuclear translocation of NF-κB is markedly enhanced by simultaneously treating with nobiletin, which may lead to the synergistic anti-inflammatory effect. Overall, our findings show the potential of the synergistic anti-inflammatory effect of nobiletin and DHA in combination.


Asunto(s)
Antiinflamatorios , Ácidos Docosahexaenoicos , Sinergismo Farmacológico , Flavonas , Lipopolisacáridos , Macrófagos , Óxido Nítrico , Animales , Ratones , Flavonas/farmacología , Lipopolisacáridos/farmacología , Células RAW 264.7 , Antiinflamatorios/farmacología , Ácidos Docosahexaenoicos/farmacología , Óxido Nítrico/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Citocinas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-38980947

RESUMEN

Lightweight ablative thermal protection materials (TPMs), which can resist long-term ablation in an oxidizing atmosphere, are urgently required for aerospace vehicles. Herein, carbon fabric/phenol-formaldehyde resin/siloxane aerogels (CF/PFA/SiA) nanocomposite with interpenetrating network multiscale structure was developed via simple and efficient sol-gel followed by atmospheric pressure drying. The ternary networks structurally interpenetrating in macro-, micron-, and the nanoscales, chemically cross-linking at the molecular scale, and silica layer generated by in situ heating synergistically bring about low density (∼0.3 g cm-3), enhanced mechanical properties, thermal stability, and oxidation resistance, and a low thermal conductivity of 81 mW m-1 K-1. More intriguingly, good thermal protection with near-zero surface recession at 1300 °C for 300 s and remarkable thermal insulation with a back-side temperature below 60 °C at 20 mm thickness. The interpenetrating network strategy can be extended to other porous components with excellent high-temperature properties, such as ZrO2 and SiC, which will facilitate the improvement of lightweight ablative TPMs. Moreover, it may open a new avenue for fabricating multifunctional binary, ternary, and even multiple interpenetrating network materials.

9.
Microb Cell Fact ; 23(1): 195, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971787

RESUMEN

This study explores a sustainable approach for synthesizing silver nanocomposites (AgNCs) with enhanced antimicrobial and bioactivity using safe Lactobacillus strains and a whey-based medium (WBM). WBM effectively supported the growth of Lactobacillus delbrueckii and Lactobacillus acidophilus, triggering a stress response that led to AgNCs formation. The synthesized AgNCs were characterized using advanced spectroscopic and imaging techniques such as UV‒visible, Fourier transform infrared (FT-IR) spectroscopy, transmission electron (TEM), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-Edx). Lb acidophilus-synthesized AgNCs in WBM (had DLS size average 817.2-974.3 ± PDI = 0.441 nm with an average of metal core size 13.32 ± 3.55 nm) exhibited significant antimicrobial activity against a broad spectrum of pathogens, including bacteria such as Escherichia coli (16.47 ± 2.19 nm), Bacillus cereus (15.31 ± 0.43 nm), Clostridium perfringens (25.95 ± 0.03 mm), Enterococcus faecalis (32.34 ± 0.07 mm), Listeria monocytogenes (23.33 ± 0.05 mm), methicillin-resistant Staphylococcus aureus (MRSA) (13.20 ± 1.76 mm), and filamentous fungi such as Aspergillus brasiliensis (33.46 ± 0.01 mm). In addition, Lb acidophilus-synthesized AgNCs in WBM exhibit remarkable free radical scavenging abilities, suggesting their potential as bioavailable antioxidants. These findings highlight the dual functionality of these biogenic AgNCs, making them promising candidates for applications in both medicine and nutrition.


Asunto(s)
Pruebas de Sensibilidad Microbiana , Nanocompuestos , Plata , Suero Lácteo , Nanocompuestos/química , Plata/química , Plata/farmacología , Suero Lácteo/química , Suero Lácteo/metabolismo , Lactobacillus acidophilus/efectos de los fármacos , Lactobacillus acidophilus/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/biosíntesis , Nanopartículas del Metal/química , Lactobacillus/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/química , Espectroscopía Infrarroja por Transformada de Fourier
10.
Talanta ; 278: 126512, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38970964

RESUMEN

The tetracycline (TC) residue in water environment has caused serious public safety issue. Thus, efficient sensing of TC is highly desirable for environmental protection. Herein, biomass-derived nitrogen-doped carbon dots (N-CDs) synthesized from natural Ophiopogon japonicus f. nanus (O. japonicus) were used for TC detection. The unique solvent synergism efficiently enhanced detection sensitivity, and the detailed sensing mechanism was deeply investigated. The blue fluorescence of N-CDs was quenched by TC via static quenching and inner filter effect. Moreover, the enhancement of green fluorescence from deprotonated TC was firstly proposed and sufficiently verified. The solvent effect of N-methyl pyrrolidone (NMP) and the fluorescence resonance energy transfer (FRET) with N-CDs achieved an instantaneous enhancement of the green emission by 64-fold. Accordingly, a ratiometric fluorescence method was constructed for rapid and sensitive sensing of TC with a low detection limit of 6.3 nM within 60 s. The synergistic effect of N-CDs and solvent assistance significantly improved the sensitivity by 7-fold compared to that in water. Remarkably, the biomass-derived N-CDs displayed low cost, good solubility, and desired stability. The deep insights into the synergism with solvent can provide prospects for the utilization of biomass-based materials and broaden the development of advanced sensors with promising applications.

11.
Biomed Pharmacother ; 177: 117076, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971011

RESUMEN

Hyperactive FMS-like receptor tyrosine kinase-3 mutants with internal tandem duplications (FLT3-ITD) are frequent driver mutations of aggressive acute myeloid leukemia (AML). Inhibitors of FLT3 produce promising results in rationally designed cotreatment schemes. Since FLT3-ITD modulates DNA replication and DNA repair, valid anti-leukemia strategies could rely on a combined inhibition of FLT3-ITD and regulators of cell cycle progression and DNA integrity. These include the WEE1 kinase which controls cell cycle progression, nucleotide synthesis, and DNA replication origin firing. We investigated how pharmacological inhibition of FLT3 and WEE1 affected the survival and genomic integrity of AML cell lines and primary AML cells. We reveal that promising clinical grade and preclinical inhibitors of FLT3 and WEE1 synergistically trigger apoptosis in leukemic cells that express FLT3-ITD. An accumulation of single and double strand DNA damage precedes this process. Mass spectrometry-based proteomic analyses show that FLT3-ITD and WEE1 sustain the expression of the ribonucleotide reductase subunit RRM2, which provides dNTPs for DNA replication. Unlike their strong pro-apoptotic effects on leukemia cells with FLT3-ITD, inhibitors of FLT3 and WEE1 do not damage healthy human blood cells and murine hematopoietic stem cells. Thus, pharmacological inhibition of FLT3-ITD and WEE1 might become an improved, rationally designed therapeutic option.

12.
Microb Pathog ; : 106782, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969186

RESUMEN

The natural antimicrobial properties of essential oils (EOs) have contributed to the battle against multidrug-resistant microorganisms by providing new ways to develop more effective antibiotic agents. In this study, we investigated the chemical composition of Ocotea diospyrifolia essential oil (OdOE) and its antimicrobial properties combined with amikacin (AMK). Through gas chromatography-mass spectrometry (GCMS) analysis, the primary constituents of OdOE were identified as α-bisabolol (45.8%), ß-bisabolene (9.4%), γ-elemene (7.6%), (Z)- ß-farnesene (5.2%), spathulenol (3.5%), (Z)-caryophyllene (3.3%), and (E)-caryophyllene (3.1%). In vitro assessments showed that the combined administration of OdOE and AMK exerted a synergistic antibacterial effect on the multidrug-resistant K. pneumoniae strain. This synergistic effect demonstrated bacteriostatic action. OdEO combined with amikacin showed protein extravasation within 2 h of treatment, leading to bacterial death, which was determined by a reduction in viable cell count. The effective concentrations showed hemocompatibility. In vivo assessments using Caenorhabditis elegans as a model showed the survival of 85% of infected nematodes. Therefore, the combination OdEO combined with amikacin exhibited antimicrobial activity against a multidrug-resistant K. pneumoniae strain. Thus, OdOE is a promising agent that may be considered for development of antimicrobial treatment.

13.
Sci Rep ; 14(1): 15709, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977768

RESUMEN

Honey bees are commonly co-exposed to pesticides during crop pollination, including the fungicide captan and neonicotinoid insecticide thiamethoxam. We assessed the impact of exposure to these two pesticides individually and in combination, at a range of field-realistic doses. In laboratory assays, mortality of larvae treated with captan was 80-90% greater than controls, dose-independent, and similar to mortality from the lowest dose of thiamethoxam. There was evidence of synergism (i.e., a non-additive response) from captan-thiamethoxam co-exposure at the highest dose of thiamethoxam, but not at lower doses. In the field, we exposed whole colonies to the lowest doses used in the laboratory. Exposure to captan and thiamethoxam individually and in combination resulted in minimal impacts on population growth or colony mortality, and there was no evidence of synergism or antagonism. These results suggest captan and thiamethoxam are each acutely toxic to immature honey bees, but whole colonies can potentially compensate for detrimental effects, at least at the low doses used in our field trial, or that methodological differences of the field experiment impacted results (e.g., dilution of treatments with natural pollen). If compensation occurred, further work is needed to assess how it occurred, potentially via increased queen egg laying, and whether short-term compensation leads to long-term costs. Further work is also needed for other crop pollinators that lack the social detoxification capabilities of honey bee colonies and may be less resilient to pesticides.


Asunto(s)
Captano , Sinergismo Farmacológico , Fungicidas Industriales , Insecticidas , Tiametoxam , Animales , Tiametoxam/toxicidad , Abejas/efectos de los fármacos , Abejas/fisiología , Insecticidas/toxicidad , Fungicidas Industriales/toxicidad , Captano/toxicidad , Larva/efectos de los fármacos , Neonicotinoides/toxicidad , Tiazoles/toxicidad , Nitrocompuestos/toxicidad
14.
Infect Drug Resist ; 17: 2307-2313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882656

RESUMEN

Background: The difficulties in attaining effective antibiotic therapy arising from the multidrug resistance of Gram-negative bacilli compel the exploration of new possibilities for synergistic interactions among existing antibiotics. Research Design and Methods: An analysis was conducted to assess the efficacy of two antibiotic therapy regimens in the treatment of infections caused by Klebsiella pneumoniae strains producing carbapenemases (MBL). Two patient groups were considered: Group A - individuals in whom the treatment of infection involved the application of ceftazidime-avibactam in combination with aztreonam. Group B comprised patients subjected to an alternative antibiotic therapy regimen. Results: In the group subjected to the treatment regimen involving ceftazidime-avibactam and aztreonam, as compared to alternative antibiotic combinations, a statistically lower mortality rate during the course of treatment and a faster clinical response to the administered therapy were evident. Conclusion: The results obtained may be applicable to routine in vitro assays performed and serve as valuable guidance for the potential utilization of the positive effect of antibiotic therapy through the synergy between ceftazidime-avibactam and aztreonam. The selection of antibiotics employed in the therapy of invasive infections caused by K. pneumoniae influences the ultimate treatment outcome.

15.
Cells ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891072

RESUMEN

This study explores the impact of environmental pollutants on nuclear receptors (CAR, PXR, PPARα, PPARγ, FXR, and LXR) and their heterodimerization partner, the Retinoid X Receptor (RXR). Such interaction may contribute to the onset of non-alcoholic fatty liver disease (NAFLD), which is initially characterized by steatosis and potentially progresses to steatohepatitis and fibrosis. Epidemiological studies have linked NAFLD occurrence to the exposure to environmental contaminants like PFAS. This study aims to assess the simultaneous activation of nuclear receptors via perfluorooctanoic acid (PFOA) and RXR coactivation via Tributyltin (TBT), examining their combined effects on steatogenic mechanisms. Mice were exposed to PFOA (10 mg/kg/day), TBT (5 mg/kg/day) or a combination of them for three days. Mechanisms underlying hepatic steatosis were explored by measuring nuclear receptor target gene and lipid metabolism key gene expressions, by quantifying plasma lipids and hepatic damage markers. This study elucidated the involvement of the Liver X Receptor (LXR) in the combined effect on steatosis and highlighted the permissive nature of the LXR/RXR heterodimer. Antagonistic effects of TBT on the PFOA-induced activation of the Pregnane X Receptor (PXR) and Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) were also observed. Overall, this study revealed complex interactions between PFOA and TBT, shedding light on their combined impact on liver health.


Asunto(s)
Caprilatos , Fluorocarburos , Compuestos de Trialquiltina , Animales , Compuestos de Trialquiltina/farmacología , Caprilatos/farmacología , Ratones , Fluorocarburos/toxicidad , Fluorocarburos/farmacología , Masculino , Ratones Endogámicos C57BL , Receptores X del Hígado/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Receptores X Retinoide/metabolismo , Hígado Graso/metabolismo , Hígado Graso/inducido químicamente , Hígado Graso/patología , Receptores Citoplasmáticos y Nucleares/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente
16.
Foods ; 13(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928773

RESUMEN

Antimicrobial tolerance is a significant concern in the food industry, as it poses risks to food safety and public health. To overcome this challenge, synergistic combinations of antimicrobials have emerged as a potential solution. In this study, the combinations of two essential oil constituents (EOCs), namely carvacrol (CAR) and eugenol (EUG), with the quaternary ammonium compounds (QACs) benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC) were evaluated for their antimicrobial effects against Escherichia coli and Bacillus cereus, two common foodborne bacteria. The checkerboard assay was employed to determine the fractional inhibitory concentration index (FICI) and the fractional bactericidal concentration index (FBCI), indicating the presence of bactericidal, but not bacteriostatic, synergy in all QAC-EOC combinations. Bactericidal synergism was clearly supported by Bliss independence analysis. The bactericidal activity of the promising synergistic combinations was further validated by time-kill curves, achieving a >4-log10 reduction of initial bacterial load, which is significant compared to typical industry standards. The combinations containing DDAC showed the highest efficiency, resulting in the eradication of bacterial population in less than 2-4 h. These findings emphasize the importance of considering both bacteriostatic and bactericidal effects when evaluating antimicrobial combinations and the potential of EOC-QAC combinations for sanitization and disinfection in the food industry.

17.
Int J Food Microbiol ; 422: 110802, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38943772

RESUMEN

In feed, propionic acid is the weak organic acid of choice to prevent growth of spoilage fungi. For safe and easy industrial handling this antifungal agent is applied in the presence of neutralizing ammonium, which however has the disadvantage to negatively affect the efficacy of fungus-inhibiting properties of the formulation. In the present study we investigated the impact of medium chain fatty acids (MCFA) on the antifungal efficacy of an ammonium propionate formulation on dormant- and germinating conidia as well as germ tubes and hyphae of Aspergillus chevalieri, a xerophilic fungus predominant on moulded feed. Dormant conidia were not affected by 32 mM of ammonium propionate after a 28 h-treatment in demi water. Similar results were obtained with solely 0.52 mM MCFA. However, the combination of both components nearly eradicated formation of colonies from these conidia and was accompanied by distortion of the cellular structure as was visible with light- and transmission electron microscopy. Germination of conidia, characterised by swelling and germ tube formation, was significantly decreased in the presence of 16 mM ammonium propionate and 0.26 mM MCFA, while the latter component itself did not significantly decrease germination. We conclude that a combination of ammonium propionate and MCFA had a synergistic antifungal effect on dormant and germinating conidia. When the combination of ammonium propionate and MCFA was tested on hyphae for 30 min, we observed that cell death was significantly increased in comparison to components alone. Treatment of the hyphae with 16 mM of ammonium propionate caused aberrant mitochondria, as evidenced by irregularly shaped and enlarged mitochondria that contained electron-dense inclusions as observed by transmission electron microscopy. When the combination of ammonium propionate and MCFA was applied against the hyphae, more severe cell damage was observed, with signs of autophagy. Summarised, our results demonstrate synergistic antifungal effects of ammonium propionate and medium chain fatty acids on fungal survival structures, during their germination and after a short (sudden) treatment of growing cells. This is of potential importance for several areas of feed and food storage and shelf-life.

18.
Food Chem ; 458: 140162, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38943964

RESUMEN

The objective of this study was to evaluate the viability of juá pulp for fermentation by monoculture L. casei (Lc - 01) and L. acidophilus (La - 05) and co-culture (25 and 37 °C) for 72 h. Viable strain values (> 7 log CFU/g), pH reduction (below 3.7), fructose and glucose and increased of lactic acid showed that the pulp of juá served as a good matrix for fermentation. Catechin, epicatechin, epigallocatechin procyanidin B1, and gallic acid were the main phenolics that contributed to antioxidant activity. Fermentation by mono or co-culture increased or reduced the content of phenolics and antioxidant activity. Results showed that culture, time and temperature have effects in the fermentation of juá pulp. The co-cultivation of La - 05 + Lc - 01 contributed to improving the bioaccessibility of gallic acid (72.9%) of the jua pulp. Finding indicate juá pulp as a promising substrate to obtaining a new probiotic plant-based fermented beverage.

19.
Toxins (Basel) ; 16(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38922156

RESUMEN

Cytotoxins (CTs) are three-finger membrane-active toxins present mainly in cobra venom. Our analysis of the available CT amino acid sequences, literature data on their membrane activity, and conformational equilibria in aqueous solution and detergent micelles allowed us to identify specific amino acid residues which interfere with CT incorporation into membranes. They include Pro9, Ser28, and Asn/Asp45 within the N-terminal, central, and C-terminal loops, respectively. There is a hierarchy in the effect of these residues on membrane activity: Pro9 > Ser28 > Asn/Asp45. Taking into account all the possible combinations of special residues, we propose to divide CTs into eight groups. Group 1 includes toxins containing all of the above residues. Their representatives demonstrated the lowest membrane activity. Group 8 combines CTs that lack these residues. For the toxins from this group, the greatest membrane activity was observed. We predict that when solely membrane activity determines the cytotoxic effects, the activity of CTs from a group with a higher number should exceed that of CTs from a group with a lower number. This classification is supported by the available data on the cytotoxicity and membranotropic properties of CTs. We hypothesize that the special amino acid residues within the loops of the CT molecule may indicate their involvement in the interaction with non-lipid targets.


Asunto(s)
Membrana Celular , Citotoxinas , Membrana Celular/efectos de los fármacos , Animales , Citotoxinas/química , Citotoxinas/toxicidad , Venenos Elapídicos/química , Venenos Elapídicos/toxicidad , Aminoácidos/química , Secuencia de Aminoácidos , Humanos
20.
Antibiotics (Basel) ; 13(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38927192

RESUMEN

Infections caused by KPC-producing K. pneumoniae continue to pose a significant clinical challenge due to their emerging resistance to new antimicrobials. We investigated the association between two drugs whose roles have been repurposed against multidrug-resistant bacteria: fosfomycin and temocillin. Temocillin exhibits unusual stability against KPC enzymes, while fosfomycin acts as a potent "synergizer". We conducted in vitro antimicrobial activity studies on 100 clinical isolates of KPC-producing K. pneumoniae using a combination of fosfomycin and temocillin. The results demonstrated synergistic activity in 91% of the isolates. Subsequently, we assessed the effect on Galleria mellonella larvae using five genetically different KPC-Kp isolates. The addition of fosfomycin to temocillin increased larvae survival from 73 to 97% (+Δ 32%; isolate 1), from 93 to 100% (+Δ 7%; isolate 2), from 63 to 86% (+Δ 36%; isolate 3), from 63 to 90% (+Δ 42%; isolate 4), and from 93 to 97% (+Δ 4%; isolate 10). Among the temocillin-resistant KPC-producing K. pneumoniae isolates (24 isolates), the addition of fosfomycin reduced temocillin MIC values below the resistance breakpoint in all isolates except one. Temocillin combined with fosfomycin emerges as a promising combination against KPC-producing K. pneumoniae, warranting further clinical evaluation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...