Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chempluschem ; : e202400138, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866722

RESUMEN

Autonomous generation of energy, specifically adenosine triphosphate (ATP), is critical for sustaining the engineered functionalities of synthetic cells constructed from the bottom-up. In this mini-review, we categorize studies on ATP-producing synthetic cells into three different approaches: photosynthetic mechanisms, mitochondrial respiration mimicry, and utilization of non-conventional approaches such as exploiting synthetic metabolic pathways. Within this framework, we evaluate the strengths and limitations of each approach and provide directions for future research endeavors. We also introduce a concept of building ATP-generating synthetic organelle that will enable us to mimic cellular respiration in a simpler way than current strategies. This review aims to highlight the importance of energy self-production in synthetic cells, providing suggestions and ideas that may help overcome some longstanding challenges in this field.

2.
Synth Biol (Oxf) ; 9(1): ysae007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807757

RESUMEN

Giant unilamellar vesicles (GUVs) provide a powerful model compartment for synthetic cells. However, a key challenge is the incorporation of membrane proteins that allow for transport, energy transduction, compartment growth and division. Here, we have successfully incorporated the membrane protein complex SecYEG-the key bacterial translocase that is essential for the incorporation of newly synthesized membrane proteins-in GUVs. Our method consists of fusion of small unilamellar vesicles containing reconstituted SecYEG into GUVs, thereby forming SecGUVs. These are suitable for large-scale experiments while maintaining a high protein:lipid ratio. We demonstrate that incorporation of SecYEG into GUVs does not inhibit its translocation efficiency. Robust membrane protein functionalized proteo-GUVs are promising and flexible compartments for use in the formation and growth of synthetic cells.

3.
Biochem Biophys Res Commun ; 720: 150060, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38754164

RESUMEN

Artificial Intelligence (AI) is having a revolutionary impact on our societies. It is helping humans in facing the global challenges of this century. Traditionally, AI is developed in software or through neuromorphic engineering in hardware. More recently, a brand-new strategy has been proposed. It is the so-called Chemical AI (CAI), which exploits molecular, supramolecular, and systems chemistry in wetware to mimic human intelligence. In this work, two promising approaches for boosting CAI are described. One regards designing and implementing neural surrogates that can communicate through optical or chemical signals and give rise to networks for computational purposes and to develop micro/nanorobotics. The other approach concerns "bottom-up synthetic cells" that can be exploited for applications in various scenarios, including future nano-medicine. Both topics are presented at a basic level, mainly to inform the broader audience of non-specialists, and so favour the rise of interest in these frontier subjects.


Asunto(s)
Inteligencia Artificial , Humanos , Células Artificiales/química , Redes Neurales de la Computación
4.
Methods Mol Biol ; 2740: 89-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38393470

RESUMEN

Cell cycle control is a central aspect of the biology of proliferating eukaryotic cells. However, progression through the cell cycle relies on a highly complex network, making it difficult to unravel the core design principles underlying the mechanisms that sustain cell proliferation and the ways in which they interact with other cellular pathways. In this context, the use of a synthetic approach to simplify the cell cycle network in unicellular genetic models such as fission yeast has opened the door to studying the biology of proliferating cells from unique perspectives. Here, we provide a series of methods based on a minimal cell cycle module in the fission yeast Schizosaccharomyces pombe that allows for an unprecedented artificial control of cell cycle events, enabling the rewiring and remodeling of cell cycle progression.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Ciclo Celular , División Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
Cell Syst ; 15(1): 49-62.e4, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38237551

RESUMEN

Synthetic minimal cells are a class of bioreactors that have some, but not all, functions of live cells. Here, we report a critical step toward the development of a bottom-up minimal cell: cellular export of functional protein and RNA products. We used cell-penetrating peptide tags to translocate payloads across a synthetic cell vesicle membrane. We demonstrated efficient transport of active enzymes and transport of nucleic acid payloads by RNA-binding proteins. We investigated influence of a concentration gradient alongside other factors on the efficiency of the translocation, and we show a method to increase product accumulation in one location. We demonstrate the use of this technology to engineer molecular communication between different populations of synthetic cells, to exchange protein and nucleic acid signals. The synthetic minimal cell production and export of proteins or nucleic acids allows experimental designs that approach the complexity and relevancy of natural biological systems. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Células Artificiales , Péptidos de Penetración Celular , Ácidos Nucleicos , Ácidos Nucleicos/metabolismo , Células Artificiales/metabolismo , Proteínas , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo
6.
SLAS Technol ; 29(2): 100095, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37385542

RESUMEN

The ability of cells to sense and respond to their physical environment plays a fundamental role in a broad spectrum of biological processes. As one of the most essential molecular force sensors and transducers found in cell membranes, mechanosensitive (MS) ion channels can convert mechanical inputs into biochemical or electrical signals to mediate a variety of sensations. The bottom-up construction of cell-sized compartments displaying cell-like organization, behaviors, and complexity, also known as synthetic cells, has gained popularity as an experimental platform to characterize biological functions in isolation. By reconstituting MS channels in the synthetic lipid bilayers, we envision using mechanosensitive synthetic cells for several medical applications. Here, we describe three different concepts for using ultrasound, shear stress, and compressive stress as mechanical stimuli to activate drug release from mechanosensitive synthetic cells for disease treatments.


Asunto(s)
Células Artificiales , Mecanotransducción Celular/fisiología , Canales Iónicos/metabolismo , Membrana Celular/metabolismo
7.
SLAS Technol ; 29(2): 100090, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37245659

RESUMEN

Artificial cells, synthetic cells, or minimal cells are microengineered cell-like structures that mimic the biological functions of cells. Artificial cells are typically biological or polymeric membranes where biologically active components, including proteins, genes, and enzymes, are encapsulated. The goal of engineering artificial cells is to build a living cell with the least amount of parts and complexity. Artificial cells hold great potential for several applications, including membrane protein interactions, gene expression, biomaterials, and drug development. It is critical to generate robust, stable artificial cells using high throughput, easy-to-control, and flexible techniques. Recently, droplet-based microfluidic techniques have shown great potential for the synthesis of vesicles and artificial cells. Here, we summarized the recent advances in droplet-based microfluidic techniques for the fabrication of vesicles and artificial cells. We first reviewed the different types of droplet-based microfluidic devices, including flow-focusing, T-junction, and coflowing. Next, we discussed the formation of multi-compartmental vesicles and artificial cells based on droplet-based microfluidics. The applications of artificial cells for studying gene expression dynamics, artificial cell-cell communications, and mechanobiology are highlighted and discussed. Finally, the current challenges and future outlook of droplet-based microfluidic methods for engineering artificial cells are discussed. This review will provide insights into scientific research in synthetic biology, microfluidic devices, membrane interactions, and mechanobiology.


Asunto(s)
Células Artificiales , Microfluídica , Microfluídica/métodos , Células Artificiales/metabolismo , Biología Sintética , Dispositivos Laboratorio en un Chip
8.
Small ; 20(15): e2308390, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38037673

RESUMEN

Compartments are a fundamental feature of life, based variously on lipid membranes, protein shells, or biopolymer phase separation. Here, this combines self-assembling bacterial microcompartment (BMC) shell proteins and liquid-liquid phase separation (LLPS) to develop new forms of compartmentalization. It is found that BMC shell proteins assemble at the liquid-liquid interfaces between either 1) the dextran-rich droplets and PEG-rich continuous phase of a poly(ethyleneglycol)(PEG)/dextran aqueous two-phase system, or 2) the polypeptide-rich coacervate droplets and continuous dilute phase of a polylysine/polyaspartate complex coacervate system. Interfacial protein assemblies in the coacervate system are sensitive to the ratio of cationic to anionic polypeptides, consistent with electrostatically-driven assembly. In both systems, interfacial protein assembly competes with aggregation, with protein concentration and polycation availability impacting coating. These two LLPS systems are then combined to form a three-phase system wherein coacervate droplets are contained within dextran-rich phase droplets. Interfacial localization of BMC hexameric shell proteins is tunable in a three-phase system by changing the polyelectrolyte charge ratio. The tens-of-micron scale BMC shell protein-coated droplets introduced here can accommodate bioactive cargo such as enzymes or RNA and represent a new synthetic cell strategy for organizing biomimetic functionality.


Asunto(s)
Proteínas Bacterianas , Dextranos , Proteínas Bacterianas/metabolismo
9.
ACS Synth Biol ; 13(1): 45-53, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38113213

RESUMEN

We have developed genetic tools for the atypical bacterium Acholeplasma laidlawii. A. laidlawii is a member of the class Mollicutes, which lacks cell walls, has small genomes, and has limited metabolic capabilities, requiring many metabolites from their hosts. Several of these traits have facilitated the development of genome transplantation for some Mollicutes, consequently enabling the generation of synthetic cells. Here, we propose the development of genome transplantation for A. laidlawii. We first investigated a donor-recipient relationship between two strains, PG-8A and PG-8195, through whole-genome sequencing. We then created multihost shuttle plasmids and used them to optimize an electroporation protocol. We also evolved a superior strain for DNA uptake via electroporation. We created a PG-8A donor strain with a Tn5 transposon carrying a tetracycline resistance gene. These tools will enhance Acholeplasma research and accelerate the effort toward creating A. laidlawii strains with synthetic genomes.


Asunto(s)
Acholeplasma laidlawii , Acholeplasma laidlawii/genética , Acholeplasma laidlawii/metabolismo , Plásmidos/genética , Fenotipo
10.
Angew Chem Int Ed Engl ; 62(45): e202313096, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37728515

RESUMEN

In eukaryotic cells, the membraneless organelles (MLOs) formed via liquid-liquid phase separation (LLPS) are found to interact intimately with membranous organelles (MOs). One major mode is the clustering of MOs by MLOs, such as the formation of clusters of synaptic vesicles at nerve terminals mediated by the synapsin-rich MLOs. Aqueous droplets, including complex coacervates and aqueous two-phase systems, have been plausible MLO-mimics to emulate or elucidate biological processes. However, neither of them can cluster lipid vesicles (LVs) like MLOs. In this work, we develop a synthetic droplet assembled from a combination of two different interactions underlying the formation of these two droplets, namely, associative and segregative interactions, which we call segregative-associative (SA) droplets. The SA droplets cluster and disperse LVs recapitulating the key functional features of synapsin condensates, which can be attributed to the weak electrostatic interaction environment provided by SA droplets. This work suggests LLPS with combined segregative and associative interactions as a possible route for synaptic clustering of lipid vesicles and highlights SA droplets as plausible MLO-mimics and models for studying and mimicking related cellular dynamics.


Asunto(s)
Orgánulos , Sinapsinas , Células Eucariotas , Lípidos
11.
Interface Focus ; 13(5): 20230014, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37577005

RESUMEN

Is it possible to build life? More specifically, is it possible to create a living synthetic cell from inanimate building blocks? This question precipitated into one of the most significant grand challenges in biochemistry and synthetic biology, with several large research consortia forming around this endeavour in Europe (European Synthetic Cell Initiative), the USA (Build-a-Cell Initiative) and Japan (Japanese Society for Cell Synthesis Research). The mature field of biochemistry, the advent of synthetic biology in the early 2000s, and the burgeoning field of cell-free synthetic biology made it feasible to tackle this grand challenge.

12.
Interface Focus ; 13(5): 20230028, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37577007

RESUMEN

The development and bottom-up assembly of synthetic cells with a functional cytoskeleton sets a major milestone to understand cell mechanics and to develop man-made machines on the nano- and microscale. However, natural cytoskeletal components can be difficult to purify, deliberately engineer and reconstitute within synthetic cells which therefore limits the realization of multifaceted functions of modern cytoskeletons in synthetic cells. Here, we review recent progress in the development of synthetic cytoskeletons made from deoxyribonucleic acid (DNA) as a complementary strategy. In particular, we explore the capabilities and limitations of DNA cytoskeletons to mimic functions of natural cystoskeletons like reversible assembly, cargo transport, force generation, mechanical support and guided polymerization. With recent examples, we showcase the power of rationally designed DNA cytoskeletons for bottom-up assembled synthetic cells as fully engineerable entities. Nevertheless, the realization of dynamic instability, self-replication and genetic encoding as well as contractile force generating motors remains a fruitful challenge for the complete integration of multifunctional DNA-based cytoskeletons into synthetic cells.

13.
ACS Synth Biol ; 12(7): 2004-2014, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37343188

RESUMEN

Biomolecular condensates are a promising platform for synthetic cell formation and constitute a potential missing link between the chemical and cellular stage of the origins of life. However, it has proven challenging to integrate complex reaction networks into biomolecular condensates, such as a cell-free in vitro transcription-translation (IVTT) system. Integrating IVTT into biomolecular condensates successfully is one precondition for condensation-based synthetic cell formation. Moreover, it would provide a proof of concept that biomolecular condensates are in principle compatible with the central dogma, one of the hallmarks of cellular life. Here, we have systemically investigated the compatibility of eight different (bio)molecular condensates with IVTT incorporation. Of these eight candidates, we have found that a green fluorescent protein-labeled, intrinsically disordered cationic protein (GFP-K72) and single-stranded DNA (ssDNA) can form biomolecular condensates that are compatible with up to µM fluorescent protein expression. This shows that biomolecular condensates can indeed integrate complex reaction networks, confirming their use as synthetic cell platforms and hinting at a possible role in the origin of life.


Asunto(s)
Células Artificiales , Condensados Biomoleculares , Colorantes , ADN de Cadena Simple , Proteínas Fluorescentes Verdes/genética
14.
ACS Synth Biol ; 12(7): 2015-2028, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37155828

RESUMEN

The reconstitution of basic cellular functions in micrometer-sized liposomes has led to a surge of interest in the construction of synthetic cells. Microscopy and flow cytometry are powerful tools for characterizing biological processes in liposomes with fluorescence readouts. However, applying each method separately leads to a compromise between information-rich imaging by microscopy and statistical population analysis by flow cytometry. To address this shortcoming, we here introduce imaging flow cytometry (IFC) for high-throughput, microscopy-based screening of gene-expressing liposomes in laminar flow. We developed a comprehensive pipeline and analysis toolset based on a commercial IFC instrument and software. About 60 thousands of liposome events were collected per run starting from one microliter of the stock liposome solution. Robust population statistics from individual liposome images was performed based on fluorescence and morphological parameters. This allowed us to quantify complex phenotypes covering a wide range of liposomal states that are relevant for building a synthetic cell. The general applicability, current workflow limitations, and future prospects of IFC in synthetic cell research are finally discussed.


Asunto(s)
Células Artificiales , Citometría de Flujo/instrumentación , Citometría de Flujo/métodos , Liposomas/química , Transcripción Genética , Genes Reporteros , Biosíntesis de Proteínas , Replicación del ADN , Microtúbulos , Células Artificiales/química
15.
ACS Synth Biol ; 12(4): 1187-1203, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37014369

RESUMEN

In cell-free gene expression, low input DNA concentration severely limits the phenotypic output, which may impair in vitro protein evolution efforts. We address this challenge by developing CADGE, a strategy that is based on clonal isothermal amplification of a linear gene-encoding dsDNA template by the minimal Φ29 replication machinery and in situ transcription-translation. We demonstrate the utility of CADGE in bulk and in clonal liposome microcompartments to boost up the phenotypic output of soluble and membrane-associated proteins, as well as to facilitate the recovery of encapsulated DNA. Moreover, we report that CADGE enables the enrichment of a DNA variant from a mock gene library via either a positive feedback loop-based selection or high-throughput screening. This new biological tool can be implemented for cell-free protein engineering and the construction of a synthetic cell.


Asunto(s)
ADN Polimerasa Dirigida por ADN , ADN , ADN/genética , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Proteínas de la Membrana/genética , Biblioteca de Genes , Expresión Génica
16.
Genome Med ; 15(1): 19, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932388

RESUMEN

Since many single-cell RNA-seq (scRNA-seq) data are obtained after cell sorting, such as when investigating immune cells, tracking cellular landscape by integrating single-cell data with spatial transcriptomic data is limited due to cell type and cell composition mismatch between the two datasets. We developed a method, spSeudoMap, which utilizes sorted scRNA-seq data to create virtual cell mixtures that closely mimic the gene expression of spatial data and trains a domain adaptation model for predicting spatial cell compositions. The method was applied in brain and breast cancer tissues and accurately predicted the topography of cell subpopulations. spSeudoMap may help clarify the roles of a few, but crucial cell types.


Asunto(s)
Análisis de Expresión Génica de una Sola Célula , Transcriptoma , Humanos , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Análisis de Secuencia de ARN
17.
ACS Synth Biol ; 12(1): 120-135, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508359

RESUMEN

Giant unilamellar vesicles (GUVs) are cell-sized aqueous compartments enclosed by a phospholipid bilayer. Due to their cell-mimicking properties, GUVs have become a widespread experimental tool in synthetic biology to study membrane properties and cellular processes. In stark contrast to the experimental progress, quantitative analysis of GUV microscopy images has received much less attention. Currently, most analysis is performed either manually or with custom-made scripts, which makes analysis time-consuming and results difficult to compare across studies. To make quantitative GUV analysis accessible and fast, we present DisGUVery, an open-source, versatile software that encapsulates multiple algorithms for automated detection and analysis of GUVs in microscopy images. With a performance analysis, we demonstrate that DisGUVery's three vesicle detection modules successfully identify GUVs in images obtained with a wide range of imaging sources, in various typical GUV experiments. Multiple predefined analysis modules allow the user to extract properties such as membrane fluorescence, vesicle shape, and internal fluorescence from large populations. A new membrane segmentation algorithm facilitates spatial fluorescence analysis of nonspherical vesicles. Altogether, DisGUVery provides an accessible tool to enable high-throughput automated analysis of GUVs, and thereby to promote quantitative data analysis in synthetic cell research.


Asunto(s)
Programas Informáticos , Liposomas Unilamelares , Algoritmos , Fosfolípidos , Microscopía
18.
ACS Synth Biol ; 12(1): 108-119, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36445320

RESUMEN

Reversible membrane targeting of proteins is one of the key regulators of cellular interaction networks, for example, for signaling and polarization. So-called "membrane switches" are thus highly attractive targets for the design of minimal cells but have so far been tricky to reconstitute in vitro. Here, we introduce cell-free prenylated protein synthesis (CFpPS), which enables the synthesis and membrane targeting of proteins in a single reaction mix including the prenylation machinery. CFpPS can confer membrane affinity to any protein via addition of a 4-peptide motif to its C-terminus and offers robust production of prenylated proteins not only in their soluble forms but also in the direct vicinity of biomimetic membranes. Thus, CFpPS enabled us to reconstitute the prenylated polarity hub Cdc42 and its regulatory protein in vitro, implementing a key membrane switch. We propose CFpPS to be a versatile and effective platform for engineering complex features, such as polarity induction, in synthetic cells.


Asunto(s)
Péptidos , Prenilación de Proteína , Factores de Transcripción
19.
Endeavour ; 46(4): 100845, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36194916

RESUMEN

Synthetic biology is often seen as the engineering turn in biology. Philosophically speaking, entities created by synthetic biology, from synthetic cells to xenobots, challenge the ontological divide between the organic and inorganic, as well as between the natural and the artificial. Entities such as synthetic cells can be seen as hybrid or transitory objects, or neo-things. However, what has remained philosophically underexplored so far is the impact these hybrid neo-things will have on (our phenomenological experience of) the living world. By extrapolating from Walter Benjamin's account of how technological reproducibility affects the aura of art, we embark upon an exploratory inquiry that seeks to fathom how the technological reproducibility of life itself may influence our experience and understanding of the living. We conclude that, much as technologies that enabled reproduction corroded the aura of original artworks (as Benjamin argued), so too will the aura of life be under siege in the era of synthetic lifeforms. This article zooms in on a specific case study, namely the research project Building a Synthetic Cell (BaSyC) and its mission to create a synthetic cell-like entity, as autonomous as possible, focusing on the properties that differentiate organic from synthetic cells.


Asunto(s)
Células Artificiales , Tecnología , Reproducibilidad de los Resultados , Ingeniería , Biología Sintética
20.
ACS Synth Biol ; 11(10): 3120-3133, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36164967

RESUMEN

One of the major challenges of bottom-up synthetic biology is rebuilding a minimal cell division machinery. From a reconstitution perspective, the animal cell division apparatus is mechanically the simplest and therefore attractive to rebuild. An actin-based ring produces contractile force to constrict the membrane. By contrast, microbes and plant cells have a cell wall, so division requires concerted membrane constriction and cell wall synthesis. Furthermore, reconstitution of the actin division machinery helps in understanding the physical and molecular mechanisms of cytokinesis in animal cells and thus our own cells. In this review, we describe the state-of-the-art research on reconstitution of minimal actin-mediated cytokinetic machineries. Based on the conceptual requirements that we obtained from the physics of the shape changes involved in cell division, we propose two major routes for building a minimal actin apparatus capable of division. Importantly, we acknowledge both the passive and active roles that the confining lipid membrane can play in synthetic cytokinesis. We conclude this review by identifying the most pressing challenges for future reconstitution work, thereby laying out a roadmap for building a synthetic cell equipped with a minimal actin division machinery.


Asunto(s)
Actomiosina , Células Artificiales , Animales , Actomiosina/metabolismo , Actinas/metabolismo , Citocinesis , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...