Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sci Rep ; 14(1): 13324, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858444

RESUMEN

Microfluidic devices with complex geometries and obstacles have attracted considerable interest in biomedical engineering and chemical analysis. Understanding droplet breakup behavior within these systems is crucial for optimizing their design and performance. This study investigates the influence of triangular obstacles on droplet breakup processes in microchannels. Two distinct types of triangular obstructions, positioned at the bifurcation (case I) and aligned with the flow (case II), are analyzed to evaluate their impact on droplet behavior. The investigation considers various parameters, including the Capillary number (Ca), non-dimensional droplet length (L*), non-dimensional height (A*), and non-dimensional base length (B*) of the triangle. Utilizing numerical simulations with COMSOL software, the study reveals that the presence of triangular obstacles significantly alters droplet breakup dynamics. Importantly, the shape and location of the obstacle emerge as key factors governing breakup characteristics. Results indicate faster breakup of the initial droplet when the obstacle is positioned in the center of the microchannel for case I. For case II, the study aims to identify conditions under which droplets either break up into unequal-sized entities or remain intact, depending on various flow conditions. The findings identify five distinct regimes: no breakup, breakup without a tunnel, breakup with a tunnel, droplet fragmentation into unequal-sized parts, and sorting. These regimes depend on the presence or absence of triangular obstacles and the specific flow conditions. This investigation enhances our understanding of droplet behavior within intricate microfluidic systems and provides valuable insights for optimizing the design and functionality of droplet manipulation and separation devices. Notably, the results emphasize the significant role played by triangular obstacles in droplet breakup dynamics, with the obstacle's shape and position being critical determinants of breakup characteristics.

2.
Ultrason Sonochem ; 99: 106590, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690262

RESUMEN

FePO4 (FP) particles with a mesoporous structure amalgamated by nanoscale primary crystals were controllably prepared using an ultrasound-intensified turbulence T-junction microreactor (UTISR). The use of this type of reaction system can effectively enhance the micro-mixing and remarkably improve the mass transfer and chemical reaction rates. Consequently, the synergistic effects of the impinging streams and ultrasonic irradiation on the formation of mesoporous structure of FP nanoparticles have been systematically investigated through experimental validation and CFD simulation. The results revealed that the FP particles with a mesoporous structure can be well synthesised by precisely controlling the operation parameters by applying ultrasound irradiation with the input power in the range of 0-900 W and the impinging stream volumetric flow rate in the range of 17.15-257.22 mL·min-1. The findings obtained from the experimental observation and CFD modelling has clearly indicated that there exists a strong correlation between the particle size, morphology, and the local turbulence shear. The application of ultrasonic irradiation can effectively intensify the local turbulence shear in the reactor even at low Reynolds number based on the impinging stream diameter (Re < 2000), leading to an effective reduction in the particle size (from 273.48 to 56.1 nm) and an increase in the specific surface area (from 21.97 to 114.97 m2·g-1) of FP samples. The FPirregularly-shaped particles prepared by UTISR exhibited a mesoporous structure with a particle size of 56.10 nm, a specific surface area of 114.97 m2·g-1and a total pore adsorption volume of 0.570 cm3·g-1 when the volumetric flow rate and ultrasound power are 85.74 mL·min-1and 600 W, respectively.

3.
J Surg Res ; 292: 113-122, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37611440

RESUMEN

INTRODUCTION: Bilateral reduction mammoplasty (BRM) aims to alleviate macromastia-related symptoms in women. This procedure involves a T-Junction suture at the medial inframammary fold that encompasses 12%-39% of wound breakdowns mainly due to reduced perfusion. Continuous diffusion of oxygen (CDO) may enhance breast tissue oxygenation to prevent such complication. We explored the feasibility of this therapy. METHODS: A 4-wk feasibility-pilot randomized controlled trial of women undergoing BRM was conducted. By internal randomization (left/right side), participants received standard of care (SOC) in one breast using topical skin adhesive, while their other breast received SOC + CDO at the T-junction covered by a silicon sheet (sCDO), or CDO directly to the T-Junction skin (dCDO). Feasibility outcomes included protocol delivery, outcome measurement, device-related adverse events, and device acceptability. Exploratory outcomes were T-Junction SatO2 and deoxyhemoglobin assessed with near-infrared spectroscopy and wound dehiscence. RESULTS: Sixteen participants (age = 33 ± 8 y; body mass index = 34.34 ± 5.85 kg/m2) were recruited, conforming n = 32 breasts (SOC, n = 16; dCDO, n = 10, sCDO, n = 6). At 4 wk, protocol delivery was 93.7%, outcome measuring 100%, and device-related adverse events 0%. Device acceptability showed an 85.4% strong agreement for attitude toward use, 78.2% perceived ease of use, and 77.7% perceived usefulness. Breasts undergoing sCDO showed higher SatO2 (P < 0.001), whereas lower deoxyhemoglobin (P < 0.001) compared to all other breast groups. However, wound dehiscence was not different between groups (P = 0.66). CONCLUSIONS: Self-applied CDO to the T-Junction is feasible, safe, and acceptable, in patients undergoing BRM. In a proper wound environment, CDO may enhance breast tissue oxygenation. However, it is unclear whether CDO leads to decreased wound dehiscence. This study showed reproducibility for larger randomized trials.

4.
Micromachines (Basel) ; 14(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37512590

RESUMEN

The formation of microparticles (MPs) of biocompatible and biodegradable hydrogels such as polyethylene glycol diacrylate (PEGDA) utilizing microfluidic devices is an attractive option for entrapment and encapsulation of active principles and microorganisms. Our research group has presented in previous studies a formulation to produce these hydrogels with adequate physical and mechanical characteristics for their use in the formation of MPs. In this work, hydrogel MPs are formed based on PEGDA using a microfluidic device with a T-junction design, and the MPs become hydrogel through a system of photopolymerization. The diameters of the MPs are evaluated as a function of the hydrodynamic condition flow rates of the continuous (Qc) and disperse (Qd) phases, measured by optical microscopy, and characterized through scanning electron microscopy. As a result, the following behavior is found: the diameter is inversely proportional to the increase in flow in the continuous phase (Qc), and it has a significant statistical effect that is greater than that in the flow of the disperse phase (Qd). While the diameter of the MPs is proportional to Qd, it does not have a significant statistical effect on the intervals of flow studied. Additionally, the MPs' polydispersity index (PDI) was measured for each experimental hydrodynamic condition, and all values were smaller than 0.05, indicating high homogeneity in the MPs. The microparticles have the potential to entrap pharmaceuticals and microorganisms, with possible pharmacological and bioremediation applications.

5.
Materials (Basel) ; 15(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36431661

RESUMEN

Relying on empirical and quantum chemical methods, a hybrid nanocomposite based on the T-shaped carbon nanotube (CNT) junction and internal fullerene C60 is proposed as a potential triple-value memory cell. The T-shaped CNT provides three potential wells where the internal fullerene can be located. The fullerene can move between these wells under the periodic external electric field, whose strength and frequency parameters are identified. The process of the fullerene's motion control corresponds to the memory cell write operation. The read operation can be realized by determining the fullerene's position inside the CNT by estimation of the charge transfer between a fullerene and the CNT's walls. Calculations took into account such external factors as temperature and air environment.

6.
Small ; 18(48): e2205001, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36310131

RESUMEN

The parallelization of multiple microfluidic droplet junctions has been successfully achieved so that the production throughput of the uniform microemulsions/particles has witnessed considerable progress. However, these advancements have been observed only in the case of a low viscous fluid (viscosity of 10-2 -10-3 Pa s). This study designs and fabricates a microfluidic device, enabling a uniform micro-emulsification of an ultraviscous fluid (viscosity of 3.5 Pa s) with a throughput of ≈330 000 droplets per hour. Multiple T-junctions of a dispersed oil phase, split from a single inlet, are connected into the single post-crossflow channel of a continuous water phase. In the proposed device, the continuous water phase undergoes a series circuit, wherein the resistances are continuously accumulated. The independent corrugations of the dispersed oil phase channel, under the theoretical guidance, compromise such increased resistances; the ratio of water to oil flow rates at each junction becomes consistent across T-junctions. Owing to the design being based on a fully 2D interconnection, single-step soft lithography is sufficient for developing the full device. This easy-to-craft architecture contrasts with the previous approach, wherein complicated 3D interconnections of the multiple junctions are involved, thereby facilitating the rapid uptake of high throughput droplet microfluidics for experts and newcomers alike.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Dispositivos Laboratorio en un Chip , Emulsiones , Agua
7.
Biosensors (Basel) ; 12(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36005055

RESUMEN

Cell encapsulation has been widely employed in cell therapy, characterization, and analysis, as well as many other biomedical applications. While droplet-based microfluidic technology is advantageous in cell microencapsulation because of its modularity, controllability, mild conditions, and easy operation when compared to other state-of-art methods, it faces the dilemma between high throughput and monodispersity of generated cell-laden microdroplets. In addition, the lack of a biocompatible method of de-emulsification transferring cell-laden hydrogel from cytotoxic oil phase into cell culture medium also hurtles the practical application of microfluidic technology. Here, a novel step-T-junction microchannel was employed to encapsulate cells into monodisperse microspheres at the high-throughput jetting regime. An alginate-gelatin co-polymer system was employed to enable the microfluidic-based fabrication of cell-laden microgels with mild cross-linking conditions and great biocompatibility, notably for the process of de-emulsification. The mechanical properties of alginate-gelatin hydrogel, e.g., stiffness, stress-relaxation, and viscoelasticity, are fully adjustable in offering a 3D biomechanical microenvironment that is optimal for the specific encapsulated cell type. Finally, the encapsulation of HepG2 cells into monodisperse alginate-gelatin microgels with the novel microfluidic system and the subsequent cultivation proved the maintenance of the long-term viability, proliferation, and functionalities of encapsulated cells, indicating the promising potential of the as-designed system in tissue engineering and regenerative medicine.


Asunto(s)
Alginatos , Microgeles , Encapsulación Celular , Gelatina , Hidrogeles , Microesferas
8.
Chembiochem ; 23(18): e202200306, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35802389

RESUMEN

Tile-based DNA self-assembly is a powerful approach for nano-constructions. In this approach, individual DNA single strands first assemble into well-defined structural tiles, which, then, further associate with each other into final nanostructures. It is a general assumption that the lower-level structures (tiles) determine the higher-level, final structures. In this study, we present concrete experimental data to show that higher-level structures could, at least in the current example, also impact on the formation of lower-level structures. This study prompts questions such as: how general is this phenomenon in programmed DNA self-assembly and can we turn it into a useful tool for fine tuning DNA self-assembly?


Asunto(s)
Nanoestructuras , ADN/química , ADN de Cadena Simple , Nanoestructuras/química , Nanotecnología/métodos , Conformación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos
9.
Enzyme Microb Technol ; 154: 109976, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34974340

RESUMEN

Bacillus subtilis immobilization in calcium alginate microparticles was investigated using two techniques: droplet microfluidics-based in T-junction geometry composed with a double droplet generation system and conventional dripping system. Alginate microparticles produced by microfluidic technology presented an average size of 68.35 µm with low polydispersity and immobilization efficiency around 86%. The cell response was evaluated in batch cultivation for 24 h, viewing lipase production compared to free cells. In this study, the batch cultivation with immobilized cells in alginate microparticles presented lipase production about 2.4 and 1.7 times higher than cultivation with cells immobilized cells by conventional technique and free cells cultivations. According to the results, this main novelty of the double T junction technique is an innovative contribution as a tool for cell immobilization on a laboratory scale, since the cultivation of immobilized cells in microparticles of small size and low polydispersity favors cell growth and increases the productivity of important metabolites of industrial biotechnology.


Asunto(s)
Alginatos , Microfluídica , Bacillus subtilis , Ácido Glucurónico , Ácidos Hexurónicos , Lipasa
10.
Micromachines (Basel) ; 12(10)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34683262

RESUMEN

Droplet microfluidics offers a wide range of applications, including high-throughput drug screening and single-cell DNA amplification. However, these platforms are often limited to single-input conditions that prevent them from analyzing multiple input parameters (e.g., combined cellular treatments) in a single experiment. Droplet multiplexing will result in higher overall throughput, lowering cost of fabrication, and cutting down the hands-on time in number of applications such as single-cell analysis. Additionally, while lab-on-a-chip fabrication costs have decreased in recent years, the syringe pumps required for generating droplets of uniform shape and size remain cost-prohibitive for researchers interested in utilizing droplet microfluidics. This work investigates the potential of simultaneously generating droplets from a series of three in-line T-junctions utilizing gravity-driven flow to produce consistent, well-defined droplets. Implementing reservoirs with equal heights produced inconsistent flow rates that increased as a function of the distance between the aqueous inlets and the oil inlet. Optimizing the three reservoir heights identified that taller reservoirs were needed for aqueous inlets closer to the oil inlet. Studying the relationship between the ratio of oil-to-water flow rates (Φ) found that increasing Φ resulted in smaller droplets and an enhanced droplet generation rate. An ANOVA was performed on droplet diameter to confirm no significant difference in droplet size from the three different aqueous inlets. The work described here offers an alternative approach to multiplexed droplet microfluidic devices allowing for the high-throughput interrogation of three sample conditions in a single device. It also has provided an alternative method to induce droplet formation that does not require multiple syringe pumps.

11.
Materials (Basel) ; 14(7)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916463

RESUMEN

The self-healing system based on microencapsulated epoxy-amine chemistry is currently the self-healing system with the most practical application potential. It can be widely used in many epoxy-based materials with a size restriction for the microcapsules, such as fiber-reinforced composites, anti-corrosion coatings, etc. Although epoxy microcapsules of different sizes can be fabricated using different techniques, the preparation of polyamine microcapsules with suitable sizes and good performance is the prerequisite for further developing this self-healing system. In this investigation, based on the novel microencapsulation technique via integrating microfluidic T-junction and interfacial polymerization, the feasibility of preparing small-size polyamine microcapsules and the process regulation to optimize the properties of the small-size microcapsules were studied. We show that polyamine microcapsules with sizes smaller than 100 µm can be obtained through the T-junction selection and the feeding rate control of the polyamine. To regulate the small-size microcapsules' quality, the effects of the concentration of the shell-forming monomer and the solvent with different polarity in the reaction solution and the reaction condition were studied. It shows that dry, free-flowing small-size microcapsules can still be obtained when the shell-forming monomer concentration is higher and the solvent's polarity is lower, compared with the preparation of larger polyamine microcapsules. Although the change of reaction conditions (reaction temperature and duration) has a certain effect on the microcapsules' effective core content, it is relatively small. The results of this investigation further promote the potential application of the self-healing systems based on microencapsulated epoxy-amine chemistry in materials with a size restriction for the microcapsules.

12.
PeerJ ; 8: e8918, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351782

RESUMEN

Lightness illusions are often studied under static viewing conditions with figures varying in geometric design, containing different types of perceptual grouping and figure-ground cues. A few studies have explored the perception of lightness induction while modulating lightness illusions continuously in time, where changes in perceived lightness are often linked to the temporal modulation frequency, up to around 2-4 Hz. These findings support the concept of a cut-off frequency for lightness induction. However, another critical change (enhancement) in the magnitude of perceived lightness during slower temporal modulation conditions has not been addressed in previous temporal modulation studies. Moreover, it remains unclear whether this critical change applies to a variety of lightness illusion stimuli, and the degree to which different stimulus configurations can demonstrate enhanced lightness induction in low modulation frequencies. Therefore, we measured lightness induction strength by having participants cancel out any perceived modulation in lightness detected over time within a central target region, while the surrounding context, which ultimately drives the lightness illusion, was viewed in a static state or modulated continuously in time over a low frequency range (0.25-2 Hz). In general, lightness induction decreased as temporal modulation frequency was increased, with the strongest perceived lightness induction occurring at lower modulation frequencies for visual illusions with strong grouping and figure-ground cues. When compared to static viewing conditions, we found that slow continuous surround modulation induces a strong and significant increase in perceived lightness for multiple types of lightness induction stimuli. Stimuli with perceptually ambiguous grouping and figure-ground cues showed weaker effects of slow modulation lightness enhancement. Our results demonstrate that, in addition to the existence of a cut-off frequency, an additional critical temporal modulation frequency of lightness induction exists (0.25-0.5 Hz), which instead maximally enhances lightness induction and seems to be contingent upon the prevalence of figure-ground and grouping organization.

13.
Micromachines (Basel) ; 11(2)2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32075302

RESUMEN

Two-phase flows are found in several industrial systems/applications, including boilers and condensers, which are used in power generation or refrigeration, steam generators, oil/gas extraction wells and refineries, flame stabilizers, safety valves, among many others. The structure of these flows is complex, and it is largely governed by the extent of interphase interactions. In the last two decades, due to a large development of microfabrication technologies, many microstructured devices involving several elements (constrictions, contractions, expansions, obstacles, or T-junctions) have been designed and manufactured. The pursuit for innovation in two-phase flows in these elements require an understanding and control of the behaviour of bubble/droplet flow. The need to systematize the most relevant studies that involve these issues constitutes the motivation for this review. In the present work, literature addressing gas-liquid and liquid-liquid flows, with Newtonian and non-Newtonian fluids, and covering theoretical, experimental, and numerical approaches, is reviewed. Particular focus is given to the deformation, coalescence, and breakup mechanisms when bubbles and droplets pass through the aforementioned microfluidic elements.

14.
ACS Biomater Sci Eng ; 6(11): 6435-6444, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33449645

RESUMEN

Providing control over the geometric shape of cell-laden hydrogel microspheroids, such as diameter and axial ratio, is critical for their use in biomedical applications. Building on our previous work establishing a microfluidic platform for production of large cell-laden microspheres, here we establish the ability to produce microspheroids with varying axial ratio (microrods) and elucidate the mechanisms controlling microspheroidal geometry. Microspheroids with radial diameters ranging from 300 to over 1000 µm and axial ratios from 1.3 to 3.6 were produced. Although for microfluidic devices with small channel sizes (typically <500 µm) the mechanisms governing geometric control have been investigated, these relationships were not directly translatable to production of larger microspheroids (radial diameter 102 - 103 µm) in microfluidic devices with larger channel sizes (up to 1000 µm). In particular as channel size was increased, fluid density differences became more influential in geometric control. We found that two parameters, narrowing ratio (junction diameter over outlet diameter) and flow fraction (discrete phase flow rate over total flow rate), were critical in adjusting the capillary number, modulation of which has been previously shown to enable control over microspheroid diameter and axial ratio. By changing the device design and the experimental conditions, we exploited the relationship between these parameters to predictably modulate microspheroid geometric shape. Finally, we demonstrated the applicability to tissue engineering through encapsulation of fibroblasts and endothelial colony forming cells (ECFCs) in hydrogel microspheroids with different axial ratios and negligible loss of cell viability. This study advances microfluidic production of large cell-laden microspheroids (microspheres and microrods) with controllable size and geometry, opening the door for further investigation of geometric shape-related biomedical applications such as engineered tissue formation.


Asunto(s)
Hidrogeles , Microfluídica , Supervivencia Celular , Dispositivos Laboratorio en un Chip , Microesferas
15.
Micromachines (Basel) ; 10(12)2019 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-31771159

RESUMEN

There have been growing interests in droplet-based microfluidics due to its capability to outperform conventional biological assays by providing various advantages, such as precise handling of liquid/cell samples, fast reaction time, and extremely high-throughput analysis/screening. The droplet-based microfluidics utilizes the interaction between the interfacial tension and the fluidic shear force to break continuous fluids into uniform-sized segments within a microchannel. In this paper, the effect of different viscosities of carrier oil on water-in-oil emulsion, particularly how droplet size and droplet generation rate are affected, has been investigated using a commonly used T-junction microfluidic droplet generator design connected to a pressure-controlled pump. We have tested mineral oils with four different viscosities (5, 7, 10, and 15 cSt) to compare the droplet generation under five different flow pressure conditions (i.e., water flow pressure of 30-150 mbar and oil flow pressure of 40-200 mbar). The results showed that regardless of the flow pressure levels, the droplet size decreased as the oil viscosity increased. Average size of the droplets decreased by approximately 32% when the viscosity of the oil changed from 5 to 15 cSt at the flow pressure of 30 mbar for water and 40 mbar for oil. Interestingly, a similar trend was observed in the droplet generation rate. Droplet generation rate and the oil viscosity showed high linear correlation (R2 = 0.9979) at the water flow pressure 30 mbar and oil flow pressure 40 mbar.

16.
Micromachines (Basel) ; 10(10)2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635350

RESUMEN

We present a 512-microchannel geometrical passive breakup device for the mass production of microdroplets. The mass production is achieved through the passive breakup of a droplet into two droplets. The microchannel geometry in the microfluidic device was designed and optimized by focusing on stable droplet splitting for microdroplet preparation and minimizing the hydraulic resistance of the microchannel for achieving high throughput; the minimization of hydraulic resistance was achieved by employing analytical approaches. A total of 512 microdroplets could be prepared from a single liquid plug by making the liquid plug pass through nine sequential T-junctions in the microfluidic device, which led to the splitting of droplets. The microfluidic device was fabricated using conventional photolithography and polydimethylsiloxane (PDMS) casting. We estimated the performance of the microfluidic device in terms of the size distribution and production rate of microdroplets. Microdroplets with a diameter of 40.0 ± 2.2 µm were prepared with a narrow size distribution (coefficient of variation (CV) < 5.5%) for flow rates of disperse (Qd) and continuous phase (Qc) of 2 and 3 mL/h, respectively. Microdroplet production rates were measured using a high-speed camera. Furthermore, monodisperse microdroplets were prepared at 42.7 kHz for Qd and Qc of 7 and 15 mL/h, respectively. Finally, the feasibility of the fabricated microfluidic device was verified by using it to prepare biodegradable chitosan microspheres.

17.
Entropy (Basel) ; 21(2)2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33266921

RESUMEN

The skin friction consumes some of the energy when a train is running, and the coherent structure plays an important role in the skin friction. In this paper, we focus on the coherent structure generated near the vent of a train. The intention is to investigate the effect of the vent on the generation of coherent structures. The ventilation system of a high-speed train is reasonably simplified as a T-junction duct with vertical blades. The velocity signal of the cross duct was measured in three different sections (upstream, mid-center and downstream), and then the coherent structure of the denoised signals was analyzed by continuous wavelet transform (CWT). The analysis indicates that the coherent structure frequencies become abundant and the energy peak decreases with the increase of the velocity ratio. As a result, we conclude that a higher velocity ratio is preferable to reduce the skin friction of the train. Besides, with the increase of velocity ratio, the dimensionless frequency St of the high-energy coherent structure does not change obviously and St = 3.09 × 10-4-4.51 × 10-4.

18.
Comput Aided Geom Des ; 71: 244-254, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-32831437

RESUMEN

Enriching tensor-product B-spline control nets by allowing T-gons (where strips of quadrilaterals start or end) and irregular nodes (where n ≠ 4 quadrilaterals meet) reduces the requirements on quad-meshing and increases the flexibility for polyhedral design with associated smooth surfaces. This paper introduces a family of piecewise polynomial, geometrically continuous surface constructions that yield good highlight line distributions also in the presence of irregular nodes next to a T-gon. Such tight juxtaposition can further reduce the quad-meshing requirements and increase the space of polyhedral design control structures. The surfaces can be chosen to cover T-gons with G 1 caps of degree bi-4 - or with caps of degree bi-3 that are almost G 1 and preserve the good highlight line distribution of the bi-4 G 1 surfaces.

19.
Ann R Coll Surg Engl ; : e1-e6, 2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-30112950

RESUMEN

Introduction Patients with large ptotic breasts undergoing immediate implant-based reconstruction often require skin-reducing mastectomy to optimise the aesthetic outcome. However, healing complications, especially at the resulting inverted T-junction, leading to wound dehiscence, infection, skin necrosis, implant exposure and failed reconstruction have been widely reported. We present an innovative approach for immediate implant-based reconstruction combining porcine- or bovine-derived acellular dermal matrices with a de-epithelialised dermal sling to protect and support the implant, while improving clinical outcomes in this challenging group of patients. Materials and methods Demographic, tumour and surgical data were reviewed for patients undergoing Wise pattern (T-scar) skin-reducing mastectomies with immediate implant-based reconstruction combining porcine- or bovine-derived acellular dermal matrices with a de-epithelialised dermal sling. Results This technique was successfully employed to reconstruct five large pendulous breasts in four breast cancer patients with a median age of 50.5 years (range 34-61 years) who were not suitable for, or had declined, flap-based reconstruction. The acellular dermal matrices used were SurgiMend®, StratticeTM and Braxon® and the expandable implants were placed in the sub-pectoral (n = 3) and pre-pectoral (n = 1) planes. The technical steps and clinical outcomes are presented. One patient experienced T-junction breakdown overlying the de-epithelialised dermis without implant loss. Conclusion The combination of an acellular dermal matrix and a dermal sling provides a double-layer 'water-proofing' and support for the implants inferiorly, avoiding T-junction breakdown complications, since any dehiscence is on to well-vascularised dermis. Furthermore, the acellular dermal matrix stabilises the implant in the large mastectomy cavity (pocket control). This approach provides a viable option which facilitates mastectomy and immediate implant reconstruction in large-breasted patients.

20.
Biomed Microdevices ; 20(3): 72, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30105562

RESUMEN

Splitting droplets is becoming a major functional component in increasing number of droplet microfluidic applications, and there is an increasing interest in splitting droplets into two daughter droplets with different volumes. However, designing an asymmetric droplet splitter and predicting how a droplet splits in such designs is not trivial. In this study, numerical simulations were conducted to study droplet breakup in asymmetric T-junctions of square cross-sections having different pressure gradient ratios (i.e. T-junctions with outlet branches of different lengths). The goal of the simulation is to identify the conditions where a parent droplet breaks or does not break into two smaller droplets of different sizes (so called critical condition) and to identify the important fluid and microchannel parameters in this process. Four modes of droplet breakup (primary-, transition-, bubble-, and non-breakups) are identified and an empirical correlation is introduced that can predict the breakup/non-breakup of the droplet based on the parent droplet size and the capillary number. The simulation results are then compared with experimental data to verify its accuracy and the effect of fluids properties on the proposed correlation are studied. Two major asymmetric breakup mechanisms are determined, namely "breakup with permanent obstruction" and "unstable breakup". The numerical results show that the splitting ratio for the asymmetric breakup mechanisms depends on flow conditions and dwell time of the droplet at the junction prior to splitting. Finally, the results from two-dimensional and three-dimensional simulations were compared. It is shown that two-dimensional simulation may not accurately predict the breakup behavior for asymmetric droplet breakup and viscosity ration has a greater effect on the prediction critical condition.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Simulación por Computador , Investigación Empírica , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA