Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros











Intervalo de año de publicación
1.
Chem Biodivers ; : e202400945, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106337

RESUMEN

Chalcone (E)-1,3-diphenyl-prop-2-en-1-one and a series of 14 methoxylated derivatives have been synthesized via Claisen-Schmidt aldol condensation and characterized by FTIR, CG/MS/DIC, 1D (1H and 13C), 2D (COSY, HSQC, and HMBC) NMR, and EMAR techniques. All molecules were tested at 1 mM concentration for antifungal (Sclerotium sp., Macrophomina phaesolina and Colletotrichum gloeosporioides), antibacterial (Acidovorax citrulli two strains), and antiprotozoal (Phytomonas serpens) activities. Unmodified chalcone (CH0) and derivatives CH1, CH2, CH8 stood out in terms of antifungal activity. CH0 presented IC50 values of 47.3 µM (9.8 µg/mL) for the fungus C. gloeosporioides. In addition, fluorescence microscopy indicated that CH0 promoted loss of hyphal cell membrane integrity. The CH1 and CH2 derivatives promoted the inhibition of Sclerotium sp. with IC50 of 127.5 µM (32.9 µg/mL) and 110.4 µM (29.6 µg/mL), respectively. All molecules showed high activity against the phytoparasite P. serpens with IC50 values of 0.98, 2.40, 10.25, and 3.11 µM for the derivatives CH2, CH3, CH5 and CH14 respectively. The results demonstrated that derivatives methoxylated in both rings (CH2) as well as derivatives with a furan ring associated with the methoxy group in ring A, as well as unmodified chalcone can be promising agricultural fungicides for controlling the fungi studied.

2.
Front Bioeng Biotechnol ; 12: 1425529, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161351

RESUMEN

A significant limitation of numerous current genetic engineering therapy approaches is their limited control over the strength, timing, or cellular context of their therapeutic effect. Synthetic gene/genetic circuits are synthetic biology approaches that can control the generation, transformation, or depletion of a specific DNA, RNA, or protein and provide precise control over gene expression and cellular behavior. They can be designed to perform logical operations by carefully selecting promoters, repressors, and other genetic components. Patent search was performed in Espacenet, resulting in 38 selected patents with 15 most frequent international classifications. Patent embodiments were categorized into applications for the delivery of therapeutic molecules, treatment of infectious diseases, treatment of cancer, treatment of bleeding, and treatment of metabolic disorders. The logic gates of selected genetic circuits are described to comprehensively demonstrate their therapeutic applications. Synthetic gene circuits can be customized for precise control of therapeutic interventions, leading to personalized therapies that respond specifically to individual patient needs, enhancing treatment efficacy and minimizing side effects. They can be highly sensitive biosensors that provide real-time therapy by accurate monitoring various biomarkers or pathogens and appropriately synthesizing a therapeutic molecule. Synthetic gene circuits may also lead to the development of advanced regenerative therapies and to implantable biodevices that produce on-demand bioactive molecules. However, this technology faces challenges for commercial profitability. The genetic circuit designs need adjustments for specific applications, and may have disadvantages like toxicity from multiple regulators, homologous recombination, context dependency, resource overuse, and environmental variability.

3.
Chembiochem ; 25(20): e202400357, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39036938

RESUMEN

Indolocarbazoles are natural products with a broad spectrum of bioactivity. A distinct feature of indolocarbazole biosynthesis is the modification of the indole and maleimide rings by regioselective tailoring enzymes. Here, we study a new indolocarbazole variant, which is encoded by the acfXODCP genes from Streptomyces venezuelae ATCC 10712. We characterise the pathway by expressing the acfXODCP genes in Streptomyces coelicolor, which led to the production of a C-5/C-5'-dihydroxylated indolocarbazole, which we assign as arcyriaflavin F. We also show that a flavin-dependent monooxygenase AcfX catalyses the C-5/C-5' dihydroxylation of the unsubstituted arcyriaflavin A into arcyriaflavin F. Interestingly, AcfX shares homology to EspX from erdasporine A biosynthesis, which instead catalyses a single C-6 indolocarbazole hydroxylation. In summary, we report a new indolocarbazole biosynthetic pathway and a regioselective C-5 indole ring tailoring enzyme AcfX.


Asunto(s)
Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Carbazoles/metabolismo , Carbazoles/química , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Indoles/metabolismo , Indoles/química
4.
J Fungi (Basel) ; 10(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38921397

RESUMEN

Komagataella phaffii (formerly Pichia pastoris) is a methylotrophic yeast widely used in laboratories around the world to produce recombinant proteins. Given its advantageous features, it has also gained much interest in the context of modern biotechnology. In this review, we present the utilization of K. phaffii as a platform to produce several products of economic interest such as biopharmaceuticals, renewable chemicals, fuels, biomaterials, and food/feed products. Finally, we present synthetic biology approaches currently used for strain engineering, aiming at the production of new bioproducts.

5.
EMBO J ; 43(10): 2015-2034, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627599

RESUMEN

Circadian clocks temporally coordinate daily organismal biology over the 24-h cycle. Their molecular design, preserved between fungi and animals, is based on a core-oscillator composed of a one-step transcriptional-translational-negative-feedback-loop (TTFL). To test whether this evolutionarily conserved TTFL architecture is the only plausible way for achieving a functional circadian clock, we adopted a transcriptional rewiring approach, artificially co-opting regulators of the circadian output pathways into the core-oscillator. Herein we describe one of these semi-synthetic clocks which maintains all basic circadian features but, notably, it also exhibits new attributes such as a "lights-on timer" logic, where clock phase is fixed at the end of the night. Our findings indicate that fundamental circadian properties such as period, phase and temperature compensation are differentially regulated by transcriptional and posttranslational aspects of the clockworks.


Asunto(s)
Relojes Circadianos , Transcripción Genética , Relojes Circadianos/genética , Animales , Ritmo Circadiano/genética , Evolución Molecular , Regulación de la Expresión Génica
6.
J Comput Biol ; 30(12): 1315-1321, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010519

RESUMEN

Genetic component assembly is key in the simulation and implementation of genetic circuits. Automating this process, thus accelerating prototyping, is a necessity. We present pyBrick-DNA, a software written in Python, that assembles components for the construction of genetic circuits. pyBrick-DNA (colab.pyBrick.com) is a user-friendly environment where scientists can select genetic sequences or input custom sequences to build genetic assemblies. All components are modularly fused to generate a ready-to-go single DNA fragment. It includes Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and plant gene-editing components. Hence, pyBrick-DNA can generate a functional CRISPR construct composed of a single-guided RNA integrated with Cas9, promoters, and terminator elements. The outcome is a DNA sequence, along with a graphical representation, composed of user-selected genetic parts, ready to be synthesized and cloned in vivo. Moreover, the sequence can be exported as a GenBank file allowing its use with other synthetic biology tools.


Asunto(s)
ADN , Edición Génica , ADN/genética , Redes Reguladoras de Genes , Programas Informáticos
7.
Front Microbiol ; 14: 1268315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840709

RESUMEN

Currently, industrial bioproducts are less competitive than chemically produced goods due to the shortcomings of conventional microbial hosts. Thus, is essential developing robust bacteria for improved cell tolerance to process-specific parameters. In this context, metagenomic approaches from extreme environments can provide useful biological parts to improve bacterial robustness. Here, in order to build genetic constructs that increase bacterial resistance to diverse stress conditions, we recovered novel protein-encoding sequences related to stress-resistance from metagenomic databases using an in silico approach based on Hidden-Markov-Model profiles. For this purpose, we used metagenomic shotgun sequencing data from microbial communities of extreme environments to identify genes encoding chaperones and other proteins that confer resistance to stress conditions. We identified and characterized 10 novel protein-encoding sequences related to the DNA-binding protein HU, the ATP-dependent protease ClpP, and the chaperone protein DnaJ. By expressing these genes in Escherichia coli under several stress conditions (including high temperature, acidity, oxidative and osmotic stress, and UV radiation), we identified five genes conferring resistance to at least two stress conditions when expressed in E. coli. Moreover, one of the identified HU coding-genes which was retrieved from an acidic soil metagenome increased E. coli tolerance to four different stress conditions, implying its suitability for the construction of a synthetic circuit directed to expand broad bacterial resistance.

8.
Microorganisms ; 11(8)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37630604

RESUMEN

Microbial fuel cells (MFCs) offer sustainable solutions for various biotechnological applications and are a crucial area of research in biotechnology. MFCs can effectively treat various refuse, such as wastewater and biodiesel waste by decomposing organic matter and generating electricity. Certain Pseudomonas species possess extracellular electron transfer (EET) pathways, enabling them to transfer electrons from organic compounds to the MFC's anode. Moreover, Pseudomonas species can grow under low-oxygen conditions, which is advantageous considering that the electron transfer process in an MFC typically leads to reduced oxygen levels at the anode. This study focuses on evaluating MFCs inoculated with a new Pseudomonas species grown with 1 g.L-1 glycerol, a common byproduct of biodiesel production. Pseudomonas sp. BJa5 exhibited a maximum power density of 39 mW.m-2. Also, the observed voltammograms and genome analysis indicate the potential production of novel redox mediators by BJa5. Additionally, we investigated the bacterium's potential as a synthetic biology non-model chassis. Through testing various genetic parts, including constitutive promoters, replication origins and cargos using pSEVA vectors as a scaffold, we assessed the bacterium's suitability. Overall, our findings offer valuable insights into utilizing Pseudomonas spp. BJa5 as a novel chassis for MFCs. Synthetic biology approaches can further enhance the performance of this bacterium in MFCs, providing avenues for improvement.

9.
Methods Mol Biol ; 2647: 121-149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37041332

RESUMEN

The revolution in animal transgenesis began in 1981 and continues to become more efficient, cheaper, and faster to perform. New genome editing technologies, especially CRISPR-Cas9, are leading to a new era of genetically modified or edited organisms. Some researchers advocate this new era as the time of synthetic biology or re-engineering. Nonetheless, we are witnessing advances in high-throughput sequencing, artificial DNA synthesis, and design of artificial genomes at a fast pace. These advances in symbiosis with animal cloning by somatic cell nuclear transfer (SCNT) allow the development of improved livestock, animal models of human disease, and heterologous production of bioproducts for medical applications. In the context of genetic engineering, SCNT remains a useful technology to generate animals from genetically modified cells. This chapter addresses these fast-developing technologies driving this biotechnological revolution and their association with animal cloning technology.


Asunto(s)
Edición Génica , Ingeniería Genética , Animales , Humanos , Animales Modificados Genéticamente , Clonación de Organismos , Clonación Molecular
10.
ACS Synth Biol ; 12(3): 722-734, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36862944

RESUMEN

One major limitation of function-driven metagenomics is the ability of the host to express the metagenomic DNA correctly. Differences in the transcriptional, translational, and post-translational machinery between the organism to which the DNA belongs and the host strain are all factors that influence the success of a functional screening. For this reason, the use of alternative hosts is an appropriate approach to favor the identification of enzymatic activities in function-driven metagenomics. To be implemented, appropriate tools should be designed to build the metagenomic libraries in those hosts. Moreover, discovery of new chassis and characterization of synthetic biology toolbox in nonmodel bacteria is an active field of research to expand the potential of these organisms in processes of industrial interest. Here, we assessed the suitability of two Antarctic psychrotolerant Pseudomonas strains as putative alternative hosts for function-driven metagenomics using pSEVA modular vectors as scaffold. We determined a set of synthetic biology tools suitable for these hosts and, as a proof of concept, we demonstrated their fitness for heterologous protein expression. These hosts represent a step forward for the prospection and identification of psychrophilic enzymes of biotechnological interest.


Asunto(s)
Pseudomonas , Biología Sintética , Pseudomonas/genética , Metagenómica , Regiones Antárticas , Biotecnología
11.
mBio ; 14(1): e0329122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36744948

RESUMEN

Heat shock protein (HSP)-encoding genes (hsp), part of the highly conserved heat shock response (HSR), are known to be induced by thermal stress in several organisms. In Neurospora crassa, three hsp genes, hsp30, hsp70, and hsp80, have been characterized; however, the role of defined cis elements in their responses to discrete changes in temperature remains largely unexplored. To fill this gap, while also aiming to obtain a reliable fungal heat shock-inducible system, we analyzed different sections of each hsp promoter by assessing the expression of real-time transcriptional reporters. Whereas all three promoters and their resected versions were acutely induced by high temperatures, only hsp30 displayed a broad range of expression and high tunability, amply exceeding other inducible promoter systems existing in Neurospora, such as quinic acid- or light-inducible ones. As proof of concept, we employed one of these promoters to control the expression of clr-2, which encodes the master regulator of Neurospora cellulolytic capabilities. The resulting strain fails to grow on cellulose at 25°C, whereas it grows robustly if heat shock pulses are delivered daily. Additionally, we designed two hsp30 synthetic promoters and characterized them, as well as the native promoters, using a gradient of high temperatures, yielding a wide range of responses to thermal stimuli. Thus, Neurospora hsp30-based promoters represent a new set of modular elements that can be used as transcriptional rheostats to adjust the expression of a gene of interest or for the implementation of regulated circuitries for synthetic biology and biotechnological strategies. IMPORTANCE A timely and dynamic response to strong temperature fluctuations is paramount for organismal biology. At the same time, inducible promoters are a powerful tool for fungal biotechnological and synthetic biology endeavors. In this work, we analyzed the activity of several N. crassa heat shock protein (hsp) promoters at a wide range of temperatures, observing that hsp30 exhibits remarkable sensitivity and a dynamic range of expression as we charted the response of this promoter to subtle increases in temperature, and also as we built and analyzed synthetic promoters based on hsp30 cis elements. As proof of concept, we tested the ability of hsp30 to provide tight control of a central process, cellulose degradation. While this study provides an unprecedented description of the regulation of the N. crassa hsp genes, it also contributes a noteworthy addition to the molecular toolset of transcriptional controllers in filamentous fungi.


Asunto(s)
Neurospora crassa , Neurospora crassa/genética , Neurospora crassa/metabolismo , Temperatura , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Regiones Promotoras Genéticas
12.
Biochem J ; 480(2): 127-140, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36688908

RESUMEN

All living organisms include a set of signaling devices that confer the ability to dynamically perceive and adapt to the fluctuating environment. Two-component systems are part of this sensory machinery that regulates the execution of different genetic and/or biochemical programs in response to specific physical or chemical signals. In the last two decades, there has been tremendous progress in our molecular understanding on how signals are detected, the allosteric mechanisms that control intramolecular information transmission and the specificity determinants that guarantee correct wiring. All this information is starting to be exploited in the development of new synthetic networks. Connecting multiple molecular players, analogous to programming lines of code, can provide the resources to build new sophisticated biocomputing systems. The Synthetic Biology field is starting to revolutionize several scientific fields, such as biomedicine and agriculture, propelling the development of new solutions. Expanding the spectrum of available nanodevices in the toolbox is key to unleash its full potential. This review aims to discuss, from a structural perspective, how to take advantage of the vast array of sensor and effector protein modules involved in two-component systems for the construction of new synthetic circuits.


Asunto(s)
Transducción de Señal , Biología Sintética , Proteínas
13.
ACS Synth Biol ; 12(1): 71-82, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36534043

RESUMEN

Cell communication is a widespread mechanism in biology, allowing the transmission of information about environmental conditions. In order to understand how cell communication modulates relevant biological processes such as survival, division, differentiation, and apoptosis, different synthetic systems based on chemical induction have been successfully developed. In this work, we coupled cell communication and optogenetics in the budding yeast Saccharomyces cerevisiae. Our approach is based on two strains connected by the light-dependent production of α-factor pheromone in one cell type, which induces gene expression in the other type. After the individual characterization of the different variants of both strains, the optogenetic intercellular system was evaluated by combining the cells under contrasting illumination conditions. Using luciferase as a reporter gene, specific co-cultures at a 1:1 ratio displayed activation of the response upon constant blue light, which was not observed for the same cell mixtures grown in darkness. Then, the system was assessed at several dark/blue-light transitions, where the response level varies depending on the moment in which illumination was delivered. Furthermore, we observed that the amplitude of response can be tuned by modifying the initial ratio between both strains. Finally, the two-population system showed higher fold inductions in comparison with autonomous strains. Altogether, these results demonstrated that external light information is propagated through a diffusible signaling molecule to modulate gene expression in a synthetic system involving microbial cells, which will pave the road for studies allowing optogenetic control of population-level dynamics.


Asunto(s)
Luz , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Comunicación Celular/genética , Transducción de Señal , Diferenciación Celular , Optogenética/métodos
14.
Int Microbiol ; 26(2): 243-255, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36357545

RESUMEN

Gallic acid is a powerful antioxidant with multiple therapeutic applications, usually obtained from the acidic hydrolysis of tannins produced by many plants. As this process generates a considerable amount of toxic waste, the use of tannases or tannase-producing microorganisms has become a greener alternative over the last years. However, their high costs still impose some barriers for industrial scalability, requiring solutions that could be both greener and cost-effective. Since Pseudomonas putida KT2440 is a powerful degrader of gallic acid, its metabolism offers pathways that can be engineered to produce it from cheap and renewable carbon sources, such as the crude glycerol generated in biodiesel units. In this study, a synthetic operon with the heterologous genes aroG4, quiC and pobA* was developed and expressed in P. putida, based on an in silico analysis of possible metabolic routes, resulting in no production. Then, the sequences pcaHG and galTAPR were deleted from the genome of this strain to avoid the degradation of gallic acid and its main intermediate, the protocatechuic acid. This mutant was transformed with the vector containing the synthetic operon and was finally able to convert glycerol into gallic acid. Production assays in shaker showed a final concentration of 346.7 ± 0.004 mg L-1 gallic acid after 72 h.


Asunto(s)
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Glicerol/metabolismo , Ácido Gálico/metabolismo
15.
Front Plant Sci ; 13: 982959, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212277

RESUMEN

As one of synthetic biology's foundations, biocircuits are a strategy of genetic parts assembling to recognize a signal and to produce a desirable output to interfere with a biological function. In this review, we revisited the progress in the biocircuits technology basis and its mandatory elements, such as the characterization and assembly of functional parts. Furthermore, for a successful implementation, the transcriptional control systems are a relevant point, and the computational tools help to predict the best combinations among the biological parts planned to be used to achieve the desirable phenotype. However, many challenges are involved in delivering and stabilizing the synthetic structures. Some research experiences, such as the golden crops, biosensors, and artificial photosynthetic structures, can indicate the positive and limiting aspects of the practice. Finally, we envision that the modulatory structural feature and the possibility of finer gene regulation through biocircuits can contribute to the complex design of synthetic chromosomes aiming to develop plants and algae with new or improved functions.

16.
Protein Expr Purif ; 199: 106150, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35944614

RESUMEN

Common strategies to improve recombinant protein production in Escherichia coli often involve the test and optimization of several different variables, when using traditional expression vectors that are commercially available. Now, modern synthetic biology-based strategies allow for extensive modifications of these traditional vectors, or even construction of entirely new modular vectors, so as to permit tunable production of the recombinant proteins of interest. Herein, we describe the engineering of a new expression operating unit (EOU; 938 bp) for producing recombinant proteins in E. coli, through the combinatorial assembly of standardized and well-characterized genetic elements required for transcription and translation (promoter, operator site, RBS, junction RBS-CDS, cloning module, transcriptional terminator). We also constructed a novel T7 promoter variant with increased transcriptional activity (1.7-fold higher), when compared to the canonical wild type T7 promoter sequence. This new EOU yielded an improved production of the reporter protein superfolder GFP (sfGFP) in E. coli BL21(DE3) (relative fluorescence units/RFU = 70.62 ± 1.62 A U.) when compared to a high-producing control expression vector (plasmid BBa_I746909; RFU = 59.68 ± 1.82 A U.). The yields of purified soluble recombinant sfGFP were also higher when using the new EOU (188 mg L-1 culture vs. 108 mg L-1 in the control) and it performed similarly well when inserted into different plasmid backbones (pOPT1.0/AmpR and pOPT2.0/CmR).


Asunto(s)
Escherichia coli , Vectores Genéticos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Plásmidos/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Front Bioeng Biotechnol ; 10: 958486, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017345

RESUMEN

Spider silks are well known for their extraordinary mechanical properties. This characteristic is a result of the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Advances in synthetic biology have enabled the design and production of spidroins with the aim of biomimicking the structure-property-function relationships of spider silks. Although in nature only fibers are formed from spidroins, in vitro, scientists can explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams. The versatility of spidroins, along with their biocompatible and biodegradable nature, also placed them as leading-edge biological macromolecules for improved drug delivery and various biomedical applications. Accordingly, in this review, we highlight the relationship between the molecular structure of spider silk and its mechanical properties and aims to provide a critical summary of recent progress in research employing recombinantly produced bioengineered spidroins for the production of innovative bio-derived structural materials.

19.
Food Chem X ; 13: 100196, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35498967

RESUMEN

Synthetic biology is employed for the study and design of engineered microbes with new and improved therapeutic functions. The main advantage of synthetic biology is the selective genetic manipulation of living organisms with desirable beneficial effects such as probiotics. Engineering technologies have contributed to the edition of metabolic processes involved in the mechanisms of action of probiotics, such as the generation of bioactive peptides. Hence, current information related to bioactive peptides, produced by different engineering probiotics, with antimicrobial, antiviral, antidiabetic, and antihypertensive activities, as well as their potential use as functional ingredients, is discussed here. Besides, the effectiveness and safety aspects of these bioactive peptides were also described.

20.
Front Bioeng Biotechnol ; 10: 869206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600895

RESUMEN

With the increase in clinical cases of bacterial infections with multiple antibiotic resistance, the world has entered a health crisis. Overuse, inappropriate prescribing, and lack of innovation of antibiotics have contributed to the surge of microorganisms that can overcome traditional antimicrobial treatments. In 2017, the World Health Organization published a list of pathogenic bacteria, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli (ESKAPE). These bacteria can adapt to multiple antibiotics and transfer their resistance to other organisms; therefore, studies to find new therapeutic strategies are needed. One of these strategies is synthetic biology geared toward developing new antimicrobial therapies. Synthetic biology is founded on a solid and well-established theoretical framework that provides tools for conceptualizing, designing, and constructing synthetic biological systems. Recent developments in synthetic biology provide tools for engineering synthetic control systems in microbial cells. Applying protein engineering, DNA synthesis, and in silico design allows building metabolic pathways and biological circuits to control cellular behavior. Thus, synthetic biology advances have permitted the construction of communication systems between microorganisms where exogenous molecules can control specific population behaviors, induce intracellular signaling, and establish co-dependent networks of microorganisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA