Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Intervalo de año de publicación
1.
Antiviral Res ; 230: 105978, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117282

RESUMEN

Seasonal influenza is an annually severe crisis for global public health, and an ideal influenza vaccine is expected to provide broad protection against constantly drifted strains. Compared to highly flexible hemagglutinin (HA), increasing data have demonstrated that neuraminidase (NA) might be a potential target against influenza variants. In the present study, a series of genetic algorithm-based mosaic NA were designed, and then cloned into recombinant DNA and replication-defective Vesicular Stomatitis Virus (VSV) vector as a novel influenza vaccine candidate. Our Results showed that DNA prime/VSV boost strategy elicited a robust NA-specific Th1-dominated immune response, but the traditional inactivated influenza vaccine elicited a Th2-dominated immune response. More importantly, the superior NA-specific immunity induced by our strategy could confer both a full protection against lethal homologous influenza challenge and a partial protection against heterologous influenza infection. These findings will provide insights on designing NA-based universal vaccine strategy against influenza variants.

2.
Eur J Immunol ; : e2451200, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138621

RESUMEN

This study aims to understand the impact of early antiretroviral therapy (ART) on HIV-specific T-cell responses measured after treatment interruption may inform strategies to deliver ART-free immune-mediated viral suppression. HIV-specific T-cell immunity was analysed using gamma interferon enzyme-linked immunospot assays in two studies. SPARTAC included individuals with primary HIV infection randomised to 48 weeks of ART (n = 24) or no immediate therapy (n = 37). The PITCH (n = 7) cohort started antiretroviral therapy in primary infection for at least one year, followed by TI. In SPARTAC, participants treated in PHI for 48 weeks followed by TI for 12 weeks, and those who remained untreated for 60 weeks made similar HIV Gag-directed responses (both magnitude and breadth) at week 60. However, the treated group made a greater proportion of novel HIV Gag-directed responses by Week 60, suggestive of a greater reserve to produce new potentially protective responses. In the more intensively followed PITCH study, 6/7 participants showed dominant Gag and/or Pol-specific responses post-TI compared with pre-TI. Although early ART in PHI was not associated with major differences in HIV-specific immunity following TI compared with untreated participants, the potential to make more new Gag-directed responses warrants further investigation as this may inform strategies to achieve ART-free control.

3.
J Infect Dis ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140311

RESUMEN

BACKGROUND: Chronic norovirus infection (CNI) causes significant morbidity in immunocompromised patients. No effective prevention or treatment currently exists. METHODS: Two patients with inborn errors of immunity, X- linked severe combined immunodeficiency (X-SCID) and DOCK8 deficiency, were followed longitudinally for clinical course, immune reconstitution, norovirus-specific T cell (NST) response, B cell reconstitution, and norovirus-specific antibody production. Samples were obtained in the peri-hematopoietic stem cell transplant setting (HSCT) before and after CNI clearance. The norovirus strain causing CNI was followed longitudinally for norovirus stool viral loads and sequencing. RESULTS: The noroviruses were identified as GII.4 Sydney[P4 New Orleans] in one patient and GII.17[P17] in the other. An exacerbation of diarrhea post-HSCT in the patient with X-SCID was consistent with norovirus infection but not with graft-vs-host-disease on pathologic samples. Both patients recovered polyfunctional NSTs in the CD4 and CD8 T cell compartments which recognized multiple norovirus structural and non-structural viral antigens. T cell responses were minimal during active CNI but detectable after resolution. Mapping of norovirus-specific T cell responses between the patient with DOCK8 and his matched sibling donor were nearly identical. B cell reconstitution or new endogenous antibody production for IgA or IgG were not observed. CONCLUSION: This report is the first to demonstrate reconstitution of norovirus-specific T cell immunity after HSCT closely temporally aligned with clearance of CNI suggesting that cellular immunity is sufficient for norovirus clearance.

4.
J Med Virol ; 96(7): e29790, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38994662

RESUMEN

The effect of COVID-19 booster vaccination on SARS-CoV-2 T-cell mediated immune responses in elderly nursing home residents has not been explored in depth. Thirty-nine elderly nursing home residents (median age, 91 years) were included, all fully vaccinated with mRNA vaccines. The frequency of and the integrated mean fluorescence (iMFI) for peripheral blood SARS-CoV-2-Spike reactive IFN-γ-producing CD4+ or CD8+ T cells before and after the first (Pre-3D and Post-3D) and second (Pre-4D and Post-4D) vaccine booster doses was determined using flow cytometry for an intracellular staining method. 3D increased significantly (p = 0.01) the percentage of participants displaying detectable SARS-CoV-2-T-cell responses compared with pre-3D (97% vs. 74%). The magnitude of the increase was statistically significant for CD8+ T cells (p = 0.007) but not for CD4+ T cells (p = 0.77). A trend towards higher frequencies of peripheral blood SARS-CoV-2-CD8+ T cells was observed post-3D compared with pre-3D (p = 0.06). The percentage of participants with detectable SARS-S-CoV-2 CD4+ T-cell responses decreased post-4D (p = 0.035). Following 4D, a nonsignificant decrease in the frequencies of both T cell subsets was noticed (p = 0.94 for CD8+ T cells and p = 0.06 for CD4+ T cells). iMFI data mirrored that of T-cell frequencies. The kinetics of SARS-CoV-2 CD8+ and CD4+ T cells following receipt of 3D and 4D were comparable across SARS-CoV-2-experienced and -naïve participants and between individuals receiving a homologous or heterologous vaccine booster. 3D increased the percentage of elderly nursing home residents displaying detectable SARS-CoV-2 T-cell responses but had a marginal effect on T-cell frequencies. The impact of 4D on SARS-CoV-2 T-cell responses was negligible; whether this was due to suboptimal priming or rapid waning could not be ascertained.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Casas de Salud , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anciano de 80 o más Años , Masculino , Glicoproteína de la Espiga del Coronavirus/inmunología , Femenino , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Linfocitos T CD4-Positivos/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , SARS-CoV-2/inmunología , Anciano , Interferón gamma , Vacunas de ARNm
5.
Vaccines (Basel) ; 12(7)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39066387

RESUMEN

Commensal human papillomaviruses (HPVs) are responsible for persistent asymptomatic infection in the human population by maintaining low levels of the episomal genome in the stratified epithelia. Herein, we examined the immunogenicity of cutaneotropic HPVs that are commonly found in the skin. Using an in silico platform to determine human leukocyte antigen (HLA)-peptide complex binding affinity, we observed that early genes of cutaneotropic HPV types within the same species can generate multiple conserved, homologous peptides that bind with high affinity to HLA class I alleles. Interestingly, we discovered that commensal ß, γ, µ, and ν HPVs contain significantly more immunogenic peptides compared with α-HPVs, which include high-risk, oncogenic HPV types. Our findings indicate that commensal HPV proteins have evolved to generate peptides that better complement their host's HLA repertoire. Promoting higher control by host T cell immunity in this way could be a mechanism by which HPVs achieve widespread asymptomatic colonization in humans. This work supports the role of commensal HPVs as immunogenic targets within epithelial cells, which may contribute to the immune regulation of the skin and mucosa.

6.
Biomedicines ; 12(7)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39062060

RESUMEN

Non-albicans Candida (NAC) species are increasingly recognized as significant contributors to candidemia infections; however, relatively less is known about the immune responses induced by these species. In this study, we compared the cytokine production ability of human peripheral blood mononuclear cells (PBMCs) upon stimulation with different Candida species (Candida spp.). We measured secreted cytokines using ELISA and checked the functional profiles of T-cell responses using multicolor flow cytometry. Although there was a differential expression of cytokines against Candida spp., significant difference were observed in the levels of IFN-γ, TNF-α, IL-10, IL-12p40, and IL-23 (p < 0.05) between Candida spp. A significant difference was observed between C. albicans and C. glabrata (p = 0.026) in the levels of TNF-α. C. glabrata showed significant differences compared to C. albicans, C. parapsilosis, and C. krusei in the levels of IL-10 (p values of 0.02, 0.04, and 0.01, respectively). Despite the percentages of CD4+ and CD8+ expressing Th1, Th2, and Th17 cytokines being higher in stimulated PBMCs, none of the Candida spp. showed significant differences. The levels of secreted IL-17A and IL-23 were consistently lower in Candida spp. regardless of the stimulus used. Here, we showed the differential regulation of Th1, Th2, and Th17 during Candida spp. stimulation of the immune system ex vivo. Additionally, our findings suggest that C. albicans elicits an IFN-γ response, whereas C. glabrata promotes IL-10 cellular responses, but this warrants additional studies to conclude this association. This investigation holds the potential to advance our comprehension of the distinct immune responses induced by Candida spp., with probable implications in designing antifungal immunotherapeutics.

8.
Antiviral Res ; 229: 105972, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084340

RESUMEN

Bispecific antibodies (bsAbs) are engineered immunoglobulins that combine two different antigen-binding sites in one molecule. BsAbs can be divided into two molecular formats: IgG-like and non-IgG-like antibodies. Structural elements of each format have implications for engaging the immune system. T cell engager antibodies (TCEs) are bsAbs designed to engage T cells with target cells. TCEs can be applied not only in cancer but also in infectious disease therapy to activate T-cell responses. In this review, we focus on current literature on the design and use of bsAbs as an innovative strategy to enhance adaptive antiviral immune responses. We summarized the novel T cell-related immunotherapies with a focus on TCEs, that are developed for the treatment of chronic hepatitis B. Chronic infection with the hepatitis B virus (HBV) had a death toll of 1.1 million humans in 2022, mainly due to liver cirrhosis and hepatocellular carcinoma developing in the more than 250 million humans chronically infected. A curative treatment approach for chronic hepatitis B is lacking. Combining antiviral therapy with immune therapies activating T-cell responses is regarded as the most promising therapeutic approach to curing HBV and preventing the sequelae of chronic infection. Attracting functionally intact T cells that are not HBV-specific and, therefore, have not yet been exposed to regulatory mechanisms and activating those at the target site in the liver is a very interesting therapeutic approach that could be achieved by TCEs. Thus, TCEs redirecting T cells toward HBV-positive cells represent a promising strategy for treating chronic hepatitis B and HBV-associated hepatocellular carcinoma.


Asunto(s)
Inmunidad Adaptativa , Anticuerpos Biespecíficos , Virus de la Hepatitis B , Hepatitis B Crónica , Inmunoterapia , Linfocitos T , Humanos , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/terapia , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/inmunología , Linfocitos T/inmunología , Virus de la Hepatitis B/inmunología , Inmunoterapia/métodos , Antivirales/uso terapéutico , Antivirales/farmacología , Animales
9.
Vet World ; 17(6): 1413-1422, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39077442

RESUMEN

Background and Aim: Staphylococcus aureus, with its diverse virulence factors and immune response evasion mechanisms, presents a formidable challenge as an opportunistic pathogen. Developing an effective vaccine against S. aureus has proven elusive despite extensive efforts. Autologous Staphylococcus lysate (ASL) treatment has proven effective in triggering an immune response against bovine mastitis. Peptides that stimulate the immune response can be the subject of further research. The study aimed to use immunoinformatics tools to identify epitopes on S. aureus surface and secretory proteins that can bind to major histocompatibility complex class I (MHC I) and CD8+ T-cells. This method aids in discovering prospective vaccine candidates and elucidating the rationale behind ASL therapy's efficacy. Materials and Methods: Proteins were identified using both literature search and the National Center for Biotechnology Information search engine Entrez. Self and non-self peptides, allergenicity predictions, epitope locations, and physicochemical characteristics were determined using sequence alignment, AllerTOP, SVMTriP, and Protein-Sol tools. Hex was employed for simulating the docking interactions between S. aureus proteins and the MHC I + CD8+ T-cells complex. The binding sites of S. aureus proteins were assessed using Computer Atlas of Surface Topography of Proteins (CASTp) while docked with MHC I and CD8+ T-cells. Results: Nine potential S. aureus peptides and their corresponding epitopes were identified in this study, stimulating cytotoxic T-cell mediated immunity. The peptides were analyzed for similarity with self-antigens and allergenicity. 1d20, 2noj, 1n67, 1nu7, 1amx, and 2b71, non-self and stable, are potential elicitors of the cytotoxic T-cell response. The energy values from docking simulations of peptide-MHC I complexes with the CD8+ and T-cell receptor (TCR) indicate the stability and strength of the formed complexes. These peptides - 2noj, 1d20, 1n67, 2b71, 1nu7, 1yn3, 1amx, 2gi9, and 1edk - demonstrated robust MHC I binding, as evidenced by their low binding energies. Peptide 2gi9 exhibited the lowest energy value, followed by 2noj, 1nu7, 1n67, and 1d20, when docked with MHC I and CD8 + TCR, suggesting a highly stable complex. CASTp analysis indicated substantial binding pockets in the docked complexes, with peptide 1d20 showing the highest values for area and volume, suggesting its potential as an effective elicitor of immunological responses. These peptides - 2noj, 2gi9, 1d20, and 1n67 - stand out for vaccine development and T-cell activation against S. aureus. Conclusion: This study sheds light on the design and development of S. aureus vaccines, highlighting the significance of employing computational methods in conjunction with experimental verification. The significance of T-cell responses in combating S. aureus infections is emphasized by this study. More experiments are needed to confirm the effectiveness of these vaccine candidates and discover their possible medical uses.

10.
Cell Biochem Biophys ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052192

RESUMEN

Over the last two decades, the Nipah virus (NiV) emerged as a highly lethal zoonotic pathogen to humans. Outbreaks occurred occasionally in South and Southeast Asia. Therefore, a safe and effective vaccine against the virus is needed to fight against the deadly virus. Understanding the immunological landscape during this lethal virus infection is necessary in this direction. However, we found scattered information on the immunological landscape of the virus's reservoir, as well as hosts such as humans and livestock. The review provides a recent understanding of the immunological landscape of the virus's reservoir, human hosts, monoclonal antibodies, and vaccines for NiV infection. To describe the immunological landscape, we divided our review article into some points. Firstly, we illustrated bats' immune response as a reservoir during the NiV infection. Secondly, we illustrated an overview of the molecular mechanisms underlying the immune response to the NiV infection, various immune cells, humans' innate immune response, adaptive immunity, and the landscape of cytokines and chemokines. We also discussed INF escape, NET evasion, the T cell landscape, and the B cell landscape during virus infection. Thirdly, we also demonstrated the potential monoclonal antibody therapeutics, and vaccines. Finally, neutralizing antibodies (nAbs) of NiV and potentially other therapeutic strategies were discussed. The review will help researchers for better understanding the immunological landscape, mAbs, and vaccines, enabling them to develop their next-generation versions.

11.
J Exp Clin Cancer Res ; 43(1): 202, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034411

RESUMEN

BACKGROUND: Lung cancer remains one of the most prevalent cancer types worldwide, with a high mortality rate. Upregulation of programmed cell death protein 1 (PD-1) and its ligand (PD-L1) may represent a key mechanism for evading immune surveillance. Immune checkpoint blockade (ICB) antibodies against PD-1 or PD-L1 are therefore widely used to treat patients with lung cancer. However, the mechanisms by which lung cancer and neutrophils in the microenvironment sustain PD-L1 expression and impart stronger inhibition of CD8+ T cell function remain unclear. METHODS: We investigated the role and underlying mechanism by which PD-L1+ lung cancer and PD-L1+ neutrophils impede the function of CD8+ T cells through magnetic bead cell sorting, quantitative real-time polymerase chain reaction (RT-PCR), western blotting, enzyme-linked immunosorbent assays, confocal immunofluorescence, gene silencing, flow cytometry, etc. In vivo efficacy and safety studies were conducted using (Non-obeseDiabetes/severe combined immune deficiency) SCID/NOD mice. Additionally, we collected clinical and prognostic data from 208 patients who underwent curative lung cancer resection between 2017 and 2018. RESULTS: We demonstrated that C-X-C motif chemokine ligand 5 (CXCL5) is markedly overexpressed in lung cancer cells and is positively correlated with a poor prognosis in patients with lung cancer. Mechanistically, CXCL5 activates the phosphorylation of the Paxillin/AKT signaling cascade, leading to upregulation of PD-L1 expression and the formation of a positive feedback loop. Moreover, CXCL5 attracts neutrophils, compromising CD8+ T cell-dependent antitumor immunity. These PD-L1+ neutrophils aggravate CD8+ T cell exhaustion following lung cancer domestication. Combined treatment with anti-CXCL5 and anti-PD-L1 antibodies significantly inhibits tumor growth in vivo. CONCLUSIONS: Our findings collectively demonstrate that CXCL5 promotes immune escape through PD-L1 upregulation in lung cancer and neutrophils chemotaxis through autocrine and paracrine mechanisms. CXCL5 may serve as a potential therapeutic target in synergy with ICBs in lung cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , Linfocitos T CD8-positivos , Quimiocina CXCL5 , Neoplasias Pulmonares , Neutrófilos , Proteínas Proto-Oncogénicas c-akt , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Animales , Neutrófilos/metabolismo , Neutrófilos/inmunología , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación , Transducción de Señal , Regulación hacia Arriba , Femenino , Masculino , Quimiotaxis , Ratones Endogámicos NOD , Ratones SCID
12.
HLA ; 103(6): e15541, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923358

RESUMEN

Complications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11). More than 700 HLA-A*11:01-restricted epitopes, including more than 50 epitopes derived from a broad range of HCMV open-reading-frames (ORFs) were identified by mass spectrometry and screened for HLA-A*11:01-binding using established prediction tools. The immunogenicity of the 24 highest scoring new candidates was evaluated in vitro in healthy HLA-A*11:01+/HCMV+ donors. Thus, four subdominant epitopes and one immunodominant epitope, derived from the anti-apoptotic protein UL36 and ORFL101C (A11SAL), were identified. Their HLA-A*11:01 complex stability was verified in vitro. In depth analyses revealed highly proliferative and cytotoxic memory T-cell responses against A11SAL, with T-cell responses comparable to the immunodominant HLA-A*02:01-restricted HCMVpp65NLV epitope. A11SAL-specific T cells were also detectable in vivo in immunosuppressed transplant patients and shown to be effective in an in vitro HCMV-infection model, suggesting their crucial role in inhibiting viral replication and improvement of patient's outcome. The developed in vitro pipeline is the first to utilise genetically-engineered DCs to identify naturally presented immunodominant HCMV-derived epitopes. It therefore offers advantages over in silico predictions, is transferable to other HLA alleles, and will significantly expand the repertoire of viral targets to improve therapeutic options.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Células Dendríticas , Epítopos de Linfocito T , Epítopos Inmunodominantes , Humanos , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/inmunología , Epítopos Inmunodominantes/inmunología , Células Dendríticas/inmunología , Epítopos de Linfocito T/inmunología , Antígeno HLA-A11/inmunología , Antígeno HLA-A11/genética , Fibroblastos/inmunología , Fibroblastos/virología , Células Presentadoras de Antígenos/inmunología
13.
J Infect Dis ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838218

RESUMEN

BACKGROUND: The kinetics and durability of T-cell responses to SARS-CoV-2 in children are not well-characterized. We studied a cohort of children aged 6 months to 20 years with COVID-19 in whom peripheral blood mononuclear cells (PBMC) and sera were archived at approximately 1, 6, and 12 months post-symptom onset. METHODS: We compared antibody (N = 85) and T-cell responses (N = 26) to nucleocapsid (N) and spike (S) glycoprotein over time across four age strata: 6 months to 5 years, 5-9, 10-14, and 15-20 years. RESULTS: N-specific antibody responses declined over time, becoming undetectable in 26/32 (81%) children by approximately one year post-infection. Functional breadth of anti-N CD4+ T-cell responses also declined over time and were positively correlated with N-antibody responses (Pearson's r = 0.31, p = 0.008). CD4+ T-cell responses to S displayed greater functional breadth than N in unvaccinated children, and, along with neutralization titers, were stable over time and similar across age strata. Functional profiles of CD4+ T-cell responses against S were not significantly modulated by vaccination. CONCLUSIONS: Our data reveal durable, age-independent T-cell immunity to SARS-CoV-2 structural proteins in children over time following COVID-19 infection as well as S-Ab responses overall, in comparison to declining antibody responses to N.

14.
Front Immunol ; 15: 1365226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812511

RESUMEN

Objective: The aberrant mobilization and activation of various T lymphocyte subpopulations play a pivotal role in the pathogenesis of diabetic kidney disease (DKD), yet the regulatory mechanisms underlying these processes remain poorly understood. Our study is premised on the hypothesis that the dysregulation of immune checkpoint molecules on T lymphocytes disrupts kidney homeostasis, instigates pathological inflammation, and promotes DKD progression. Methods: A total of 360 adult patients with DKD were recruited for this study. The expression of immune checkpoint molecules on T lymphocytes was assessed by flow cytometry for peripheral blood and immunofluorescence staining for kidney tissue. Single-cell sequencing (scRNA-seq) data from the kidneys of DKD mouse model were analyzed. Results: Patients with DKD exhibited a reduction in the proportion of CD3+TIM-3+ T cells in circulation concurrent with the emergence of significant albuminuria and hematuria (p=0.008 and 0.02, respectively). Conversely, the incidence of infection during DKD progression correlated with an elevation of peripheral CD3+TIM-3+ T cells (p=0.01). Both univariate and multivariate logistic regression analysis revealed a significant inverse relationship between the proportion of peripheral CD3+TIM-3+ T cells and severe interstitial mononuclear infiltration (OR: 0.193, 95%CI: 0.040,0.926, p=0.04). Immunofluorescence assays demonstrated an increase of CD3+, TIM-3+ and CD3+TIM-3+ interstitial mononuclear cells in the kidneys of DKD patients as compared to patients diagnosed with minimal change disease (p=0.03, 0.02 and 0.002, respectively). ScRNA-seq analysis revealed decreased gene expression of TIM3 on T lymphocytes in DKD compared to control. And one of TIM-3's main ligands, Galectin-9 on immune cells showed a decreasing trend in gene expression as kidney damage worsened. Conclusion: Our study underscores the potential protective role of TIM-3 on T lymphocytes in attenuating the progression of DKD and suggests that monitoring circulating CD3+TIM3+ T cells may serve as a viable strategy for identifying DKD patients at heightened risk of disease progression.


Asunto(s)
Nefropatías Diabéticas , Receptor 2 Celular del Virus de la Hepatitis A , Linfocitos T , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Humanos , Nefropatías Diabéticas/inmunología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Femenino , Persona de Mediana Edad , Masculino , Animales , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Anciano , Adulto , Inflamación/inmunología , Riñón/patología , Riñón/inmunología , Ratones Endogámicos C57BL , Progresión de la Enfermedad
15.
Transpl Infect Dis ; 26(3): e14290, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38708941

RESUMEN

BACKGROUND: Cytomegalovirus-specific T-cell-mediated immunity (CMV-CMI) protects from CMV infection in allogeneic hematopoietic cell transplantation (allo-HCT), but to date, there is no validated measure of CMV immunity for this population. METHODS: In this prospective, observational, pilot study, CMV T-cell responses were evaluated monthly and at onset of graft-versus-host disease (GVHD) or CMV infection in CMV-seropositive allo-HCT recipients using a commercial flow cytometry assay, the CMV inSIGHT T-Cell Immunity Panel (CMV-TCIP). The primary endpoint was the time to first positive CMV-TCIP, defined as percentage of interferon-γ-producing CD4+ or CD8+ CMV-specific T cells >0.2%. Letermovir was prescribed from day +10 to ≥100. RESULTS: Twenty-eight allo-HCT recipients were enrolled. The median time to first positive CMV-TCIP result was earlier for CD4+ (60 days [interquartile range, IQR 33‒148]) than for CD8+ T cells (96 days [IQR 33‒155]) and longer for haploidentical and mismatched transplant recipients (77 and 96 days, respectively) than for matched donors (45 and 33 days, respectively). CD4+ and CD8+ CMV-CMI recovery was sustained in 10/10 (100%) and 10/11 (91%) patients, respectively, without GVHD, whereas CD4+ and/or CD8+ CMV-CMI was lost in 4/6 and 2/6 patients, respectively, with GVHD requiring steroids. As a predictor of clinically significant CMV infection in patients with low-level CMV reactivation, the sensitivity and negative predictive value of CMV-TCIP were 90% and 87.5%, respectively, for CD4+ CMV-TCIP and 66.7% and 62.5%, respectively, for CD8+ CMV-TCIP. CONCLUSIONS: There was significant variability in time to CMV-CMI recovery post-HCT, with slower recovery after haploidentical and mismatched HCT. CD4+ CMV-CMI may protect against CS-CMVi, but immunity may be lost with GVHD diagnosis and treatment.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Infecciones por Citomegalovirus , Citomegalovirus , Citometría de Flujo , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Trasplante Homólogo , Humanos , Proyectos Piloto , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Infecciones por Citomegalovirus/prevención & control , Persona de Mediana Edad , Masculino , Citomegalovirus/inmunología , Estudios Prospectivos , Femenino , Citometría de Flujo/métodos , Adulto , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD4-Positivos/inmunología , Trasplante Homólogo/efectos adversos , Anciano , Inmunidad Celular , Antivirales/uso terapéutico
16.
Transpl Infect Dis ; 26(4): e14291, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38708965

RESUMEN

BACKGROUND: Valganciclovir prophylaxis against cytomegalovirus (CMV) is recommended for solid organ transplant recipients, but is associated with drawbacks, including expense and leukopenia. Our center adopted a strategy of serial assessment with a CMV-specific T cell immunity panel (CMV-TCIP) and cessation of valganciclovir prophylaxis upon demonstration of adequate CD4+ responses in kidney transplant patients at high risk of CMV disease. METHODS: We retrospectively reviewed adult recipients of a kidney or pancreas transplant between August 2019 and July 2021 undergoing serial CMV-TCIP monitoring. Included patients were considered high risk for CMV, defined by donor positive (D+)/recipient negative (R-) CMV IgG serostatus, or recipient positive (R+) patients who received induction with a lymphocyte-depleting agent. Prophylaxis was discontinued after a patient's first CMV-specific CD4+ T cell value of ≥0.20%. Risk of clinically significant CMV infection (csCMVi) in those who underwent early discontinuation of CMV prophylaxis and predictors of CMV T cell immunity were analyzed. RESULTS: Of 54 included patients, 22 stopped prophylaxis early due to CMV-specific CD4+ T cell immunity at a median of 4.7 (IQR: 3.8-5.4) months after transplant. No instances of csCMVi were observed in the 22 patients who had prophylaxis discontinued early, of whom 19/22 were CMV R+ and 3/22 were CMV D+/R-. Donor/recipient CMV serostatus was predictive of immunity (p <.001). CONCLUSION: Early discontinuation of valganciclovir prophylaxis in patients with CMV CD4+ T cellular immunity appears safe and potentially beneficial in this preliminary series, especially in R+ patients. Further study is warranted, given that truncated prophylaxis may yield patient-level benefits.


Asunto(s)
Antivirales , Infecciones por Citomegalovirus , Citomegalovirus , Trasplante de Riñón , Valganciclovir , Humanos , Infecciones por Citomegalovirus/prevención & control , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Trasplante de Riñón/efectos adversos , Masculino , Persona de Mediana Edad , Femenino , Estudios Retrospectivos , Antivirales/uso terapéutico , Antivirales/administración & dosificación , Valganciclovir/uso terapéutico , Valganciclovir/administración & dosificación , Citomegalovirus/inmunología , Adulto , Linfocitos T CD4-Positivos/inmunología , Receptores de Trasplantes , Anciano , Linfocitos T/inmunología , Factores de Riesgo
17.
Vaccines (Basel) ; 12(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38793711

RESUMEN

Recent studies have demonstrated that ß-catenin in dendritic cells (DCs) serves as a key mediator in promoting both CD4 and CD8 T cell tolerance, although the mechanisms underlying how ß-catenin exerts its functions remain incompletely understood. Here, we report that activation of ß-catenin leads to the up-regulation of inhibitory molecule T-cell immunoglobulin and mucin domain 3 (Tim-3) in type 1 conventional DCs (cDC1s). Using a cDC1-targeted vaccine model with anti-DEC-205 engineered to express the melanoma antigen human gp100 (anti-DEC-205-hgp100), we demonstrated that CD11c-ß-cateninactive mice exhibited impaired cross-priming and memory responses of gp100-specific CD8 T (Pmel-1) cells upon immunization with anti-DEC-205-hgp100. Single-cell RNA sequencing (scRNA-seq) analysis revealed that ß-catenin in DCs negatively regulated transcription programs for effector function and proliferation of primed Pmel-1 cells, correlating with suppressed CD8 T cell immunity in CD11c-ß-cateninactive mice. Further experiments showed that treating CD11c-ß-cateninactive mice with an anti-Tim-3 antibody upon anti-DEC-205-hgp100 vaccination led to restored cross-priming and memory responses of gp100-specific CD8 T cells, suggesting that anti-Tim-3 treatment likely synergizes with DC vaccines to improve their efficacy. Indeed, treating B16F10-bearing mice with DC vaccines using anti-DEC-205-hgp100 in combination with anti-Tim-3 treatment resulted in significantly reduced tumor growth compared with treatment with the DC vaccine alone. Taken together, we identified the ß-catenin/Tim-3 axis as a potentially novel mechanism to inhibit anti-tumor CD8 T cell immunity and that combination immunotherapy of a DC-targeted vaccine with anti-Tim-3 treatment leads to improved anti-tumor efficacy.

18.
FASEB J ; 38(7): e23582, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38568853

RESUMEN

Breast cancer (BC) stands as a prominent contributor to global cancer-related mortality, with an increasing incidence annually. This study aims to investigate AGRN gene expression in BC, as well as explore its influence on the tumor immune microenvironment. AGRN displayed a pronounced upregulation in BC tissues relative to paracancerous tissues. Single-cell RNA analysis highlighted AGRN-specific elevation within cancer cell clusters and also showed expression expressed in stromal as well as immune cell clusters. AGRN upregulation was positively correlated with clinicopathological stage and negatively correlated with BC prognosis. As revealed by the in vitro experiment, AGRN knockdown effectively hinders BC cells in terms of proliferation, invasion as well as migration. AGRN protein, which may interact with EXT1, LRP4, RAPSN, etc., was primarily distributed in the cell cytoplasm. Notably, immune factors might interact with AGRN in BC, evidenced by its discernible associations with immunofactors like IL10, CD274, and PVRL2. Mass spectrometry and immunohistochemistry revealed that the reduction of AGRN led to an increase in CD8+ T cells with triple-negative breast cancer (TNBC). Mechanistically, the connection between TRIM7 and PD-L1 is improved by AGRN, acting as a scaffold, thereby facilitating the accelerated degradation of PD-L1 by TRIM7. Downregulation of AGRN inhibits BC progression and increases CD8+ T cell recruitment. Targeting AGRN may contribute to BC treatment. The biomarker AGRN, serving as a therapeutic target for BC, emerges as a prospective avenue for enhancing both diagnosis and prognosis in BC cases.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama Triple Negativas , Humanos , Linfocitos T CD8-positivos , Estudios Prospectivos , Neoplasias de la Mama Triple Negativas/metabolismo , Biomarcadores de Tumor/genética , Microambiente Tumoral , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
19.
Cureus ; 16(3): e56968, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38665729

RESUMEN

Idiopathic CD4 lymphocytopenia (ICL) is a rare condition where CD4 T cell counts are low, similar to advanced human immunodeficiency virus (HIV) infection but without acquired immunodeficiency syndrome (AIDS)-related symptoms. The cause is unknown, and theories suggest issues with T cell production, survival, migration, or immune system dysregulation. Diagnosis involves ruling out other causes of low CD4 T cells. Treatment is based on managing infections and may include immunomodulatory therapies, but evidence is limited. Clinical presentations vary widely, including infections, autoimmune disorders, and malignancies. This study explores challenges in diagnosing persistent fevers and lymphopenia, the role of medical history in treatment, HIV screening issues, UTI management in recurrent cases, and the importance of follow-up care for unresolved symptoms or abnormal lab results. This study utilized a case study approach, focusing on the detailed presentation, evaluation, and management of the patient. Data were collected from the patient's medical records, including laboratory tests. Relevant literature was reviewed to provide context and support for the discussion of diagnostic challenges and management strategies. This case highlights the importance of considering uncommon presentations of common infections in patients with complex medical histories. It underscores the need for thorough evaluation, including comprehensive medical history, diagnostic testing, and follow-up care, to ensure accurate diagnosis and appropriate management. By sharing this case, we aim to enhance the awareness and understanding of such presentations among healthcare providers, leading to improved patient care and outcomes.

20.
Am J Cancer Res ; 14(3): 1243-1257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590421

RESUMEN

The immune system plays a key role in detecting and fighting cancerous tumors. T cells are a crucial component in both natural and therapeutic cancer immunoediting responses, but it is unclear if they are the primary agents of these processes. In this study, patients with lung lesions detected by CT scan were selected, and their peripheral blood samples were analyzed for T cell population and serum cytokines/chemokines. T cell subtypes (CD3, CD4, CD8, CD27, CD28, CD45, CD45RA, CD57, CCR7, and PD1) and serum cytokines/chemokines (IL-2, IL-6, IL-10, IFN-γ, TGF-ß, TNFα, CXCL1, CXCL9, and CXCL12) were measured by flow cytometry and analysis before surgical resection or other cancer treatments. The frequency of T cell subpopulations in patients with lung cancer (n = 111) corresponded to those seen in patients with T cell exhaustion. As lung cancer progressed, the proportion of effector memory T cells decreased, while the proportion of naive T cells, PD-1, CD57+, CD28+CD27+, CD45RA+, and CD3+CD4+CCR7 increased. Circulating CD8+PD1+ T cells were positively correlated with intra-tumoral PD-L1 expression. Concurrently, serum levels of IL-2, TGF-ß, and CXCL9 decreased, while IL-6, IL-10, IFN-γ, and CXCL12 increased during the progression of lung cancer. In conclusion, T cell dysfunction is associated with cancer progression, particularly in advanced-stage lung cancer, and cancer immunoediting will provide early-stage cancer detection and further therapeutic strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA